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Matching Methods for Causal Inference:
A Review and a Look Forward
Elizabeth A. Stuart

Abstract. When estimating causal effects using observational data, it is de-
sirable to replicate a randomized experiment as closely as possible by ob-
taining treated and control groups with similar covariate distributions. This
goal can often be achieved by choosing well-matched samples of the original
treated and control groups, thereby reducing bias due to the covariates. Since
the 1970s, work on matching methods has examined how to best choose
treated and control subjects for comparison. Matching methods are gaining
popularity in fields such as economics, epidemiology, medicine and political
science. However, until now the literature and related advice has been scat-
tered across disciplines. Researchers who are interested in using matching
methods—or developing methods related to matching—do not have a single
place to turn to learn about past and current research. This paper provides
a structure for thinking about matching methods and guidance on their use,
coalescing the existing research (both old and new) and providing a summary
of where the literature on matching methods is now and where it should be
headed.

Key words and phrases: Observational study, propensity scores, subclassi-
fication, weighting.

1. INTRODUCTION

One of the key benefits of randomized experiments
for estimating causal effects is that the treated and
control groups are guaranteed to be only randomly
different from one another on all background covari-
ates, both observed and unobserved. Work on matching
methods has examined how to replicate this as much
as possible for observed covariates with observational
(nonrandomized) data. Since early work in matching,
which began in the 1940s, the methods have increased
in both complexity and use. However, while the field
is expanding, there has been no single source of infor-
mation for researchers interested in an overview of the
methods and techniques available, nor a summary of
advice for applied researchers interested in implement-
ing these methods. In contrast, the research and re-
sources have been scattered across disciplines such as
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statistics (Rosenbaum, 2002; Rubin, 2006), epidemiol-
ogy (Brookhart et al., 2006), sociology (Morgan and
Harding, 2006), economics (Imbens, 2004) and polit-
ical science (Ho et al., 2007). This paper coalesces
the diverse literature on matching methods, bringing
together the original work on matching methods—of
which many current researchers are not aware—and
tying together ideas across disciplines. In addition to
providing guidance on the use of matching methods,
the paper provides a view of where research on match-
ing methods should be headed.

We define “matching” broadly to be any method that
aims to equate (or “balance”) the distribution of co-
variates in the treated and control groups. This may
involve 1 : 1 matching, weighting or subclassification.
The use of matching methods is in the broader con-
text of the careful design of nonexperimental studies
(Rosenbaum, 1999, 2002; Rubin, 2007). While exten-
sive time and effort is put into the careful design of ran-
domized experiments, relatively little effort is put into
the corresponding “design” of nonexperimental stud-
ies. In fact, precisely because nonexperimental studies
do not have the benefit of randomization, they require
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even more careful design. In this spirit of design, we
can think of any study aiming to estimate the effect of
some intervention as having two key stages: (1) design,
and (2) outcome analysis. Stage (1) uses only back-
ground information on the individuals in the study, de-
signing the nonexperimental study as would be a ran-
domized experiment, without access to the outcome
values. Matching methods are a key tool for stage (1).
Only after stage (1) is finished does stage (2) begin,
comparing the outcomes of the treated and control in-
dividuals. While matching is generally used to estimate
causal effects, it is also sometimes used for noncausal
questions, for example, to investigate racial disparities
(Schneider, Zaslavsky and Epstein, 2004).

Alternatives to matching methods include adjusting
for background variables in a regression model, instru-
mental variables, structural equation modeling or se-
lection models. Matching methods have a few key ad-
vantages over those other approaches. First, matching
methods should not be seen in conflict with regression
adjustment and, in fact, the two methods are comple-
mentary and best used in combination. Second, match-
ing methods highlight areas of the covariate distribu-
tion where there is not sufficient overlap between the
treatment and control groups, such that the resulting
treatment effect estimates would rely heavily on ex-
trapolation. Selection models and regression models
have been shown to perform poorly in situations where
there is insufficient overlap, but their standard diag-
nostics do not involve checking this overlap (Dehejia
and Wahba, 1999, 2002; Glazerman, Levy and My-
ers, 2003). Matching methods in part serve to make re-
searchers aware of the quality of resulting inferences.
Third, matching methods have straightforward diag-
nostics by which their performance can be assessed.

The paper proceeds as follows. The remainder of
Section 1 provides an introduction to matching meth-
ods and the scenarios considered, including some of
the history and theory underlying matching methods.
Sections 2–5 provide details on each of the steps in-
volved in implementing matching: defining a distance
measure, doing the matching, diagnosing the matching,
and then estimating the treatment effect after match-
ing. The paper concludes with suggestions for future
research and practical guidance in Section 6.

1.1 Two Settings

Matching methods are commonly used in two types
of settings. The first is one in which the outcome values
are not yet available and matching is used to select sub-
jects for follow-up (e.g., Reinisch et al., 1995; Stuart

and Ialongo, 2009). It is particularly relevant for stud-
ies with cost considerations that prohibit the collection
of outcome data for the full control group. This was the
setting for most of the original work in matching meth-
ods, particularly the theoretical developments, which
compared the benefits of selecting matched versus ran-
dom samples of the control group (Althauser and Ru-
bin, 1970; Rubin, 1973a, 1973b). The second setting is
one in which all of the outcome data is already avail-
able, and the goal of the matching is to reduce bias in
the estimation of the treatment effect.

A common feature of matching methods, which is
automatic in the first setting but not the second, is
that the outcome values are not used in the matching
process. Even if the outcome values are available at the
time of the matching, the outcome values should not
be used in the matching process. This precludes the se-
lection of a matched sample that leads to a desired re-
sult, or even the appearance of doing so (Rubin, 2007).
The matching can thus be done multiple times and the
matched samples with the best balance—the most sim-
ilar treated and control groups—are chosen as the fi-
nal matched samples; this is similar to the design of
a randomized experiment where a particular random-
ization may be rejected if it yields poor covariate bal-
ance (Hill, Rubin and Thomas, 1999; Greevy et al.,
2004).

This paper focuses on settings with a treatment de-
fined at some particular point in time, covariates mea-
sured at (or relevant to) some period of time before the
treatment, and outcomes measured after the treatment.
It does not consider more complex longitudinal settings
where individuals may go in and out of the treatment
group, or where treatment assignment date is undefined
for the control group. Methods such as marginal struc-
tural models (Robins, Hernan and Brumback, 2000)
or balanced risk set matching (Li, Propert and Rosen-
baum, 2001) are useful in those settings.

1.2 Notation and Background: Estimating
Causal Effects

As first formalized in Rubin (1974), the estimation
of causal effects, whether from a randomized experi-
ment or a nonexperimental study, is inherently a com-
parison of potential outcomes. In particular, the causal
effect for individual i is the comparison of individual
i’s outcome if individual i receives the treatment (the
potential outcome under treatment), Yi(1), and individ-
ual i’s outcome if individual i receives the control (the
potential outcome under control), Yi(0). For simplicity,
we use the term “individual” to refer to the units that
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receive the treatment of interest, but the formulation
would stay the same if the units were schools or com-
munities. The “fundamental problem of causal infer-
ence” (Holland, 1986) is that, for each individual, we
can observe only one of these potential outcomes, be-
cause each unit (each individual at a particular point in
time) will receive either treatment or control, not both.
The estimation of causal effects can thus be thought
of as a missing data problem (Rubin, 1976a), where
we are interested in predicting the unobserved poten-
tial outcomes.

For efficient causal inference and good estimation of
the unobserved potential outcomes, we would like to
compare treated and control groups that are as similar
as possible. If the groups are very different, the pre-
diction of Y(1) for the control group will be made us-
ing information from individuals who look very dif-
ferent from themselves, and likewise for the prediction
of Y(0) for the treated group. A number of authors,
including Cochran and Rubin (1973), Rubin (1973a,
1973b), Rubin (1979), Heckman, Ichimura and Todd
(1998), Rubin and Thomas (2000) and Rubin (2001),
have shown that methods such as linear regression ad-
justment can actually increase bias in the estimated
treatment effect when the true relationship between
the covariate and outcome is even moderately nonlin-
ear, especially when there are large differences in the
means and variances of the covariates in the treated and
control groups.

