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Bayesian Class Discovery in Microarray Datasets

Volker Roth* and Tilman Lange, Student Member, IEEE

Abstract—A novel approach to class discovery in gene expres-
sion datasets is presented. In the context of clinical diagnosis, the
central goal of class discovery algorithms is to simultaneously find
putative (sub-)types of diseases and to identify informative sub-
sets of genes with disease-type specific expression profile. Contrary
to many other approaches in the literature, the method presented
implements a wrapper strategy for feature selection, in the sense
that the features are directly selected by optimizing the discrimi-
native power of the used partitioning algorithm. The usual com-
binatorial problems associated with wrapper approaches are over-
come by a Bayesian inference mechanism. On the technical side, we
present an efficient optimization algorithm with guaranteed local
convergence property. The only free parameter of the optimization
method is selected by a resampling-based stability analysis. Exper-
iments with Leukemia and Lymphoma datasets demonstrate that
our method is able to correctly infer partitions and corresponding
subsets of genes which both are relevant in a biological sense. More-
over, the frequently observed problem of ambiguities caused by dif-
ferent but equally high-scoring partitions is successfully overcome
by the model selection method proposed.

Index Terms—Automatic relevance determination, Bayesian in-
ference, class discovery, gene expression, gene selection.

1. INTRODUCTION AND RELATED WORK

central goal of the analysis of microarray data is the
A identification of small subsets of informative genes
with disease-specific expression profiles. While the problem
of selecting genes for known disease types has been studied
widely in the literature, the discovery of putative sub-types of
diseases is still a challenging task. Taking a machine-learning
viewpoint, this class-discovery problem can be formalized
as an unsupervised clustering problem with simultaneous
feature selection. Early approaches to this problem [1]-[3],
were semi-automatic procedures based on a combination of
clustering techniques and human intervention for selecting
“relevant” genes. Several shortcomings of such approaches, and
also some methods for overcoming these problems, have been
discussed in the literature, e.g., [4]-[6]. The common strategy
of most of these approaches is the use of a (possibly iterated)
stepwise procedure, in which the first step consists of extracting
a set of hypothetical partitions (the clustering step), and the
other step involves some way of scoring genes for relevance
(the relevance determination step). A possible shortcoming of
these approaches is the way of combining these two steps in an
“ad hoc” manner: usually the relevance determination mecha-
nism does not take into account the properties of the clustering
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method used. It rather attempts to find predictive subsets of
genes by making use of simple empirical statistical measures,
such as T-test scores or correlation coefficients. These scoring
measures treat the genes as independent objects, while ignoring
both the biological knowledge of gene expression levels being
correlated, and also ignoring the inherent capabilities of many
clustering methods for handling such correlations.

In supervised learning scenarios, feature selection methods
of this kind are called filter methods, whereas the so called
wrapper methods directly make use of the classification algo-
rithm. From a conceptual viewpoint, wrapper approaches are
clearly advantageous, since the features are selected by opti-
mizing the discriminative power of the finally used classifier.
Returning to our unsupervised class-discovery scenario, it is
thus of particular interest to incorporate wrapper strategies for
gene selection into clustering methods. The approach to class
discovery that we present in this paper, can be viewed as a
method of this kind. It combines a Gaussian mixture model
with a Bayesian feature selection principle. Features are se-
lected by maximizing a constrained likelihood criterion, without
making limiting assumptions of independence. The usual com-
binatorial problems involved with wrapper approaches are over-
come by using a Bayesian inference mechanism for selecting
the relevant features. We present an efficient optimization al-
gorithm for our model with guaranteed convergence to a local
optimum. The only free parameter of the optimization method is
selected by a resampling-based stability analysis.! Experiments
for real-world datasets demonstrate that this model selection
mechanism is capable of selecting stable and reliable partitions.
On the one hand, this mechanism overcomes the problem of
many ambiguous and equally high-scoring splitting hypotheses,
which seems to be an inherent shortcoming of many approaches
that have been proposed in the literature. On the other hand, a
comparison with ground-truth labels in control experiments in-
dicate that the selected models lead to partitions which have a
clear biological meaning.

The remainder of this paper is organized as follows. Sec-
tion II presents the theoretical derivation of the proposed
class discovery model. For a Gaussian mixture model we first
introduce the expectation-maximization (EM) algorithm, in
which the M-step has been replaced by a linear discriminant
analysis (LDA). Then, we incorporate a Bayesian feature
selection mechanism into this LDA-based M-step. The final
EM algorithm has only one free model parameter, for which
we propose a stability-based selection strategy in Section III.
The main focus of Sections IV and V concerns the application
of the method proposed for two cancer datasets.

IThe whole processing pipeline of a real world experiment may include ad-
ditional parameters related to data preprocessing and/or model selection, see
Section IV for details.
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II. CLASS DISCOVERY AND BAYESIAN RELEVANCE
DETERMINATION

A. Technical Overview

Our approach to class discovery is based on a Gaussian
mixture model, which is optimized by way of the classical
expectation-maximization (EM) algorithm. In order to incor-
porate the feature selection mechanism, the maximization
(M)-step of this algorithm is first reformulated as a linear
discriminant analysis problem, which in turn is carried out
by optimizing a linear regression functional. We then take a
Bayesian perspective and specify a prior distribution over the
regression coefficients, which has the functional form of a
so called Automatic Relevance Determination prior. For each
regression coefficient, this prior contains a free hyperparameter,
which encodes the “relevance” of the corresponding variable in
the linear regression. In a Bayesian inference step, these hyper-
parameters are then integrated out from the distribution over
the regression coefficients. We finally arrive at a M-step with
integrated feature selection principle. After iterated application
of E- and M-step, the algorithm is proven to converge to a local
optimum.

B. Gaussian Mixtures and LDA

For the task of class discovery in gene expression experi-
ments, the data is given as a collection of N microarrays (in
the following called samples), each of which contains expres-
sion levels of d’ genes. Usually, microarray experiments involve
some sort of data preprocessing, like standardization and pre-
selection of a subset of d < d' genes with high expression
variances across the different microarrays. We can thus for-
malize the input data as a set of d-dimensional vectors {zi}fil,
x; € R<.

For the purpose of finding sample clusters, consider now
a Gaussian mixture model with k£ mixture components which
share an identical covariance matrix . Under this model, the
log-likelihood for the dataset {z;} -, reads

N k
lm’T = Zlog Z%ﬂ-’”ﬁl‘wz) M
i=1 v=1

where the mixing proportions 7, sum to one, and ¢ denotes a
Gaussian density. The classical EM-algorithm, [7], provides a
convenient method for maximizing ™"

E-step: set
Wﬂd)(zﬂ #1;7 Z)

Zi:l Wu(z)(mi; Kr,, E) .

Pni = Prob(z; € class ) =

set

YL puis
_ i=1 Pridi
”’V - N

quzl DPuvi
1 k N
E _NZZP’”(ET I"V)(m'l p’l/)

v=1i=1

M-step:

The likelihood equations in the M-step can be viewed as
weighted mean and covariance maximum likelihood estimates
in a weighted and augmented problem: one replicates the [NV
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observations k times, with the v-th such replication having
observation weights p,,;. In [8] it is proven that the M-step can
be carried out via a weighted and augmented linear discrim-
inant analysis (LDA). Following [9], any LDA problem can
be restated as an optimal scoring problem. Let the class-mem-
berships of the NV data vectors be represented by a categorical
response variable G with k levels. Let these responses be coded
as a matrix Z, the 7, v-th entry of which equals one if the i-th
observation belongs to class v. The point of optimal scoring is
to turn categorical variables into quantitative ones: the score
vector @ assigns the real number 6, to the v-th level of G. The
simultaneous estimation of scores and regression coefficients 8
constitutes the optimal scoring problem: minimize the squared
residual

M(8,B) = |20 — X B3 )

under the constraint (1/N)||Z6||3 = 1. The notion || - ||3 stands
for the squared /5-norm, and X denotes the (centered) data ma-
trix, the rows of which consist of the input vectors z;. In [9] an
algorithm for carrying out this optimization has been proposed,
the main ingredient of which is a linear multi-response regres-
sion of the data matrix X against the scored indicator matrix
Z4.

Returning from a general LDA problem to the above
weighted and augmented problem, it turns out that it is not
necessary to explicitly replicate the observations: the optimal
scoring version of LDA provides an implicit solution of the
augmented problem that still uses only /V observations. Instead
of using a response indicator matrix Z, one uses a blurred
response matrix 7, whose rows consist of the current class
probabilities for each observation. At each M-step this Z is
used in a linear regression, see [8].

After iterated application of the E- and M-step, an observation
x; is finally assigned to the class v with highest probability of
membership p,,;. Note that the EM iterations are guaranteed to
converge monotonically to a local maximum of the likelihood.

C. LDA and Automatic Relevance Determination

We now focus on incorporating the automatic feature
selection mechanism into the EM-algorithm. To guarantee a
clear theoretical interpretation, however, it will be necessary
to restrict the general problem with £ mixture components to
a 2-component problem. For handling multiple groups, we
propose to use the 2-component algorithm in a hierarchical
manner by iteratively splitting the clusters into two subclusters.
Despite the potential shortcomings of such an iterative split-
ting approach, our experiments suggest that this hierarchical
splitting works very well in practical applications.

According to [9], a 2-class LDA problem can be solved by
the following algorithm.

1) Choose an initial N-vector of scores 6
which satisfies the constraint
N'9;27Z6, =1
and is orthogonal to a 2-vector of ones
(1,1)T. set 6" = ZBy;
2) Run a linear regression of X on 6"
0" = X(XTX)_lXTG* =: XB.
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The feature selection mechanism can now be incorporated in
the M-step by imposing a certain constraint on the linear regres-
sion [step 2) of the above algorithm]. In [9], [10] it has been pro-
posed to use a ridge-type penalized regression. On the technical
side, such a penalized regression model is obtained by substi-
tuting the covariance matrix (1/N)(X7T X) by a penalized ver-
sion of the form (1/N)(X7T X + AI). In such a ridge regression
model, the parameter )\ has the role of the Lagrange parameter in
a {5-constrained optimization problem: minimize the functional
(2) subject to -, 82 = [|B|13 < #. The main idea of incorpo-
rating an automatic feature selection mechanism consists of re-
placing the /5-penalty by an /1 -penalty: minimize (2) subject to
S 18l = |BIl1 < k. In the statistical literature, this model is
known as the Least Absolute Shrinkage and Selection Operator
(LASSO), [11]. In [12], [13] it has been shown that the LASSO
model can be interpreted as a Bayesian inference mechanism for
the following model: consider automatic relevance determina-
tion (ARD) priors over the regression coefficients?:

p(B|9) = HN (0,9;1) o exp [— 2191,312] )