Randomized experiments use a known randomized
assignment mechanism to ensure “balance” of the
covariates between the treated and control groups:
The groups will be only randomly different from
one another on all covariates, observed and unob-
served. In nonexperimental studies, we must posit an
assignment mechanism, which determines which in-
dividuals receive treatment and which receive con-
trol. A key assumption in nonexperimental studies
is that of a strongly ignorable treatment assignment
(Rosenbaum and Rubin, 1983b) which implies that
(1) treatment assignment (T ) is independent of the po-
tential outcomes (Y(0), Y (1)) given the covariates (X):
T ⊥(Y (0), Y (1))|X, and (2) there is a positive prob-
ability of receiving each treatment for all values of
X: 0 < P(T = 1|X) < 1 for all X. The first compo-
nent of the definition of strong ignorability is some-
times termed “ignorable,” “no hidden bias” or “uncon-
founded.” Weaker versions of the ignorability assump-
tion are sufficient for some quantities of interest, as
discussed further in Imbens (2004). This assumption is
often more reasonable than it may sound at first since

matching on or controlling for the observed covariates
also matches on or controls for the unobserved covari-
ates, in so much as they are correlated with those that
are observed. Thus, the only unobserved covariates of
concern are those unrelated to the observed covariates.
Analyses can be done to assess sensitivity of the results
to the existence of an unobserved confounder related to
both treatment assignment and the outcome (see Sec-
tion 6.1.2). Heller, Rosenbaum and Small (2009) also
discuss how matching can make effect estimates less
sensitive to an unobserved confounder, using a concept
called “design sensitivity.” An additional assumption is
the Stable Unit Treatment Value Assumption (SUTVA;
Rubin, 1980), which states that the outcomes of one
individual are not affected by treatment assignment of
any other individuals. While not always plausible—
for example, in school settings where treatment and
control children may interact, leading to “spillover”
effects—the plausibility of SUTVA can often be im-
proved by design, such as by reducing interactions be-
tween the treated and control groups. Recent work has
also begun thinking about how to relax this assump-
tion in analyses (Hong and Raudenbush, 2006; Sobel,
2006; Hudgens and Halloran, 2008).

To formalize, using notation similar to that in Rubin
(1976b), we consider two populations, Pt and Pc,
where the subscript t refers to a group exposed to the
treatment and c refers to a group exposed to the control.
Covariate data on p pre-treatment covariates is avail-
able on random samples of sizes Nt and Nc from Pt

and Pc. The means and variance covariance matrix of
the p covariates in group i are given by μi and �i , re-
spectively (i = t, c). For individual j , the p covariates
are denoted by Xj , treatment assignment by Tj (Tj = 0
or 1), and the observed outcome by Yj . Without loss of
generality, we assume Nt < Nc.

To define the treatment effect, let E(Y (1)|X) =
R1(X) and E(Y (0)|X) = R0(X). In the matching con-
text effects are usually defined as the difference in
potential outcomes, τ(x) = R1(x) − R0(x), although
other quantities, such as odds ratios, are also some-
times of interest. It is often assumed that the re-
sponse surfaces, R0(x) and R1(x), are parallel, so that
τ(x) = τ for all x. If the response surfaces are not par-
allel (i.e., the effect varies), an average effect over some
population is generally estimated. Variation in effects
is particularly relevant when the estimands of interest
are not difference in means, but rather odds ratios or
relative risks, for which the conditional and marginal
effects are not necessarily equal (Austin, 2007; Lunt
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et al., 2009). The most common estimands in nonex-
perimental studies are the “average effect of the treat-
ment on the treated” (ATT), which is the effect for
those in the treatment group, and the “average treat-
ment effect” (ATE), which is the effect on all individu-
als (treatment and control). See Imbens (2004), Kurth
et al. (2006) and Imai, King and Stuart (2008) for fur-
ther discussion of these distinctions. The choice be-
tween these estimands will likely involve both substan-
tive reasons and data availability, as further discussed
in Section 6.2.

1.3 History and Theoretical Development of
Matching Methods

Matching methods have been in use since the first
half of the 20th Century (e.g., Greenwood, 1945;
Chapin, 1947), however, a theoretical basis for these
methods was not developed until the 1970s. This de-
velopment began with papers by Cochran and Rubin
(1973) and Rubin (1973a, 1973b) for situations with
one covariate and an implicit focus on estimating the
ATT. Althauser and Rubin (1970) provide an early and
excellent discussion of some practical issues associ-
ated with matching: how large the control “reservoir”
should be to get good matches, how to define the qual-
ity of matches, how to define a “close-enough” match.
Many of the issues identified in that work are topics
of continuing debate and discussion. The early papers
showed that when estimating the ATT, better matching
scenarios include situations with many more control
than treated individuals, small initial bias between the
groups, and smaller variance in the treatment group
than the control group.

Dealing with multiple covariates was a challenge due
to both computational and data problems. With more
than just a few covariates, it becomes very difficult to
find matches with close or exact values of all covari-
ates. For example, Chapin (1947) finds that with initial
pools of 671 treated and 523 controls there are only 23
pairs that match exactly on six categorical covariates.
An important advance was made in 1983 with the intro-
duction of the propensity score, defined as the proba-
bility of receiving the treatment given the observed co-
variates (Rosenbaum and Rubin, 1983b). The propen-
sity score facilitates the construction of matched sets
with similar distributions of the covariates, without re-
quiring close or exact matches on all of the individual
variables.

In a series of papers in the 1990s, Rubin and Thomas
(1992a, 1992b, 1996) provided a theoretical basis for
multivariate settings with affinely invariant matching

methods and ellipsoidally symmetric covariate distri-
butions (such as the normal or t-distribution), again
focusing on estimating the ATT. Affinely invariant
matching methods, such as propensity score or Maha-
lanobis metric matching, are those that yield the same
matches following an affine (linear) transformation of
the data. Matching in this general setting is shown to be
Equal Percent Bias Reducing (EPBR; Rubin, 1976b).
Rubin and Stuart (2006) later showed that the EPBR
feature also holds under much more general settings, in
which the covariate distributions are discriminant mix-
tures of ellipsoidally symmetric distributions. EPBR
methods reduce bias in all covariate directions (i.e.,
makes the covariate means closer) by the same amount,
ensuring that if close matches are obtained in some di-
rection (such as the propensity score), then the match-
ing is also reducing bias in all other directions. The
matching thus cannot be increasing bias in an outcome
that is a linear combination of the covariates. In addi-
tion, matching yields the same percent bias reduction
in bias for any linear function of X if and only if the
matching is EPBR.

Rubin and Thomas (1992b) and Rubin and Thomas
(1996) obtain analytic approximations for the reduc-
tion in bias on an arbitrary linear combination of the
covariates (e.g., the outcome) that can be obtained
when matching on the true or estimated discriminant
(or propensity score) with normally distributed covari-
ates. In fact, the approximations hold remarkably well
even when the distributional assumptions are not satis-
fied (Rubin and Thomas, 1996). The approximations
in Rubin and Thomas (1996) can be used to deter-
mine in advance the bias reduction that will be pos-
sible from matching, based on the covariate distribu-
tions in the treated and control groups, the size of the
initial difference in the covariates between the groups,
the original sample sizes, the number of matches de-
sired and the correlation between the covariates and
the outcome. Unfortunately these approximations are
rarely used in practice, despite their ability to help re-
searchers quickly assess whether their data will be use-
ful for estimating the causal effect of interest.

1.4 Steps in Implementing Matching Methods

Matching methods have four key steps, with the
first three representing the “design” and the fourth the
“analysis”:

1. Defining “closeness”: the distance measure used to
determine whether an individual is a good match for
another.
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2. Implementing a matching method, given that mea-
sure of closeness.

3. Assessing the quality of the resulting matched sam-
ples, and perhaps iterating with steps 1 and 2 until
well-matched samples result.

4. Analysis of the outcome and estimation of the treat-
ment effect, given the matching done in step 3.

The next four sections go through these steps one at a
time, providing an overview of approaches and advice
on the most appropriate methods.

2. DEFINING CLOSENESS

There are two main aspects to determining the mea-
sure of distance (or “closeness”) to use in matching.
The first involves which covariates to include, and the
second involves combining those covariates into one
distance measure.

2.1 Variables to Include

The key concept in determining which covariates to
include in the matching process is that of strong ignor-
ability. As discussed above, matching methods, and in
fact most nonexperimental study methods, rely on ig-
norability, which assumes that there are no unobserved
differences between the treatment and control groups,
conditional on the observed covariates. To satisfy the
assumption of ignorable treatment assignment, it is im-
portant to include in the matching procedure all vari-
ables known to be related to both treatment assignment
and the outcome (Rubin and Thomas, 1996; Heckman,
Ichimura and Todd, 1998; Glazerman, Levy and My-
ers, 2003; Hill, Reiter and Zanutto, 2004). Generally
poor performance is found of methods that use a rela-
tively small set of “predictors of convenience,” such as
demographics only (Shadish, Clark and Steiner, 2008).
When matching using propensity scores, detailed be-
low, there is little cost to including variables that are
actually unassociated with treatment assignment, as
they will be of little influence in the propensity score
model. Including variables that are actually unassoci-
ated with the outcome can yield slight increases in vari-
ance. However, excluding a potentially important con-
founder can be very costly in terms of increased bias.
Researchers should thus be liberal in terms of including
variables that may be associated with treatment assign-
ment and/or the outcomes. Some examples of matching
have 50 or even 100 covariates included in the proce-
dure (e.g., Rubin, 2001). However, in small samples
it may not be possible to include a very large set of

variables. In that case priority should be given to vari-
ables believed to be related to the outcome, as there is a
higher cost in terms of increased variance of including
variables unrelated to the outcome but highly related to
treatment assignment (Brookhart et al., 2006). Another
effective strategy is to include a small set of covari-
ates known to be related to the outcomes of interest, do
the matching, and then check the balance on all of the
available covariates, including any additional variables
that remain particularly unbalanced after the matching.
To avoid allegations of variable selection based on esti-
mated effects, it is best if the variable selection process
is done without using the observed outcomes, and in-
stead is based on previous research and scientific un-
derstanding (Rubin, 2001).