In this case, each coefflclent B; has its own prior variance 1J; L
Note that in the above ARD framework only the functional form
of the prior (3) is fixed, whereas the parameters vJ;, which en-
code the “relevance” of each variable, are estimated from the
data. In [15] the following Bayesian inference procedure for
the prior parameters has been introduced: given exponential hy-
perpriors, (the variances 19;1 must be nonnegative), p(¢;) =
(7/2) exp{—(v¥:/2)}, one can analytically integrate out the
hyperparameters from the prior distribution over the coefficients
p(65) = [ o 10:1p(0:)0; =
0
Switching to the maximum a posteriori (MAP) solution in log-
space, this marginalization directly leads us to the above ¢ -con-
strained LASSO problem:

M(8,B)Lasso = 128 — XBII3 + N|Bl1.

where we have defined the Lagrange parameter A= V-
Returning to (3), we are now able to interpret the LASSO esti-
mate as a Bayesian feature selection principle: for the purpose of

sep =Vl @

)

2For an introduction to the ARD principle the reader is referred to [14].
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feature selection, we would like to estimate the value of a binary
selection variable S for each feature: S; equals one, if the :-th
feature is considered relevant for the given task, and zero other-
wise. Taking into account feature correlations, estimation of S;
necessarily involves searching the space of all possible subsets
of features containing the i-th one. In the Bayesian ARD for-
malism, this combinatorial explosion of the search space is over-
come by relaxing a binary selection variable to a positive real-
valued variance of a Gaussian prior over each component of the
coefficient vector. Following the Bayesian inference principle,
we introduce hyperpriors and integrate out these variances, and
we finally arrive at the /1-constrained LASSO problem. During
optimization of the LASSO functional, it turns out that many
coefficients (3; are shrinked to zero, and the corresponding fea-
tures are removed from the model.

Summing up: The EM-algorithm with incorporated feature
selection, is shown in the equation at the bottom of the page.

D. Optimizing the Final Model

Since space here precludes a detailed discussion of ¢;-con-
strained regression problems, the reader is referred to [16],
where a highly efficient algorithm with guaranteed global
convergence has been proposed. For our iterated EM-model
we can guarantee convergence to a local maximum of the con-
strained likelihood. Consider two cases: 1) the unconstrained
solution is feasible. In this case our algorithm simply reduces
to the standard EM procedure, for which it is known that in
every iteration the likelihood monotonically increases; 2) the
{1-constraint is active. Then, in every iteration the LASSO
algorithm maximizes the likelihood within the feasible region
of (-values defined by [|B]1 < k. The likelihood cannot be
decreased in further stages of the iteration, since any solution
B found in a preceding iteration is also a valid solution for the
actual problem (note that  is fixed!). In this case, the algorithm
has converged to a local maximum of the likelihood within the
constraint region.

1L

Apart from the “core” model for clustering and feature se-
lection, a real-world class discovery experiment involves sev-
eral additional steps, such as data preprocessing, adjustment of
model parameters and interpretation of the results. While issues
on data preprocessing will be addressed in Section IV-A, here

MODEL SELECTION

E — step M — step
l M — step | carried out by LDA
l LDA as | linear regression
! ARD priors | p(B|9) = [TNV(0,9; )
! Hyperpriors | p(?;) = 3 exp {— %}
! Marginalization | p(:) = | p(6i[9:)p(9:)d9
Estimate prob(z; € class 7)) Optimize LASSO0
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we focus on selecting the value of the /1 -constraint « in the gen-
eralized EM-algorithm described in the last section.

In particular, this section focuses on a method for selecting
by observing the stability of data partitions. For each of the par-
titions we have identified as “stable,” we then examine the fluc-
tuations involved in the feature selection process. It should be
noticed that the concept of measuring the stability of solutions
as a means of model selection and model assessment has been
successfully applied to several unsupervised learning problems,
see, e.g. [17]-[19].

Our clustering method splits the data in two disjoint groups,
and simultaneously selects features (i.e. prototypical expression
patterns of gene-clusters) which support the splitting hypoth-
esis. In a large microarray dataset we will usually find many
potential splits, depending on how many features are selected:
if we select only a very small number of features (say one),
it is likely to find many competing hypotheses for splits. The
problem is that usually all single features (i.e. all single genes)
will vote for a different sample partition. Taking into account
the problem of noisy measurements in microarray experiments,
the finally chosen partition will probably tell us more about
the exact noise realization than about meaningful splits. If, on
the other hand, we select too many features, we face the usual
problems of finding structure in very high-dimensional datasets:
our functional which we want to optimize will have many local
minima, and the optimization algorithm will pick one by chance.
Moreover, it is likely that there exists no distinct global op-
timum, since the expression patterns on the whole chip will vote
for contradictory hypotheses. Between these two extremes, we
can hope to find relatively stable splits, which are robust against
noise, and which are also robust against inherent instabilities of
the optimization procedure.

In order to obtain a quantitative measure of stability, we pro-
pose the following procedure: run the class discovery method
once, corrupt the expression levels by a small amount of noise,
repeat the grouping procedure, and calculate the Hamming dis-
tance between the two partitions as a measure of (in-)stability.
For computing Hamming distances, the partitions are viewed
as vectors containing the cluster labels. Simply taking the av-
erage stability over many such two-sample comparisons, how-
ever, would not allow an adequate handling of situations where
there are two equally likely stable solutions, of which the clus-
tering algorithm randomly selects one. In such situations, the
averaged stability will be very low, despite the fact that there
are two stable splitting hypotheses. This problem can be over-
come by looking for compact clusters of highly similar parti-
tions, leading to the following refined algorithm:

Algorithm for identifying stable parti-
tions: for different values of the /;-con-
straint kK do
(1) compute m noisy replications of the
data
(ii) run the class discovery algorithm
for each of these datasets

(iii) compute the m X m matrix of pair-
wise Hamming distances between all
partitions

IEEE TRANSACTIONS ON BIOMEDICAL ENGINEERING, VOL. 51, NO. 5, MAY 2004

(iv) cluster the partitions into compact
groups and score the groups by their
relative frequency

select dominant groups of partitions
and choose representants

(v)

In step (i) a “suitable” noise level must be chosen a priori. In
Section IV-A we will discuss how to select the amount of noise
by analyzing the typical variations within each gene cluster de-
rived in the data preprocessing step. In step 3) we use Ham-
ming distances as a dissimilarity measure between partitions.
Partitions P; are viewed as [N-vectors p; containing the binary
cluster labels taking values from {0,1}. In order to make Ham-
ming distances suitable for this purpose, we have to consider
the inherent permutation symmetry of the clustering process: a
cluster called “1” in the first partition can be called “0” in the
second one. When computing the pairwise Hamming distances,
we thus have to minimize over the two possible permutations m
of cluster labels

N

dHamming(Piv Pj) = Hlﬂin Z |pz(k) -7 (pj(k)) | ! (6)
k=1

Steps (iv) and (v) need some further explanation: the problem
of identifying compact groups in datasets which are represented
by pairwise distances can be solved by optimizing the pairwise
clustering cost function, [20]. We iteratively increase the
number of clusters (which is a free parameter in the pairwise
clustering functional) until the average dissimilarity in each
group does not exceed a predefined threshold. Reasonable
problem-specific thresholds can be defined by considering the
following null-model: given N samples, the average Hamming
distance between two randomly drawn 2-partitions P; and
Py is roughly duamming(P1,P2) =~ N/2. It may thus be
reasonable to consider only clusters which are several times
more homogeneous than the expected null-model homogeneity.

For the clusters which are considered homogeneous, we ob-
serve their populations, and out of all models investigated we
choose the one leading to the partition cluster of largest size. For
this dominating cluster, we then select a prototypical partition.
For selecting such prototypical partitions in pairwise clustering
problems, we refer the reader to [21], where it is shown that
the pairwise clustering problem can be equivalently restated as
a k-means problem in a suitably chosen embedding space. Each
partition is represented as a vector in this space. This property
allows us to select those partitions as representants, which are
closest to the partition cluster centroids. The whole work-flow
of model selection is summarized schematically in Fig. 1.

IV. A DEMO APPLICATION: THE AML/ALL DATASET

The Leukemia data set published by GOLUB et al., [2],
consists of 72 samples, of which 47 are acute lymphoblastic
leukemia (ALL), and 25 are acute myeloid leukemia (AML).
Expression levels of 7129 genes were measured using
Affymetrix arrays.

This dataset has been analyzed before in various papers, and
we are aware that another study may be of limited interest from a
biological perspective. Nevertheless, we have decided to include
this experiment here, since in our opinion a novel method—and
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several values of x, and the one which leads to the highest populated partition cluster is finally selected.

in particular a novel unsupervised clustering method—should
be first validated in a control experiment. Moreover, this dataset
is highly suited for demonstrating the whole process flow of our
class discovery method.

A. Data Preprocessing

In a first standard preprocessing step, gene expression values
were subjected to a variation filter that excluded genes showing
minimal variation across the samples being analyzed. We ex-
cluded genes with maz/min < 2 and maxz — min < 1000,
leading to a reduced set of 1479 genes. Then, the data were
log-transformed, centered to zero mean, “squashed” through
a tanh-function for outlier-reduction, and standardized to unit
variance (for each microarray).

Following [22], in a next step we extracted the 200 genes
with highest variance across the samples. While the number 200
might appear completely artificial, in [22] it has been shown that
for both datasets we have analyzed in this paper, this number

T—ALL | B—ALL

Fig. 2. Expression patterns of the 40 cluster representants. Bright grey-values
represent high expression levels.

roughly corresponds to a “knee” in the variance plot which sep-
arates high-variance genes from a flat “bulk” spectrum. Instead
of directly using these 200 genes, however, we decided to first
cluster the genes into 40 compact groups by using the k-means
algorithm. The reasons for this preclustering are the following:
1) working with the cluster prototypes instead of with the orig-
inal genes has the potential to average out the noise in the dataset
(note that multiplicative intensity-dependent noise has been log-
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Fig. 3. Clustering of the 100 re-sampled datasets. The histograms depict the relative frequency of the individual groups, which are consecutively numbered on
the horizontal axes. The dashed curves indicate the average Hamming distance in each cluster (multiplied by 0.01). The Hamming distance is plotted in the form
of a curve for visualization purposes only: there is no intentional ordering of the cluster indices on the horizontal axis. x denotes the constraint value, and # the

average number of selected features.