One type of variable that should not be included in
the matching process is any variable that may have
been affected by the treatment of interest (Rosenbaum,
1984; Frangakis and Rubin, 2002; Greenland, 2003).
This is especially important when the covariates, treat-
ment indicator and outcomes are all collected at the
same point in time. If it is deemed to be critical to
control for a variable potentially affected by treat-
ment assignment, it is better to exclude that variable in
the matching procedure and include it in the analysis
model for the outcome (as in Reinisch et al., 1995).1

Another challenge that potentially arises is when
variables are fully (or nearly fully) predictive of treat-
ment assignment. Excluding such a variable
should be done only with great care, with the belief
that the problematic variable is completely unassoci-
ated with the outcomes of interest and that the ignora-
bility assumption will still hold. More commonly, such
a variable indicates a fundamental problem in estimat-
ing the effect of interest, whereby it may not be possi-
ble to separate out the effect of the treatment of interest
from this problematic variable using the data at hand.
For example, if all adolescent heavy drug users are also
heavy drinkers, it will be impossible to separate out the
effect of heavy drug use from the effect of heavy drink-
ing.

2.2 Distance Measures

The next step is to define the “distance”: a mea-
sure of the similarity between two individuals. There

1The method is misstated in the footnote in Table 1 of that pa-
per. In fact, the potential confounding variables were not used in
the matching procedure, but were utilized in the outcome analysis
(D. B. Rubin, personal communication).
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are four primary ways to define the distance Dij be-
tween individuals i and j for matching, all of which
are affinely invariant:

1. Exact:

Dij =
{ 0, if Xi = Xj ,

∞, if Xi �= Xj .

2. Mahalanobis:

Dij = (Xi − Xj)
′�−1(Xi − Xj).

If interest is in the ATT, � is the variance covariance
matrix of X in the full control group; if interest is in
the ATE, then � is the variance covariance matrix
of X in the pooled treatment and full control groups.
If X contains categorical variables, they should be
converted to a series of binary indicators, although
the distance works best with continuous variables.

3. Propensity score:

Dij = |ei − ej |,
where ek is the propensity score for individual k,
defined in detail below.

4. Linear propensity score:

Dij = | logit(ei) − logit(ej )|.
Rosenbaum and Rubin (1985b), Rubin and Thomas
(1996) and Rubin (2001) have found that matching
on the linear propensity score can be particularly
effective in terms of reducing bias.

Below we use “propensity score” to refer to either the
propensity score itself or the linear version.

Although exact matching is in many ways the ideal
(Imai, King and Stuart, 2008), the primary difficulty
with the exact and Mahalanobis distance measures is
that neither works very well when X is high dimen-
sional. Requiring exact matches often leads to many in-
dividuals not being matched, which can result in larger
bias than if the matches are inexact but more individ-
uals remain in the analysis (Rosenbaum and Rubin,
1985b). A recent advance, coarsened exact matching
(CEM), can be used to do exact matching on broader
ranges of the variables; for example, using income
categories rather than a continuous measure (Iacus,
King and Porro, 2009). The Mahalanobis distance can
work quite well when there are relatively few covari-
ates (fewer than 8; Rubin, 1979; Zhao, 2004), but it
does not perform as well when the covariates are not
normally distributed or there are many covariates (Gu
and Rosenbaum, 1993). This is likely because Maha-
lanobis metric matching essentially regards all interac-
tions among the elements of X as equally important;

with more covariates, Mahalanobis matching thus tries
to match more and more of these multi-way interac-
tions.

A major advance was made in 1983 with the intro-
duction of propensity scores (Rosenbaum and Rubin,
1983b). Propensity scores summarize all of the covari-
ates into one scalar: the probability of being treated.
The propensity score for individual i is defined as the
probability of receiving the treatment given the ob-
served covariates: ei(Xi) = P(Ti = 1|Xi). There are
two key properties of propensity scores. The first is
that propensity scores are balancing scores: At each
value of the propensity score, the distribution of the co-
variates X defining the propensity score is the same in
the treated and control groups. Thus, grouping individ-
uals with similar propensity scores replicates a mini-
randomized experiment, at least with respect to the ob-
served covariates. Second, if treatment assignment is
ignorable given the covariates, then treatment assign-
ment is also ignorable given the propensity score. This
justifies matching based on the propensity score rather
than on the full multivariate set of covariates. Thus,
when treatment assignment is ignorable, the difference
in means in the outcome between treated and control
individuals with a particular propensity score value is
an unbiased estimate of the treatment effect at that
propensity score value. While most of the propensity
score results are in the context of finite samples and
the settings considered by Rubin and Thomas (1992a,
1996), Abadie and Imbens (2009a) discuss the asymp-
totic properties of propensity score matching.

The distance measures described above can also be
combined, for example, doing exact matching on key
covariates such as race or gender followed by propen-
sity score matching within those groups. When exact
matching on even a few variables is not possible be-
cause of sample size limitations, methods that yield
“fine balance” (e.g., the same proportion of African
American males in the matched treated and control
groups) may be a good alternative (Rosenbaum, Ross
and Silber, 2007). If the key covariates of interest are
continuous, Mahalanobis matching within propensity
score calipers (Rubin and Thomas, 2000) defines the
distance between individuals i and j as

Dij =
⎧⎪⎨
⎪⎩

(Zi − Zj)
′�−1(Zi − Zj),

if | logit(ei) − logit(ej )| ≤ c,

∞, if | logit(ei) − logit(ej )| > c,

where c is the caliper, Z is the set of “key covari-
ates,” and � is the variance covariance matrix of Z.
This will yield matches that are relatively well matched
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on the propensity score and particularly well matched
on Z. Z often consists of pre-treatment measures of
the outcome, such as baseline test scores in educational
evaluations. Rosenbaum and Rubin (1985b) discuss the
choice of caliper size, generalizing results from Ta-
ble 2.3.1 of Cochran and Rubin (1973). When the vari-
ance of the linear propensity score in the treatment
group is twice as large as that in the control group,
a caliper of 0.2 standard deviations removes 98% of
the bias in a normally distributed covariate. If the vari-
ance in the treatment group is much larger than that
in the control group, smaller calipers are necessary.
Rosenbaum and Rubin (1985b) generally suggest a
caliper of 0.25 standard deviations of the linear propen-
sity score.

A more recently developed distance measure is the
“prognosis score” (Hansen, 2008). Prognosis scores
are essentially the predicted outcome each individual
would have under the control condition. The benefit of
prognosis scores is that they take into account the re-
lationship between the covariates and the outcome; the
drawback is that it requires a model for that relation-
ship. Since it thus does not have the clear separation of
the design and analysis stages that we advocate here,
we focus instead on other approaches, but it is a poten-
tially important advance in the matching literature.

2.2.1 Propensity score estimation and model spec-
ification. In practice, the true propensity scores are
rarely known outside of randomized experiments and
thus must be estimated. Any model relating a binary
variable to a set of predictors can be used. The most
common for propensity score estimation is logistic
regression, although nonparametric methods such as
boosted CART and generalized boosted models (gbm)
often show very good performance (McCaffrey, Ridge-
way and Morral, 2004; Setoguchi et al., 2008; Lee,
Lessler and Stuart, 2009).

The model diagnostics when estimating propensity
scores are not the standard model diagnostics for lo-
gistic regression or CART. With propensity score esti-
mation, concern is not with the parameter estimates of
the model, but rather with the resulting balance of the
covariates (Augurzky and Schmidt, 2001). Because of
this, standard concerns about collinearity do not apply.
Similarly, since they do not use covariate balance as a
criterion, model fit statistics identifying classification
ability (such as the c-statistic) or stepwise selection
models are not helpful for variable selection (Rubin,
2004; Brookhart et al., 2006; Setoguchi et al., 2008).
One strategy that is helpful is to examine the balance

of covariates (including those not originally included
in the propensity score model), their squares and inter-
actions in the matched samples. If imbalance is found
on particular variables or functions of variables, those
terms can be included in a re-estimated propensity
score model, which should improve their balance in the
subsequent matched samples (Rosenbaum and Rubin,
1984; Dehejia and Wahba, 2002).

Research indicates that misestimation of the propen-
sity score (e.g., excluding a squared term that is in
the true model) is not a large problem, and that treat-
ment effect estimates are more biased when the out-
come model is misspecified than when the propensity
score model is misspecified (Drake, 1993; Dehejia and
Wahba, 1999, 2002; Zhao, 2004). This may in part be
because the propensity score is used only as a tool to
get covariate balance—the accuracy of the model is
less important as long as balance is obtained. Thus, the
exclusion of a squared term, for example, may have
less severe consequences for a propensity score model
than it does for the outcome model, where interest is
in interpreting a particular regression coefficient (that
on the treatment indicator). However, these evaluations
are fairly limited; for example, Drake (1993) consid-
ers only two covariates. Future research should involve
more systematic evaluations of propensity score es-
timation, perhaps through more sophisticated simula-
tions as well as analytic work, and consideration should
include how the propensity scores will be used, for ex-
ample, in weighting versus subclassification.

3. MATCHING METHODS

Once a distance measure has been selected, the next
step is to use that distance in doing the matching. In
this section we provide an overview of the spectrum
of matching methods available. The methods primar-
ily vary in terms of the number of individuals that re-
main after matching and in the relative weights that dif-
ferent individuals receive. One way in which propen-
sity scores are commonly used is as a predictor in the
outcome model, where the set of individual covari-
ates is replaced by the propensity score and the out-
come models run in the full treated and control groups
(Weitzen et al., 2004). Unfortunately the simple use of
this method is not an optimal use of propensity scores,
as it does not take advantage of the balancing prop-
erty of propensity scores: If there is imbalance on the
original covariates, there will also be imbalance on the
propensity score, resulting in the same degree of model



8 E. A. STUART

extrapolation as with the full set of covariates. How-
ever, if the model regressing the outcome on the treat-
ment indicator and the propensity score is correctly
specified or if it includes nonlinear functions of the
propensity score (such as quantiles or splines) and their
interaction with the treatment indicator, then this can
be an effective approach, with links to subclassifica-
tion (Schafer and Kang, 2008). Since this method does
not have the clear “design” aspect of matching, we do
not discuss it further.

3.1 Nearest Neighbor Matching

One of the most common, and easiest to imple-
ment and understand, methods is k : 1 nearest neighbor
matching (Rubin, 1973a). This is generally the most ef-
fective method for settings where the goal is to select
individuals for follow-up. Nearest neighbor matching
nearly always estimates the ATT, as it matches control
individuals to the treated group and discards controls
who are not selected as matches.

In its simplest form, 1 : 1 nearest neighbor match-
ing selects for each treated individual i the control in-
dividual with the smallest distance from individual i.
A common complaint regarding 1 : 1 matching is that
it can discard a large number of observations and thus
would apparently lead to reduced power. However, the
reduction in power is often minimal, for two main rea-
sons. First, in a two-sample comparison of means, the
precision is largely driven by the smaller group size
(Cohen, 1988). So if the treatment group stays the
same size, and only the control group decreases in size,
the overall power may not actually be reduced very
much (Ho et al., 2007). Second, the power increases
when the groups are more similar because of the re-
duced extrapolation and higher precision that is ob-
tained when comparing groups that are similar versus
groups that are quite different (Snedecor and Cochran,
1980). This is also what yields the increased power
of using matched pairs in randomized experiments
(Wacholder and Weinberg, 1982). Smith (1997) pro-
vides an illustration where estimates from 1 : 1 match-
ing have lower standard deviations than estimates from
a linear regression, even though thousands of obser-
vations were discarded in the matching. An additional
concern is that, without any restrictions, k : 1 matching
can lead to some poor matches, if, for example, there
are no control individuals with propensity scores simi-
lar to a given treated individual. One strategy to avoid
poor matches is to impose a caliper and only select a
match if it is within the caliper. This can lead to dif-
ficulties in interpreting effects if many treated individ-
uals do not receive a match, but can help avoid poor

matches. Rosenbaum and Rubin (1985a) discuss those
trade-offs.

3.1.1 Optimal matching. One complication of sim-
ple (“greedy”) nearest neighbor matching is that the
order in which the treated subjects are matched may
change the quality of the matches. Optimal match-
ing avoids this issue by taking into account the over-
all set of matches when choosing individual matches,
minimizing a global distance measure (Rosenbaum,
2002). Generally, greedy matching performs poorly
when there is intense competition for controls, and per-
forms well when there is little competition (Gu and
Rosenbaum, 1993). Gu and Rosenbaum (1993) find
that optimal matching does not in general perform any
better than greedy matching in terms of creating groups
with good balance, but does do better at reducing the
distance within pairs (page 413): “. . . optimal match-
ing picks about the same controls [as greedy match-
ing] but does a better job of assigning them to treated
units.” Thus, if the goal is simply to find well-matched
groups, greedy matching may be sufficient. However, if
the goal is well-matched pairs, then optimal matching
may be preferable.

3.1.2 Selecting the number of matches: Ratio match-
ing. When there are large numbers of control indi-
viduals, it is sometimes possible to get multiple good
matches for each treated individual, called ratio match-
ing (Smith, 1997; Rubin and Thomas, 2000). Select-
ing the number of matches involves a bias :variance
trade-off. Selecting multiple controls for each treated
individual will generally increase bias since the 2nd,
3rd and 4th closest matches are, by definition, further
away from the treated individual than is the 1st closest
match. On the other hand, utilizing multiple matches
can decrease variance due to the larger matched sam-
ple size. Approximations in Rubin and Thomas (1996)
can help determine the best ratio. In settings where the
outcome data has yet to be collected and there are cost
constraints, researchers must also balance cost consid-
erations. More methodological work needs to be done
to more formally quantify the trade-offs involved. In
addition, k : 1 matching is not optimal since it does
not account for the fact that some treated individuals
may have many close matches while others have very
few. A more advanced form of ratio matching, variable
ratio matching, allows the ratio to vary, with differ-
ent treated individuals receiving differing numbers of
matches (Ming and Rosenbaum, 2001). Variable ratio
matching is related to full matching, described below.
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3.1.3 With or without replacement. Another key is-
sue is whether controls can be used as matches for
more than one treated individual: whether the match-
ing should be done “with replacement” or “without re-
placement.” Matching with replacement can often de-
crease bias because controls that look similar to many
treated individuals can be used multiple times. This is
particularly helpful in settings where there are few con-
trol individuals comparable to the treated individuals
(e.g., Dehejia and Wahba, 1999). Additionally, when
matching with replacement, the order in which the
treated individuals are matched does not matter. How-
ever, inference becomes more complex when matching
with replacement, because the matched controls are no
longer independent—some are in the matched sample
more than once and this needs to be accounted for in
the outcome analysis, for example, by using frequency
weights. When matching with replacement, it is also
possible that the treatment effect estimate will be based
on just a small number of controls; the number of times
each control is matched should be monitored.

3.2 Subclassification, Full Matching and Weighting

For settings where the outcome data is already avail-
able, one apparent drawback of k : 1 nearest neighbor
matching is that it does not necessarily use all the
data, in that some control individuals, even some of
those with propensity scores in the range of the treat-
ment groups’ scores, are discarded and not used in the
analysis. Weighting, full matching and subclassifica-
tion methods instead use all individuals. These meth-
ods can be thought of as giving all individuals (ei-
ther implicit or explicit) weights between 0 and 1, in
contrast with nearest neighbor matching, in which in-
dividuals essentially receive a weight of either 0 or
1 (depending on whether or not they are selected as
a match). The three methods discussed here repre-
sent a continuum in terms of the number of groupings
formed, with weighting as the limit of subclassification
as the number of observations and subclasses go to in-
finity (Rubin, 2001) and full matching in between.

3.2.1 Subclassification. Subclassification forms
groups of individuals who are similar, for example,
as defined by quintiles of the propensity score distri-
bution. It can estimate either the ATE or the ATT, as
discussed further in Section 5. One of the first uses
of subclassification was Cochran (1968), which exam-
ined subclassification on a single covariate (age) in in-
vestigating the link between lung cancer and smok-
ing. Cochran (1968) provides analytic expressions for

the bias reduction possible using subclassification on
a univariate continuous covariate; using just five sub-
classes removes at least 90% of the initial bias due
to that covariate. Rosenbaum and Rubin (1985b) ex-
tended that to show that creating five propensity score
subclasses removes at least 90% of the bias in the esti-
mated treatment effect due to all of the covariates that
went into the propensity score. Based on those results,
the current convention is to use 5–10 subclasses. How-
ever, with larger sample sizes more subclasses (e.g.,
10–20) may be feasible and appropriate (Lunceford
and Davidian, 2004). More work needs to be done
to help determine the optimal number of subclasses:
enough to get adequate bias reduction but not too many
that the within-subclass effect estimates become unsta-
ble.

3.2.2 Full matching. A more sophisticated form of
subclassification, full matching, selects the number of
subclasses automatically (Rosenbaum, 1991; Hansen,
2004; Stuart and Green, 2008). Full matching creates a
series of matched sets, where each matched set con-
tains at least one treated individual and at least one
control individual (and each matched set may have
many from either group). Like subclassification, full
matching can estimate either the ATE or the ATT. Full
matching is optimal in terms of minimizing the aver-
age of the distances between each treated individual
and each control individual within each matched set.
Hansen (2004) demonstrates the method in the context
of estimating the effect of SAT coaching. In that exam-
ple the original treated and control groups had propen-
sity score differences of 1.1 standard deviations, but the
matched sets from full matching differed by only 0.01
to 0.02 standard deviations. Full matching may thus
have appeal for researchers who are reluctant to discard
some of the control individuals but who want to obtain
optimal balance on the propensity score. To achieve ef-
ficiency gains, Hansen (2004) also introduces restricted
ratios of the number of treated individuals to the num-
ber of control individuals in each matched set.