transformed to additive noise); 2) clustering avoids collineari-
ties in the data which are problematic for the covariance esti-
mation; 3) it speeds up the computations without loosing too
much information: the gene clusters obtained are very homoge-
nous, and variations within the clusters may be readily explained
by noisy measurements. The homogeneity of the gene clusters
can be quantified by considering a null-model: the expression
levels on each chip are standardized to have unit variance. Thus,
for a random partitioning of the genes, we would expect to ob-
serve the same variance of one within each cluster. The observed
variance within the 40 gene clusters, however, turned out to be
only 0.2, and thus five times lower than the expected variance
under the random model. While the choice of 40 clusters still ap-
pears somewhat artificial, our experiments at least show that on
a broad range between 30 and 60 clusters the results are highly
similar.

Since in our model genes within one gene-cluster are con-
sidered indistinguishable, the value of the within-cluster vari-
ance defines the level of noise by which each expression mea-
surement is corrupted. Moreover, this variance also defines a
suitable noise level for artificially corrupting the dataset when
drawing noisy resamples for selecting the optimal ¢;-constraint
value according to the model selection procedure described in
Section III.

The finally chosen expression patterns of the 40 cluster rep-
resentants (the centroid-vectors) are depicted in Fig. 2. In the re-
mainder of this paper, these patterns will be simply called “fea-
tures.”

The goal of our class discovery algorithm can now be stated
as simultaneously finding sample partitions and automatically
extracting a subset of features which are most discriminative for
these partitions.

B. Model Selection and Experimental Evaluation

Fig. 3 depicts the outcomes of the resampling-based
stability analysis described in Section III. For different con-
straint—values on the interval [0.5, 2.5], we draw 100 noisy
data resamples, run our class discovery algorithm, compute the
pairwise Hamming distances between partitions, and group the
partitions into homogeneous clusters.

The AML/ALL dataset contains 72 samples, so that the ex-
pected Hamming distance between two randomly drawn 2-parti-
tions is roughly d**"? =~ N/2 = 36. In our experiments we con-
sidered only those partition-cluster as “homogeneous," which
have an average Hamming distance d < 1/2 - d*2"d = 18. We
found, however, that the selection mechanism is rather insensi-
tive to value: the most populated clusters turned out to be very
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“true” labels. The automatically selected features have been ordered w.r.t. over-expression for one of the two classes.

homogeneous (d < 4, see upper right panel), so that a decrease
in the homogeneity constraint only leads to a further splitting of
the clusters with the lowest population. The latter, however, do
not affect the parameter selection at all.

For 0.5 (upper left panel) we need 26 clusters to
satisfy our a priori chosen constraint about the maximum
inhomogeneity in each cluster. According to the histogram, no
cluster contains more than 10% of the partitions. There is no
distinct correlation between the average Hamming distance in
each cluster and frequency. For this value of &, in each partition
on average 1.03 features have been selected (recall that our
features are representatives of gene clusters). A very similar
situation occurs for k = 2.5 (lower right panel), where we have
on average 26.4 features (i.e. more than halve of all features
have been selected). Between these two extremes, however,
we observe stable partitions. For k = 1.25 (lower left panel)
we observe two highly stable partitions: 47% of the partitions
belong to the group labeled “2,” and 19% to group “4.” Note
that in this case we only need 10 cluster to model all 100
partitions, while satisfying the homogeneity constraint d < 18.
In each partition on average 13.6 features have been selected.
Moreover, there is a distinct correlation of high homogeneity
and high frequency, indicating that the clusters contain many
highly similar partitions. The plot for k = 1.1 (upper right
panel) shows that over a relatively broad range of x-values the
partition diagram varies smoothly: the prototypical partition for
partition cluster “1” in the upper right panel is identical to the
respective prototype for cluster “2” in the lower left panel. The
same identity between partitions is observed for the clusters
with the second highest population. This result indicates that
even a relatively coarse grid-search procedure for selecting «
should be capable of detecting stable partitions.

Fig. 4 indicates that these two stable partitions have a clear bi-
ological meaning: the most dominant split separates AML sam-
ples from ALL samples (with two errors). The second split sep-
arates T-cell ALL from both B-cell ALL and AML (one error).

Having identified a constraint value which leads to stable par-
titions, we now turn our attention to the stability of the fea-
ture selection process: for the 47 partitions belonging to the
most dominant split we count how often each of the features
has been automatically selected. The feature-selection mecha-
nism turns out to be very stable, too: 12 features are selected
with a frequency higher than 0.5, five of which with a frequency
higher than 0.8. These five most frequently selected features (i.e.
the members of the corresponding gene clusters) are shown in
Table L.

Concerning the separation of the two classes of Leukemia,
it is interesting to notice that the discriminative power of most
of the high-scoring genes in Table I may have a biological in-
terpretation: In the first cluster, we find Cyclin D3, which has
been identified as a dominant oncogene in the pathogenesis and
transformation in several histologic subtypes of mature B-cell
malignancies, [23]. IL7R is a member of the interleukin receptor
family. Expression of interleukin receptors (in particular expres-
sion of IL2R, which appears in our list in the 12th cluster) has
been examined on a wide range of cells of myeloid origin in-
cluding bone marrow blasts obtained from acute myelogenous
leukemia (AML) patients, [24].