3.2.3 Weighting adjustments. Propensity scores can
also be used directly as inverse weights in estimates
of the ATE, known as inverse probability of treatment
weighting (IPTW; Czajka et al., 1992; Robins, Her-
nan and Brumback, 2000; Lunceford and Davidian,
2004). Formally, the weight wi = Ti

êi
+ 1−Ti

1−êi
, where êk

is the estimated propensity score for individual k. This
weighting serves to weight both the treated and con-
trol groups up to the full sample, in the same way that
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survey sampling weights weight a sample up to a pop-
ulation (Horvitz and Thompson, 1952).

An alternative weighting technique, weighting by the
odds, can be used to estimate the ATT (Hirano, Imbens
and Ridder, 2003). Formally, wi = Ti + (1 − Ti)

êi

1−êi
.

With this weight, treated individuals receive a weight
of 1. Control individuals are weighted up to the full
sample using the 1

1−êi
term, and then weighted to the

treated group using the êi term. In this way both groups
are weighted to represent the treatment group.

A third weighting technique, used primarily in eco-
nomics, is kernel weighting, which averages over mul-
tiple individuals in the control group for each treated
individual, with weights defined by their distance
(Imbens, 2000). Heckman, Hidehiko and Todd (1997),
Heckman et al. (1998) and Heckman, Ichimura and
Todd (1998) describe a local linear matching estimator
that requires specifying a bandwidth parameter. Gen-
erally, larger bandwidths increase bias but reduce vari-
ance by putting weight on individuals that are further
away from the treated individual of interest. A compli-
cation with these methods is this need to define a band-
width or smoothing parameter, which does not gener-
ally have an intuitive meaning; Imbens (2004) provides
some guidance on that choice.

A potential drawback of the weighting approaches is
that, as with Horvitz–Thompson estimation, the vari-
ance can be very large if the weights are extreme
(i.e., if the estimated propensity scores are close to 0
or 1). If the model is correctly specified and thus the
weights are correct, then the large variance is appro-
priate. However, a worry is that some of the extreme
weights may be related more to the estimation proce-
dure than to the true underlying probabilities. Weight
trimming, which sets weights above some maximum
to that maximum, has been proposed as one solution
to this problem (Potter, 1993; Scharfstein, Rotnitzky
and Robins, 1999). However, there is relatively lit-
tle guidance regarding the trimming level. Because of
this sensitivity to the size of the weights and potential
model misspecification, more attention should be paid
to the accuracy of propensity score estimates when
the propensity scores will be used for weighting vs.
matching (Kang and Schafer, 2007). Another effective
strategy is doubly-robust methods (Bang and Robins,
2005), which yield accurate effect estimates if either
the propensity score model or the outcome model are
correctly specified, as discussed further in Section 5.

3.3 Assessing Common Support

One issue that comes up for all matching methods
is that of “common support.” To this point, we have
assumed that there is substantial overlap of the propen-
sity score distributions in the two groups, but poten-
tially density differences. However, in some situations
there may not be complete overlap in the distributions.
For example, many of the control individuals may be
very different from all of the treatment group mem-
bers, making them inappropriate as points of compar-
ison when estimating the ATT (Austin and Mamdani,
2006). Nearest neighbor matching with calipers auto-
matically only uses individuals in (or close to) the area
of common support. In contrast, the subclassification
and weighting methods generally use all individuals,
regardless of the overlap of the distributions. When us-
ing those methods it may be beneficial to explicitly re-
strict the analysis to those individuals in the region of
common support (as in Heckman, Hidehiko and Todd,
1997; Dehejia and Wahba, 1999).

Most analyses define common support using the
propensity score, discarding individuals with propen-
sity score values outside the range of the other group.
A second method involves examining the “convex
hull” of the covariates, identifying the multidimen-
sional space that allows interpolation rather than ex-
trapolation (King and Zeng, 2006). While these pro-
cedures can help identify who needs to be discarded,
when many subjects are discarded it can help the inter-
pretation of results if it is possible to define the discard
rule using one or two covariates rather than the propen-
sity score itself.

It is also important to consider the implications of
common support for the estimand of interest. Exam-
ining the common support may indicate that it is not
possible to reliably estimate the ATE. This could hap-
pen, for example, if there are controls outside the range
of the treated individuals and thus no way to esti-
mate Y(1) for the controls without extensive extrapo-
lation. When estimating the ATT it may be fine (and in
fact beneficial) to discard controls outside the range of
the treated individuals, but discarding treated individ-
uals may change the group for which the results apply
(Crump et al., 2009).

4. DIAGNOSING MATCHES

Perhaps the most important step in using match-
ing methods is to diagnose the quality of the resulting
matched samples. All matching should be followed by
an assessment of the covariate balance in the matched
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groups, where balance is defined as the similarity of
the empirical distributions of the full set of covariates
in the matched treated and control groups. In other
words, we would like the treatment to be unrelated to
the covariates, such that p̃(X|T = 1) = p̃(X|T = 0),
where p̃ denotes the empirical distribution. A match-
ing method that results in highly imbalanced samples
should be rejected, and alternative methods should be
attempted until a well-balanced sample is attained. In
some situations the diagnostics may indicate that the
treated and control groups are too far apart to provide
reliable estimates without heroic modeling assump-
tions (e.g., Rubin, 2001; Agodini and Dynarski, 2004).
In contrast to traditional regression models, which do
not examine the joint distribution of the predictors
(and, in particular, of treatment assignment and the co-
variates), matching methods will make it clear when
it is not possible to separate the effect of the treat-
ment from other differences between the groups. A
well-specified regression model of the outcome with
many interactions would show this imbalance and may
be an effective method for estimating treatment effects
(Schafer and Kang, 2008), but complex models like
that are only rarely used.

When assessing balance we would ideally compare
the multidimensional histograms of the covariates in
the matched treated and control groups. However, mul-
tidimensional histograms are very coarse and/or will
have many zero cells. We thus are left examining the
balance of lower-dimensional summaries of that joint
distribution, such as the marginal distributions of each
covariate. Since we are attempting to examine different
features of the multidimensional distribution, though, it
is helpful to do a number of different types of balance
checks, to obtain a more complete picture.

All balance metrics should be calculated in ways
similar to how the outcome analyses will be run, as
discussed further in Section 5. For example, if subclas-
sification was done, the balance measures should be
calculated within each subclass and then aggregated.
If weights will be used in analyses (either as IPTW or
because of variable ratio or full matching), they should
also be used in calculating the balance measures (Joffe
et al., 2004).

4.1 Numerical Diagnostics

One of the most common numerical balance diag-
nostics is the difference in means of each covariate,
divided by the standard deviation in the full treated

group: Xt−Xc

σt
. This measure, sometimes referred to as

the “standardized bias” or “standardized difference in

means,” is similar to an effect size and is compared
before and after matching (Rosenbaum and Rubin,
1985b). The same standard deviation should be used
in the standardization before and after matching. The
standardized difference of means should be computed
for each covariate, as well as two-way interactions and
squares. For binary covariates, either this same formula
can be used (treating them as if they were continuous),
or a simple difference in proportions can be calculated
(Austin, 2009).

Rubin (2001) presents three balance measures based
on the theory in Rubin and Thomas (1996) that provide
a comprehensive view of covariate balance:

1. The standardized difference of means of the propen-
sity score.

2. The ratio of the variances of the propensity score in
the treated and control groups.

3. For each covariate, the ratio of the variance of the
residuals orthogonal to the propensity score in the
treated and control groups.

Rubin (2001) illustrates these diagnostics in an exam-
ple with 146 covariates. For regression adjustment to
be trustworthy, the absolute standardized differences
of means should be less than 0.25 and the variance ra-
tios should be between 0.5 and 2 (Rubin, 2001). These
guidelines are based both on the assumptions underly-
ing regression adjustment as well as on results in Rubin
(1973b) and Cochran and Rubin (1973), which used
simulations to estimate the bias resulting from a num-
ber of treatment effect estimation procedures when the
true relationship between the covariates and outcome
is even moderately nonlinear.

Although common, hypothesis tests and p-values
that incorporate information on the sample size (e.g.,
t-tests) should not be used as measures of balance,
for two main reasons (Austin, 2007; Imai, King and
Stuart, 2008). First, balance is inherently an in-sample
property, without reference to any broader population
or super-population. Second, hypothesis tests can be
misleading as measures of balance, because they of-
ten conflate changes in balance with changes in sta-
tistical power. Imai, King and Stuart (2008) show an
example where randomly discarding control individu-
als seemingly leads to increased balance, simply be-
cause of the reduced power. In particular, hypothesis
tests should not be used as part of a stopping rule to se-
lect a matched sample when those samples have vary-
ing sizes (or effective sample sizes). Some researchers
argue that hypothesis tests are okay for testing bal-
ance since the outcome analysis will also have reduced
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power for estimating the treatment effect (Hansen,
2008), but that argument requires trading off Type I and
Type II errors. The cost of those two types of errors
may differ for balance checking and treatment effect
estimation.