It is also interesting to find the interferon stimulated gene
HEM45 (ISG20) among the top-scoring genes. ISG20 is one
of the nuclear bodies (NBs)-associated proteins, which could
play an important role in oncogenesis and viral infections, [25].
According to [26], expression of the probable G protein-cou-
pled receptor LCR1 homolog (alias CD184 antigen) is associ-
ated with survival in familial chronic lymphocytic leukemia.

The second cluster contains e.g. the proliferation-associated
gene PAGA (alias natural killer-enhancing factor A). It is in-
volved in redox regulation of the cell and might participate in the
signaling cascades of growth factors and tumor necrosis factor-
alpha. In the third cluster we find the CD37 antigene, which
has been shown to provide highly significant discrimination be-
tween chronic lymphocytic leukemia (CLL) and normal periph-
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TABLE 1
AML/ALL DATASET: HIGH-SCORING GENE CLUSTERS FOR THE MOST
DOMINANT SPLIT. FIRST COLUMN: NUMBER OF FEATURE (GENE-CLUSTER).
SECOND COLUMN: FREQUENCY SCORE OF FEATURE

# | Score | Cluster members

11094 AIM, Macmarcks, IL7R, CCND3, HEM45, LCRI1
2 | 091 SLIM1, DPYSL2, ALDRI, LMP2, PAGA
31085 CD37, BSG, NM23D, P4HB, EIF5A

41083 CD33, BBI1, TGEFBI, GliPR

51081 HSPA8, PSMAG6, c-MYB, TCEF3(E2A), hSNF2b

eral blood leukocytes, [27]. A member of the fourth cluster
is the differentiation antigene CD33. According to [28] it pos-
sesses high expression specificity to AML. On the contrary,
TCF3 (alias E2A) in the fifth cluster has known expression
specificity to ALL, [29]. Moreover, the fifth cluster also con-
tains the well-known proto-onkogene c-MYB. Among the clus-
ters no. 6-12, we also find the well-known marker antigenes
CD19 and CD63. The latter is a widely expressed glycoprotein
member of the TM4SF superfamily that is present on many non-
lymphoid cells, [30].

C. Comparison With Other Algorithms

Some other class discovery algorithms have been tested on
the AML/ALL Leukemia dataset. BEN-DOR et al., [4], report
on the splitting of the dataset into two subsets according to dif-
ferent information theoretic scoring measures, which are used
as “building blocks” in their algorithm. It is interesting to note
that for all scores used, the three highest scoring labelings are
significantly different from the true AML/ALL labels, and only
the fourth inferred labeling is similar to the true one. Compared
with our method, their results are highly ambiguous in the sense
that the user is left with several possible high-scoring solutions,
from which he/she can only pick one by chance. Even worse,
the highest-scoring labelings do not reveal the true structure of
the samples.

In [5], [6] a support vector machine-based class discovery al-
gorithm has been presented and tested on this dataset. Among
the ten highest scoring partitions in [6], the 4th and the 10th
partition separate the dataset into two groups which are similar
to the true AML/ALL labels. The 1st partition separates B-cell
ALL from the two other classes. Although their method is ca-
pable of finding splits which are similar to the ground-truth la-
beling, the SVM-based algorithm also suffers from ambiguities:
among the ten highest scoring partitions, there are six which
seem to impose artificial structure rather than reconstructing the
original labels.

We conclude, that compared to other approaches reported in
the literature, the method presented in this paper combines two
outstanding features: the class discovery algorithm is capable
of reproducing the true structure hidden in the dataset, and our
stability-based model selection strategy successfully overcomes
the problem of ambiguous solutions.
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Fig. 5. expression profiles of the 40 gene-cluster
representants. The samples are ordered with respect to their membership in
either the group of diffuse large B-cell lymphoma (DLBCL) patients or in one
of several control groups from different cell lines.

V. CLASS DISCOVERY IN LARGE B-CELL LYMPHOMA SAMPLES

In a second experiment we re-analyzed the dataset published
by ALIZADEH ef al., [1]. We used the same data-preprocessing
as in the preceding example, i.e. we extracted the 200 genes with
highest variance across the samples and preclustered these genes
into 40 gene-clusters (our features from which we want to select
indicative subsets). The representants of these gene-clusters are
depicted in Fig. 5.

A. The First Hierarchical Split

Fig. 6 shows the first split of the whole dataset into two sub-
groups. The left panel presents the population of the partition
clusters for the optimal value of the /;-constraint x = 0.9,
which has been chosen via a grid search on the interval [0.5,1.5].
The reader should notice, that the stability plot suggests that the
dominating cluster no. 2 is highly homogenous, and that it de-
fines the only stable separation of the samples into two groups.
On average 3.06 features (gene-clusters) have been automati-
cally selected. The corresponding prototypical partition is de-
picted in the right panel. According to the color-coded indi-
cator bar of ground-truth labels, this split is highly correlated
to the separation of diffuse large B-cell lymphoma (DLBCL)
patients from all the other samples. There are only four ex-
ceptions: the cluster labeled DLBCL contains the two Lymph-
node/Tonsil samples, and the Non-DLBCL cluster contains the
samples DLCLO0042 and DLCLO0009.