4.2 Graphical Diagnostics

With many covariates it can be difficult to carefully
examine numeric diagnostics for each; graphical diag-
nostics can be helpful for getting a quick assessment
of the covariate balance. A first step is to examine the
distribution of the propensity scores in the original and
matched groups; this is also useful for assessing com-
mon support. Figure 1 shows an example with adequate
overlap of the propensity scores, with a good control
match for each treated individual. For weighting or
subclassification, plots such as this can show the dots
with their size proportional to their weight.

For continuous covariates, we can also examine
quantile–quantile (QQ) plots, which compare the em-
pirical distributions of each variable in the treated and
control groups (this could also be done for the variables
squared or two-way interactions, getting at second mo-
ments). QQ plots compare the quantiles of a variable
in the treatment group against the corresponding quan-
tiles in the control group. If the two groups have iden-
tical empirical distributions, all points would lie on
the 45 degree line. For weighting methods, weighted

FIG. 1. Matches chosen using 1 : 1 nearest neighbor matching on
propensity score. Black dots indicate matched individuals; grey un-
matched individuals. Data from Stuart and Green (2008).

FIG. 2. Plot of standardized difference of means of 10 covariates
before and after matching. Data from Stuart and Green (2008).

boxplots can provide similar information (Joffe et al.,
2004).

Finally, a plot of the standardized differences of
means, as in Figure 2, gives us a quick overview of
whether balance has improved for individual covari-
ates (Ridgeway, McCaffrey and Morral, 2006). In this
example the standardized difference of means of each
covariate has decreased after matching. In some situ-
ations researchers may find that the standardized dif-
ference of means of a few covariates will increase.
This may be particularly true of covariates with small
differences before matching, since they will not fac-
tor heavily into the propensity score model (since they
are not predictive of treatment assignment). In these
cases researchers should consider whether the increase
in bias on those covariates is problematic, which it may
be if those covariates are strongly related to the out-
come, and modify the matching accordingly (Ho et al.,
2007). One solution for that may be to do Mahalanobis
matching on those covariates within propensity score
calipers.

5. ANALYSIS OF THE OUTCOME

Matching methods are not themselves methods for
estimating causal effects. After the matching has cre-
ated treated and control groups with adequate bal-
ance (and the observational study thus “designed”), re-
searchers can move to the outcome analysis stage. This
stage will generally involve regression adjustments us-
ing the matched samples, with the details of the analy-
sis depending on the structure of the matching. A key
point is that matching methods are not designed to
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“compete” with modeling adjustments such as linear
regression, and, in fact, the two methods have been
shown to work best in combination (Rubin, 1973b;
Carpenter, 1977; Rubin, 1979; Robins and Rotnitzky,
1995; Heckman, Hidehiko and Todd, 1997; Rubin and
Thomas, 2000; Glazerman, Levy and Myers, 2003;
Abadie and Imbens, 2006). This is similar to the idea
of “double robustness,” and the intuition is the same as
that behind regression adjustment in randomized ex-
periments, where the regression adjustment is used to
“clean up” small residual covariate imbalance between
the groups. Matching methods should also make the
treatment effect estimates less sensitive to particular
outcome model specifications (Ho et al., 2007).

The following sections describe how outcome analy-
ses should proceed after each of the major types of
matching methods described above. When weight-
ing methods are used, the weights are used directly
in regression models, for example, using weighted
least squares. We focus on parametric modeling ap-
proaches since those are the most commonly used,
however, nonparametric permutation-based tests, such
as Fisher’s exact test, are also appropriate, as de-
tailed in Rosenbaum (2002, 2010). The best results
are found when estimating marginal treatment effects,
such as differences in means or differences in propor-
tions. Greenland, Robins and Pearl (1999) and Austin
(2007) discuss some of the challenges in estimating
noncollapsible conditional treatment effects and which
matching methods perform best for those situations.

5.1 After k : 1 Matching

When each treated individual has received k

matches, the outcome analysis proceeds using the
matched samples, as if those samples had been gen-
erated through randomization. There is debate about
whether the analysis needs to account for the matched
pair nature of the data (Austin, 2007). However, there
are at least two reasons why it is not necessary to
account for the matched pairs (Schafer and Kang,
2008; Stuart, 2008). First, conditioning on the vari-
ables that were used in the matching process (such
as through a regression model) is sufficient. Second,
propensity score matching, in fact, does not guaran-
tee that the individual pairs will be well-matched on
the full set of covariates, only that groups of individ-
uals with similar propensity scores will have similar
covariate distributions. Thus, it is more common to
simply pool all the matches into matched treated and
control groups and run analyses using the groups as a
whole, rather than using the individual matched pairs.

In essence, researchers can do the exact same analysis
they would have done using the original data, but using
the matched data instead (Ho et al., 2007).

Weights need to be incorporated into the analy-
sis for matching with replacement or variable ratio
matching (Dehejia and Wahba, 1999; Hill, Reiter and
Zanutto, 2004). When matching with replacement,
control group individuals receive a frequency weight
that reflects the number of times they were selected
as a match. When using variable ratio matching, con-
trol group members receive a weight that is propor-
tional to the number of controls matched to “their”
treated individual. For example, if 1 treated individ-
ual was matched to 3 controls, each of those controls
receives a weight of 1/3. If another treated individual
was matched to just 1 control, that control receives a
weight of 1.

5.2 After Subclassification or Full Matching

With standard subclassification (e.g., the formation
of 5 subclasses), effects are generally estimated within
each subclass and then aggregated across subclasses
(Rosenbaum and Rubin, 1984). Weighting the sub-
class estimates by the number of treated individuals
in each subclass estimates the ATT; weighting by the
overall number of individuals in each subclass esti-
mates the ATE. There may be fairly substantial im-
balance remaining in each subclass and, thus, it is im-
portant to do regression adjustment within each sub-
class, with the treatment indicator and covariates as
predictors (Lunceford and Davidian, 2004). When the
number of subclasses is too large—and the number
of individuals within each subclass too small—to esti-
mate separate regression models within each subclass,
a joint model can be fit, with subclass and subclass
by treatment indicators (fixed effects). This is espe-
cially useful for full matching. This estimates a sepa-
rate effect for each subclass, but assumes that the rela-
tionship between the covariates X and the outcome is
constant across subclasses. Specifically, models such
as Yij = β0j + β1jTij + γXij + eij are fit, where i

indexes individuals and j indexes subclasses. In this
model, β1j is the treatment effect for subclass j , and
these effects are aggregated across subclasses to obtain
an overall treatment effect: β = Nj

N

∑J
j=1 β1j , where J

is the number of subclasses, Nj is the number of in-
dividuals in subclass j , and N is the total number of
individuals. (This formula weights subclasses by their
total size, and so estimates the ATE, but could be mod-
ified to estimate the ATT.) This procedure is somewhat
more complicated for noncontinuous outcomes when
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the estimand of interest, for example, an odds ratio, is
noncollapsible. In that case the outcome proportions in
each treatment group should be aggregated and then
combined.

5.3 Variance Estimation

One of the most debated topics in the literature on
matching is variance estimation. Researchers disagree
on whether uncertainty in the propensity score estima-
tion or the matching procedure needs to be taken into
account, and, if so, how. Some researchers (e.g., Ho
et al., 2007) adopt an approach similar to randomized
experiments, where the models are run conditional on
the covariates, which are treated as fixed and exoge-
nous. Uncertainty regarding the matching process is
not taken into account. Other researchers argue that un-
certainty in the propensity score model needs to be ac-
counted for in any analysis. However, in fact, under
fairly general conditions (Rubin and Thomas, 1996;
Rubin and Stuart, 2006), using estimated rather than
true propensity scores leads to an overestimate of vari-
ance, implying that not accounting for the uncertainty
in using estimated rather than true values will be con-
servative in the sense of yielding confidence intervals
that are wider than necessary. Robins, Mark and Newey
(1992) also show the benefit of using estimated rather
than true propensity scores. Analytic expressions for
the bias and variance reduction possible for these situ-
ations are given in Rubin and Thomas (1992b). Specif-
ically, Rubin and Thomas (1992b) states that “. . . with
large pools of controls, matching using estimated lin-
ear propensity scores results in approximately half
the variance for the difference in the matched sam-
ple means as in corresponding random samples for all
covariates uncorrelated with the population discrimi-
nant.” This finding has been confirmed in simulations
(Rubin and Thomas, 1996) and an empirical example
(Hill, Rubin and Thomas, 1999). Thus, when it is pos-
sible to obtain 100% or nearly 100% bias reduction by
matching on true or estimated propensity scores, using
the estimated propensity scores will result in more pre-
cise estimates of the average treatment effect. The in-
tuition is that the estimated propensity score accounts
for chance imbalances between the groups, in addition
to the systematic differences—a situation where over-
fitting is good. When researchers want to account for
the uncertainty in the matching, a bootstrap procedure
has been found to outperform other methods (Lechner,
2002; Hill and Reiter, 2006). There are also some em-
pirical formulas for variance estimation for particular
matching scenarios (e.g., Abadie and Imbens, 2006,

2009b; Schafer and Kang, 2008), but this is an area for
future research.