Most members of the automatically selected gene clusters in
Table II belong to a group of genes which has been classified
in [1] as defining a “lymph-node” signature. This class of genes
includes genes with high expression specificity to macrophages,
like CSF-1 and the small inducible cytokine A5 (RANTES).
Also in this category falls the allograft inflammatory factor-1
(IBA1), which is a bioactive macrophage factor which might
play a role in macrophage activation and function, [31].

Also in accordance with the analysis in [1], we find several
genes involved in remodeling the extracellular matrix, such as
the matrix metalloproteinases MMP-9 and MMP-2, the metal-
loproteinase inhibitor TIMP-3, and SPARC. The latter appears
to regulate cell growth and is capable of delaying tumor growth
in vivo, [32].

The list of high-scoring genes also includes several genes
which are known to be associated with tumor progression/inva-
sion, like the CD63 antigene and human cathepsin B. The latter
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Fig. 6. Left panel: population of partition-clusters for the optimal value of the {;-constraint = 0.9. Right panel: prototypical partition for the dominating

partition cluster no. 2 and automatically selected gene-clusters.

TABLE 11
AML/ALL DATASET: HIGH-SCORING GENE CLUSTERS AND ANNOTATED GENES WITHIN THE CLUSTERS FOR THE MOST DOMINANT SPLIT OF
THE DATA SET. FIRST COLUMN: FREQUENCY SCORE OF GENE CLUSTER

1.0 | DAP12, CD63, CD64, FCRI, FCERI, RANTES, cathepsin B, cathepsin L, IBA 1, Cyclin D2
0.97 | CXCRS, APR

0.97 | MMP-2, MMP-9, CSF-1, Cytochrome P450, RUNX2(OSF-2), SPARC, Fibronectin 1, TIMP-3
0.26 | SLC, IP-10, Humig, Guanylate binding protein 1

is a proteolytic enzyme implicated in tumor invasion and metas-
tasis, [33]. We also find CXCRS5 which is one component of
the chemokine/chemokine receptor pair CXCL13/CXCRS that
is required for the architectural organization of B cells within
lymphoid follicles, [34].

Moreover, the first gene-cluster in Table II contains cyclin
D2, a proto oncogene belonging to the class of D-type cyclins.
These genes are involved in key cellular decisions that control
cell proliferation, cell-cycle arrest, quiescence, and differentia-
tion, [35].

B. Refining the Partition: Discovery of DLBCL Subtypes

Having found a stable partition of the samples into a DLBCL
cluster and a non-DLBCL cluster, we now investigate further
refinements of this partition.

In the original analysis of this dataset in [1], several dis-
tinct expression signatures have been identified. The authors
mentioned that ... in principle each of these gene expression
signatures could be used to define subsets of DLBCL. We
decided to focus our attention initially on the germinal centre
B-cell genes ....” This statement of the authors addresses the
inherent problem of ambiguities in class discovery, which in
their analysis has been overcome by exploiting biomedical
a priori knowledge. The restriction to the subset of genes
showing a germinal centre B-cell signature led to the discovery
of two subgroups of DLBCL, which turned out to add to the
prognostic value of a standard clinical indicator of prognosis.
In the following we describe a purely statistical approach to this
problem, that does not depend on any kind of prior knowledge.
Our automatically found subgroups are shown to add to the

prognostic value in the same sense and at the same confidence
level as the originally defined subgroups.

In Fig. 7 the most stable split of the DLBCL cluster is de-
picted. The optimal ¢;-constraint value was x = 1.2. On av-
erage 12.2 features (gene clusters) have been automatically se-
lected by the Bayesian relevance determination mechanism. De-
tails of the consensus split induced by the prototypical parti-
tion are depicted in the lower panel. We decided to name the
first group of samples the LN-cluster, since it contains the two
Lymph-Node/Tonsil samples, and the second group the Non-LN
cluster, respectively. The overall correspondence of these two
clusters with the DLBCL subgroups found in [1]—GC B-like
and activated B-like—is about 73%. This agreement may be
viewed more as a tendency than as a significant correlation (for a
random partition we would expect 50% agreement). Despite the
differences in splitting the DLBCL samples, it turns out, how-
ever, that our LN/Non-LN partition adds to the prognostic value
of a standard clinical prognostic factor in the same sense as the
GC B-like/activated B-like partition. Before going into details
on the prognostic issue, we now briefly discuss the genes that
have been automatically selected (Table III).

The occurrence of most of these genes has a clear biological
interpretation. A primal source of lymphomas is disruption of
the regulation of B-cell differentiation and activation, resulting
in oncogenic chromosomal translocations that block differen-
tiation, prevent apoptosis and/or promote proliferation. In DL-
BCLs, for instance, apoptosis can be abrogated by translocation,
amplification or transcriptional activation of the BCL-2 gene,
[36]. It is interesting to observe expression of BCL-2 in many
of the LN-samples, see Fig. 7. Patients in this group with low
IPI score had a distinctly worse overall survival than patients
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Fig. 7.

TABLE III
DLBCL SUBGROUPS: HIGH-SCORING GENE CLUSTERS AND ANNOTATED
GENES WITHIN THESE CLUSTERS

1.0 | TCL-1

1.0 Immunoglobulin mu

0.67 | CD23A, SA3, SLAM, LMO2(TTG-2)
0.67 | JAW1

0.67 | FLAP, CD10, RUNX2(OSF-2)

0.53 | BCL-2

in the Non-LN group, cf. [8]. This observation may be corrabo-
rated by HAYASHI et al., [37], who report a tendency, in which
patients with BCL-2 overexpression resulted in poor prognosis
in the case of primary central nervous system lymphomas (PC-
NSLs) of the diffuse large B-cell type. Among the high-scoring
genes, we also find the B-cell specific antigene CD23a, which
has a essential role in the differentiation of B-cells.

The highest scoring gene is TCL1 which is overexpressed
in the LN group. According to [38], the TCL1 protooncogene
is overexpressed in many mature B cell lymphomas, especially

Splitting the DLBCL cluster into one group named LN which contains the Lymph-Node/Tonsil samples, and into a Non-LN group.

from AIDS patients. For Non-AIDS-related lymphomas, it has
been reported in [39] that TCL1 expression in B cell lymphoma
usually reflects the stage of B cell development from which they
derive.

In accordance with the grouping proposed in [1], we also find
some Germinal-centre B-cell signature genes among the most
discriminative genes—for example CD10 and JAW1.

C. DLBCL Subgroups and Prognostic Categories

The left panel of Fig. 8 presents Kaplan-Meier plots of overall
survival data from the DLBCL patients, segregated according
to low and high values of the International Prognostic Indicator
(IPD). This clinical indicator of prognosis takes into account the
patient’s age, performance status, and the extent and location
of disease, cf. [40]. As can be seen in the Kaplan-Meier plot,
the two IPI classes (low and high risk) are associated with sta-
tistically significant differences in overall survival (P = 0.03
in a log-rank test, see [41]). Following [1], we tested the speci-
fity of our inferred partitioning to overall survival within the IPI
low risk group (IPI score 0-2). The right panel of Fig. 8 presents
the corresponding Kaplan-Meier plot for these low risk DLBCL
patients, segregated according to cluster membership in either
the LN or the Non-LN cluster. The LN cluster turns out to be
associated with relatively low survival probability, whereas the
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DLBCL subgroups. Left panel: Kaplan-Meier plot of overall survival of DLBCL patients grouped according to the International Prognostic Index (IPT).

Low clinical risk patients (IPI score 0-2) and high clinical risk patients (IPI score 3-5) are plotted separately. Right panel: Kaplan-Meier plot of overall survival
of low clinical risk DLBCL patients (IPI score 0-2) grouped on the basis of the automatically inferred clusters LN and Non-LN.

Non-LN cluster defines a subgroup of DLBCL patients with very
high survival probability. According to a log-rank test, the dif-
ferences in overall survival times between the two subgroups are
significant at a P = 0.05 level.

A comparison with the experimental results in the original
paper by ALIZADEH et al. suggests that our automatically in-
ferred subgroups add to the prognostic value of the IPI indi-
cator in the same sense and at the same confidence level as the
GC B-like and activated B-like subgroups proposed in [1]. The
reader should notice, however, that the latter subgroups have
been identified after manually selecting a certain subset of genes
showing a germinal centre B-cell signature. Our approach, on
the contrary, is a pure statistical approach. Therefore, it has the
potential of dealing with a larger class of problems for which
prior knowledge about gene function might not be available.

VI. CONCLUSION

The problem of class discovery in microarray experiments
consists of simultaneously finding distinct groups of samples
and automatically extracting subsets of features which are
most discriminative for these partitions. Some approaches to
this problem have been proposed in the literature, most of
which, however, bear several inherent shortcomings, such as
an unclear probabilistic model, the simplifying assumption of
features as being uncorrelated, or the absence of a plausible
model selection strategy. The latter issue is of particular
importance, since many approaches suffer from ambiguities
caused by contradictory splitting hypotheses. In this work
we have presented a new approach to class discovery which
has the potential to overcome these shortcomings. It has a
clear interpretation in terms of a constrained Gaussian mixture
model, which combines a clustering method with a Bayesian
inference mechanism for automatically selecting relevant
features. The relevance determination mechanism has been
incorporated in the M-step of the classical EM-algorithm for
Gaussian mixtures. Thus, both basic ingredients of our class
discovery method, namely clustering and feature selection,
optimize the same objective function.

We further present an optimization algorithm with guaranteed
convergence to a local optimum. This optimization algorithm
has only one free parameter (the value of the ¢;-constraint),

for which we propose a stability-based model selection proce-
dure: by drawing noisy re-samples from the dataset, we iden-
tify models which lead to partitions that are stable both with
respect to noise in the data and with respect to numerical op-
timization problems caused by multiple local optima. For each
model considered, we simultaneously analyze the stability of the
feature selection process involved. Experiments with real-world
datasets effectively demonstrate that this class discovery method
is able to correctly infer partitions and corresponding genes
which are both relevant in a biological sense. For the task of in-
ferring subgroups of B-cell Lymphoma patients, we have shown
that the partitions found by our class discovery method add to
the prognostic value of a standard clinical prognosis indicator.
In order to make this method available to others, we are cur-
rently working on a user-friendly and stable software solution.
For a copy of our “prototypical” software with which the results
in this paper have been produced, please contact the authors.
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