6. DISCUSSION

6.1 Additional Issues

This section raises additional issues that arise when
using any matching method, and also provides sugges-
tions for future research.

6.1.1 Missing covariate values. Most of the litera-
ture on matching and propensity scores assume fully
observed covariates, but of course most studies have at
least some missing data. One possibility is to use gen-
eralized boosted models to estimate propensity scores,
as they do not require fully observed covariates. An-
other recommended approach is to do a simple single
imputation of the missing covariates and include miss-
ing data indicators in the propensity score model. This
essentially matches based both on the observed values
and on the missing data patterns. Although this is gen-
erally not an appropriate strategy for dealing with miss-
ing data (Greenland and Finkle, 1995), it is an effec-
tive approach in the propensity score context. Although
it cannot balance the missing values themselves, this
method will yield balance on the observed covariates
and the missing data patterns (Rosenbaum and Rubin,
1984). A more flexible method is to use multiple impu-
tation to impute the missing covariates, run the match-
ing and effect estimation separately within each “com-
plete” data set, and then use the multiple imputation
combining rules to obtain final effect estimates (Rubin,
1987; Song et al., 2001). Qu and Lipkovich (2009) il-
lustrate this method and show good results for an adap-
tation that also includes indicators of missing data pat-
terns in the propensity score model.

In addition to development and investigation of
matching methods that account for missing data, one
particular area needing development is balance diag-
nostics for settings with missing covariate values, in-
cluding dignostics that allow for nonignorable missing
data mechanisms. D’Agostino, Jr. and Rubin (2000)
suggests a few simple diagnostics such as assess-
ing available-case means and standard deviations of
the continuous variables, and comparing available-
case cell proportions for the categorical variables and
missing-data indicators, but diagnostics should be de-
veloped that explicitly consider the interactions be-
tween the missing data and treatment assignment
mechanisms.
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6.1.2 Violation of ignorable treatment assignment.
A critique of any nonexperimental study is that there
may be unobserved variables related to both treatment
assignment and the outcome, violating the assump-
tion of ignorable treatment assignment and biasing the
treatment effect estimates. Since ignorability can never
be directly tested, researchers have instead developed
sensitivity analyses to assess its plausibility, and how
violations of ignorability may affect study conclusions.
One type of plausibility test estimates an effect on a
variable that is known to be unrelated to the treatment,
such as a pre-treatment measure of the outcome vari-
able (as in Imbens, 2004), or the difference in outcomes
between multiple control groups (as in Rosenbaum,
1987b). If the test indicates that the effect is not equal
to zero, then the assumption of ignorable treatment as-
signment is deemed to be less plausible.

A second approach is to perform analyses of sensi-
tivity to an unobserved variable. Rosenbaum and Ru-
bin (1983a) extends the ideas of Cornfield (1959),
examining how strong the correlations would have
to be between a hypothetical unobserved covariate
and both treatment assignment and the outcome to
make the observed treatment effect go away. Sim-
ilarly, bounds can be created for the treatment ef-
fect, given a range of potential correlations of the
unobserved covariate with treatment assignment and
the outcome (Rosenbaum, 2002). Although sensitivity
analysis methods are becoming more and more devel-
oped, they are still used relatively infrequently. Newly
available software (McCaffrey, Ridgeway and Morral,
2004; Keele, 2009) will hopefully help facilitate their
adoption by more researchers.

6.1.3 Choosing between methods. There are a wide
variety of matching methods available, and little guid-
ance to help applied researchers select between them
(Section 6.2 makes an attempt). The primary advice to
this point has been to select the method that yields the
best balance (e.g., Harder, Stuart and Anthony, 2010;
Ho et al., 2007; Rubin, 2007). But defining the best bal-
ance is complex, as it involves trading off balance on
multiple covariates. Possible ways to choose a method
include the following: (1) the method that yields the
smallest standardized difference of means across the
largest number of covariates, (2) the method that min-
imizes the standardized difference of means of a few
particularly prognostic covariates, and (3) the method
that results in the fewest number of “large” standard-
ized differences of means (greater than 0.25). Another
promising direction is work by Diamond and Sekhon

(2006), which automates the matching procedure, find-
ing the best matches according to a set of balance
measures. Further research needs to compare the per-
formance of treatment effect estimates from methods
using criteria such as those in Diamond and Sekhon
(2006) and Harder, Stuart and Anthony (2010), to de-
termine what the proper criteria should be and examine
issues such as potential overfitting to particular mea-
sures.

6.1.4 Multiple treatment doses. Throughout this
discussion of matching, it has been assumed that there
are just two groups: treated and control. However, in
many studies there are actually multiple levels of the
treatment (e.g., doses of a drug). Rosenbaum (2002)
summarizes two methods for dealing with doses of
treatment. In the first method, the propensity score
is still a scalar function of the covariates (e.g., Joffe
and Rosenbaum, 1999; Lu et al., 2001). In the second
method, each of the levels of treatment has its own
propensity score (e.g., Rosenbaum, 1987a; Imbens,
2000) and each propensity score is used one at a time to
estimate the distribution of responses that would have
been observed if all individuals had received that dose.

Encompassing these two approaches, Imai and van
Dyk (2004) generalizes the propensity score to arbi-
trary treatment regimes (including ordinal, categori-
cal and multidimensional). They provide theorems for
the properties of this generalized propensity score (the
propensity function), showing that it has properties
similar to that of the propensity score in that adjusting
for the low-dimensional (not always scalar, but always
low-dimensional) propensity function balances the co-
variates. They advocate subclassification rather than
matching, and provide two examples as well as sim-
ulations showing the performance of adjustment based
on the propensity function. Diagnostics are also com-
plicated in this setting, as it becomes more difficult to
assess the balance of the resulting samples when there
are multiple treatment levels. Future work is needed to
examine these issues.

6.2 Guidance for Practice

So what are the take-away points and advice regard-
ing when to use each of the many methods discussed?
While more work is needed to definitively answer that
question, this section attempts to pull together the cur-
rent literature to provide advice for researchers inter-
ested in estimating causal effects using matching meth-
ods. The lessons can be summarized as follows:

1. Think carefully about the set of covariates to in-
clude in the matching procedure, and err on the side of
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including more rather than fewer. Is the ignorability as-
sumption reasonable given that set of covariates? If not,
consider in advance whether there are other data sets
that may be more appropriate, or if there are sensitivity
analyses that can be done to strengthen the inferences.

2. Estimate the distance measure that will be used
in the matching. Linear propensity scores estimated us-
ing logistic regression, or propensity scores estimated
using generalized boosted models or boosted CART,
are good choices. If there are a few covariates on
which particularly close balance is desired (e.g., pre-
treatment measures of the outcome), consider using the
Mahalanobis distance within propensity score calipers.

3. Examine the common support and implications
for the estimand. If the ATE is of substantive interest, is
there enough overlap of the treated and control groups’
propensity scores to estimate the ATE? If not, could
the ATT be estimated more reliably? If the ATT is of
interest, are there controls across the full range of the
treated group, or will it be difficult to estimate the ef-
fect for some treated individuals?

4. Implement a matching method.

• If estimating the ATE, good choices are generally
IPTW or full matching.

• If estimating the ATT and there are many more con-
trol than treated individuals (e.g., more than 3 times
as many), k : 1 nearest neighbor matching without
replacement is a good choice for its simplicity and
good performance.

• If estimating the ATT and there are not (or not many)
more control than treated individuals, appropriate
choices are generally subclassification, full match-
ing and weighting by the odds.

5. Examine the balance on covariates resulting
from that matching method.

• If adequate, move forward with treatment effect esti-
mation, using regression adjustment on the matched
samples.

• If imbalance on just a few covariates, consider in-
corporating exact or Mahalanobis matching on those
variables.

• If imbalance on quite a few covariates, try another
matching method (e.g., move to k : 1 matching with
replacement) or consider changing the estimand or
the data.

Even if for some reason effect estimates will not be
obtained using matching methods, it is worthwhile to
go through the steps outlined here to assess the ad-
equacy of the data for answering the question of in-
terest. Standard regression diagnostics will not warn

researchers when there is insufficient overlap to reli-
ably estimate causal effects; going through the process
of estimating propensity scores and assessing balance
before and after matching can be invaluable in terms
of helping researchers move forward with causal infer-
ence with confidence.

Matching methods are important tools for applied
researchers and also have many open research ques-
tions for statistical development. This paper has pro-
vided an overview of the current literature on matching
methods, guidance for practice and a road map for fu-
ture research. Much research has been done in the past
30 years on this topic, however, there are still a num-
ber of open areas and questions to be answered. We
hope that this paper, combining results from a variety
of disciplines, will promote awareness of and interest
in matching methods as an important and interesting
area for future research.

7. SOFTWARE APPENDIX

In previous years software limitations made it
difficult to implement many of the more advanced
matching methods. However, recent advances have
made these methods more and more accessible.
This section lists some of the major matching pro-
cedures available. A continuously updated version is
also available at http://www.biostat.jhsph.edu/~estuart/
propensityscoresoftware.html.

• Matching software for R

– cem, http://gking.harvard.edu/cem/
Iacus, S. M., King, G. and Porro, G. (2009). cem:
Coarsened exact matching software. Can also be im-
plemented through MatchIt.

– Matching, http://sekhon.berkeley.edu/matching
Sekhon, J. S. (in press). Matching: Multivariate and
propensity score matching with balance optimiza-
tion. Forthcoming, Journal of Statistical Software.
Uses automated procedure to select matches, based
on univariate and multivariate balance diagnostics.
Primarily k : 1 matching, allows matching with or
without replacement, caliper, exact. Includes built-
in effect and variance estimation procedures.

– MatchIt, http://gking.harvard.edu/matchit
Ho, D. E., Imai, K., King, G. and Stuart, E. A. (in
press). MatchIt: Nonparametric preprocessing for
parameteric causal inference. Forthcoming, Jour-
nal of Statistical Software. Two-step process: does
matching, then user does outcome analysis. Wide ar-
ray of estimation procedures and matching methods

http://www.biostat.jhsph.edu/~estuart/propensityscoresoftware.html
http://gking.harvard.edu/cem/
http://sekhon.berkeley.edu/matching
http://gking.harvard.edu/matchit
http://www.biostat.jhsph.edu/~estuart/propensityscoresoftware.html
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available: nearest neighbor, Mahalanobis, caliper,
exact, full, optimal, subclassification. Built-in nu-
meric and graphical diagnostics.

– optmatch, http://cran.r-project.org/web/packages/
optmatch/index.html
Hansen, B. B. and Fredrickson, M. (2009). opt-
match: Functions for optimal matching. Variable ra-
tio, optimal and full matching. Can also be imple-
mented through MatchIt.

– PSAgraphics, http://cran.r-project.org/web/
packages/PSAgraphics/index.html
Helmreich, J. E. and Pruzek, R. M. (2009). PSA-
graphics: Propensity score analysis graphics. Jour-
nal of Statistical Software 29. Package to do graphi-
cal diagnostics of propensity score methods.

– rbounds, http://cran.r-project.org/web/packages/
rbounds/index.html
Keele, L. J. (2009). rbounds: An R package for sen-
sitivity analysis with matched data. Does analysis of
sensitivity to assumption of ignorable treatment as-
signment.

– twang, http://cran.r-project.org/web/packages/
twang/index.html
Ridgeway, G., McCaffrey, D. and Morral, A. (2006).
twang: Toolkit for weighting and analysis of non-
equivalent groups. Functions for propensity score
estimating and weighting, nonresponse weighting,
and diagnosis of the weights. Primarily uses gener-
alized boosted regression to estimate the propensity
scores.

• Matching software for Stata

– cem, http://gking.harvard.edu/cem/
Iacus, S. M., King, G. and Porro, G. (2009). cem:
Coarsened exact matching software.

– match, http://www.economics.harvard.edu/faculty/
imbens/software_imbens
Abadie, A., Drukker, D., Herr, J. L. and Imbens,
G. W. (2004). Implementing matching estimators for
average treatment effects in Stata. The Stata Journal
4 290–311. Primarily k : 1 matching (with replace-
ment). Allows estimation of ATT or ATE, including
robust variance estimators.

– pscore, http://www.lrz-muenchen.de/~sobecker/
pscore.html
Becker, S. and Ichino, A. (2002). Estimation of av-
erage treatment effects based on propensity scores.
The Stata Journal 2 358–377. Does k : 1 nearest
neighbor matching, radius (caliper) matching and
subclassification.

– psmatch2, http://econpapers.repec.org/software/
bocbocode/s432001.htm
Leuven, E. and Sianesi, B. (2003). psmatch2. Stata
module to perform full Mahalanobis and propen-
sity score matching, common support graphing, and
covariate imbalance testing. Allows k : 1 matching,
kernel weighting, Mahalanobis matching. Includes
built-in diagnostics and procedures for estimating
ATT or ATE.

– Note: 3 procedures for analysis of sensitivity to the
ignorability assumption are also available: rbounds
(for continuous outcomes), mhbounds (for categor-
ical outcomes), and sensatt (to be used after the
pscore procedures).
rbounds, http://econpapers.repec.org/software/
bocbocode/s438301.htm;
mhbounds, http://ideas.repec.org/p/diw/diwwpp/
dp659.html;
sensatt, http://ideas.repec.org/c/boc/bocode/
s456747.html.

• Matching software for SAS

– SAS usage note: http://support.sas.com/kb/30/971.
html

– Greedy 1 : 1 matching, http://www2.sas.com/
proceedings/sugi25/25/po/25p225.pdf
Parsons, L. S. (2005). Using SAS software to per-
form a case-control match on propensity score in an
observational study. In SAS SUGI 30, Paper 225-25.

– gmatch macro, http://mayoresearch.mayo.edu/
mayo/research/biostat/upload/gmatch.sas
Kosanke, J. and Bergstralh, E. (2004). gmatch:
Match 1 or more controls to cases using the
GREEDY algorithm.

– Proc assign, http://pubs.amstat.org/doi/abs/10.1198/
106186001317114938
Can be used to perform optimal matching.

– 1 : 1 Mahalanobis matching within propensity
score calipers, www.lexjansen.com/pharmasug/
2006/publichealthresearch/pr05.pdf
Feng, W. W., Jun, Y. and Xu, R. (2005). A method/
macro based on propensity score and Mahalanobis
distance to reduce bias in treatment comparison in
observational study.

– vmatch macro, http://mayoresearch.mayo.edu/
mayo/research/biostat/upload/vmatch.sas
Kosanke, J. and Bergstralh, E. (2004). Match cases
to controls using variable optimal matching. Vari-
able ratio matching (optimal algorithm).

– Weighting, http://www.lexjansen.com/wuss/2006/
Analytics/ANL-Leslie.pdf

http://cran.r-project.org/web/packages/optmatch/index.html
http://cran.r-project.org/web/packages/PSAgraphics/index.html
http://cran.r-project.org/web/packages/rbounds/index.html
http://cran.r-project.org/web/packages/twang/index.html
http://gking.harvard.edu/cem/
http://www.economics.harvard.edu/faculty/imbens/software_imbens
http://www.lrz-muenchen.de/~sobecker/pscore.html
http://econpapers.repec.org/software/bocbocode/s432001.htm
http://econpapers.repec.org/software/bocbocode/s438301.htm
http://ideas.repec.org/p/diw/diwwpp/dp659.html
http://ideas.repec.org/c/boc/bocode/s456747.html
http://support.sas.com/kb/30/971.html
http://www2.sas.com/proceedings/sugi25/25/po/25p225.pdf
http://mayoresearch.mayo.edu/mayo/research/biostat/upload/gmatch.sas
http://pubs.amstat.org/doi/abs/10.1198/106186001317114938
http://www.lexjansen.com/pharmasug/2006/publichealthresearch/pr05.pdf
http://mayoresearch.mayo.edu/mayo/research/biostat/upload/vmatch.sas
http://www.lexjansen.com/wuss/2006/Analytics/ANL-Leslie.pdf
http://cran.r-project.org/web/packages/optmatch/index.html
http://cran.r-project.org/web/packages/PSAgraphics/index.html
http://cran.r-project.org/web/packages/rbounds/index.html
http://cran.r-project.org/web/packages/twang/index.html
http://www.economics.harvard.edu/faculty/imbens/software_imbens
http://www.lrz-muenchen.de/~sobecker/pscore.html
http://econpapers.repec.org/software/bocbocode/s432001.htm
http://econpapers.repec.org/software/bocbocode/s438301.htm
http://ideas.repec.org/p/diw/diwwpp/dp659.html
http://ideas.repec.org/c/boc/bocode/s456747.html
http://support.sas.com/kb/30/971.html
http://www2.sas.com/proceedings/sugi25/25/po/25p225.pdf
http://mayoresearch.mayo.edu/mayo/research/biostat/upload/gmatch.sas
http://pubs.amstat.org/doi/abs/10.1198/106186001317114938
http://www.lexjansen.com/pharmasug/2006/publichealthresearch/pr05.pdf
http://mayoresearch.mayo.edu/mayo/research/biostat/upload/vmatch.sas
http://www.lexjansen.com/wuss/2006/Analytics/ANL-Leslie.pdf
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