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Abstra
tVariational approximations are be
oming a widespread tool forBayesian learning of graphi
al models. We provide some theoret-i
al results for the variational updates in a very general family of
onjugate-exponential graphi
al models. We show how the beliefpropagation and the jun
tion tree algorithms 
an be used in theinferen
e step of variational Bayesian learning. Applying these re-sults to the Bayesian analysis of linear-Gaussian state-spa
e modelswe obtain a learning pro
edure that exploits the Kalman smooth-ing propagation, while integrating over all model parameters. Wedemonstrate how this 
an be used to infer the hidden state dimen-sionality of the state-spa
e model in a variety of syntheti
 problemsand one real high-dimensional data set.1 Introdu
tionBayesian approa
hes to ma
hine learning have several desirable properties. Bayesianintegration does not su�er over�tting (sin
e nothing is �t to the data). Prior knowl-edge 
an be in
orporated naturally and all un
ertainty is manipulated in a 
onsis-tent manner. Moreover it is possible to learn model stru
tures and readily 
omparebetween model 
lasses. Unfortunately, for most models of interest a full Bayesiananalysis is 
omputationally intra
table.Until re
ently, approximate approa
hes to the intra
table Bayesian learning prob-lem had relied either on Markov 
hain Monte Carlo (MCMC) sampling, the Lapla
eapproximation (Gaussian integration), or asymptoti
 penalties like BIC. The re
entintrodu
tion of variational methods for Bayesian learning has resulted in the seriesof papers showing that these methods 
an be used to rapidly learn the model stru
-ture and approximate the eviden
e in a wide variety of models. In this paper wewill not motivate advantages of the variational Bayesian approa
h as this is done inprevious papers [1, 5℄. Rather we fo
us on deriving variational Bayesian (VB) learn-ing in a very general form, relating it to EM, motivating parameter-hidden variablefa
torisations, and the use of 
onjugate priors (se
tion 3). We then present severaltheoreti
al results relating VB learning to the belief propagation and jun
tion treealgorithms for inferen
e in belief networks and Markov networks (se
tion 4). Fi-nally, we show how these results 
an be applied to learning the dimensionality ofthe hidden state spa
e of linear dynami
al systems (se
tion 5).



2 Variational Bayesian LearningThe basi
 idea of variational Bayesian learning is to simultaneously approximate theintra
table joint distribution over both hidden states and parameters with a simplerdistribution, usually by assuming the hidden states and parameters are independent;the log eviden
e is lower bounded by applying Jensen's inequality twi
e:lnP (yjM) � Z d� Q�(�) �Z dx Qx(x) ln P (x;yj�;M)Qx(x) + ln P (�jM)Q�(�) � (1)= F(Q�(�); Qx(x);y)where y, x, � and M, are observed data, hidden variables, parameters and model
lass, respe
tively; P (�jM) is a parameter prior under model 
lass M. The lowerbound F is iteratively maximised as a fun
tional of the two free distributions, Qx(x)and Q�(�). From (1) we 
an see that this maximisation is equivalent to minimisingthe KL divergen
e between Qx(x)Q�(�) and the joint posterior over hidden statesand parameters P (x;�jy;M).This approa
h was �rst proposed for one-hidden layer neural networks [6℄ under therestri
tion thatQ�(�) is Gaussian. It has sin
e been extended to models with hiddenvariables and the restri
tions on Q�(�) and Qx(x) have been removed in 
ertainmodels to allow arbitrary distributions [11, 8, 3, 1, 5℄. Free-form optimisation withrespe
t to the distributions Q�(�) and Qx(x) is done using 
al
ulus of variations,often resulting in algorithms that appear 
losely related to the 
orresponding EMalgorithm. We formalise this relationship and others in the following se
tions.3 Conjugate-Exponential ModelsWe 
onsider variational Bayesian learning in models that satisfy two 
onditions:Condition (1). The 
omplete data likelihood is in the exponential family:P (x;yj�) = f(x;y) g(�) exp��(�)>u(x;y)	where �(�) is the ve
tor of natural parameters, and u and f and g are the fun
tionsthat de�ne the exponential family.The list of latent-variable models of pra
ti
al interest with 
omplete-data likeli-hoods in the exponential family is very long. We mention a few: Gaussian mixtures,fa
tor analysis, hidden Markov models and extensions, swit
hing state-spa
e mod-els, Boltzmann ma
hines, and dis
rete-variable belief networks.1 Of 
ourse, thereare also many as yet undreamed-of models 
ombining Gaussian, Gamma, Poisson,Diri
hlet, Wishart, Multinomial, and other distributions.Condition (2). The parameter prior is 
onjugate to the 
omplete data likelihood:P (�j�;�) = h(�;�) g(�)� exp��(�)>�	where � and � are hyperparameters of the prior.Condition (2) in fa
t usually implies 
ondition (1). Apart from some irregular 
ases,it has been shown that the exponential families are the only 
lasses of distributionswith a �xed number of suÆ
ient statisti
s, hen
e allowing them to have natural
onjugate priors. From the de�nition of 
onjuga
y it is easy to see that the hyper-parameters of a 
onjugate prior 
an be interpreted as the number (�) and values(�) of pseudo-observations under the 
orresponding likelihood. We 
all models thatsatisfy 
onditions (1) and (2) 
onjugate-exponential.1Models whose 
omplete-data likelihood is not in the exponential family (su
h as ICAwith the logisti
 nonlinearity, or sigmoid belief networks) 
an often be approximated bymodels in the exponential family with additional hidden variables.



In Bayesian inferen
e we want to determine the posterior over parameters andhidden variables P (x;�jy; �;�). In general this posterior is neither 
onjugate nor inthe exponential family. We therefore approximate the true posterior by the followingfa
torised distribution: P (x;�jy; �;�) � Q(x;�) = Qx(x)Q�(�), and minimiseKL(QkP ) = Z dx d� Q(x;�) ln Q(x;�)P (x;�jy; �;�)whi
h is equivalent to maximising F(Qx(x); Q�(�);y). We provide several generalresults with no proof (the proofs follow from the de�nitions and Gibbs inequality).Theorem 1 Given an iid data set y = (y1; : : :yn), if the model satis�es 
onditions(1) and (2), then at the maxima of F(Q;y) (minima of KL(QkP )):(a) Q�(�) is 
onjugate and of the form:Q�(�) = h(~�; ~�)g(�)~� exp��(�)>~�	where ~� = �+n, ~� = �+Pni=1 u(yi), and u(yi) = hu(xi;yi)iQ, using h�iQto denote expe
tation under Q.(b) Qx(x) = Qni=1Qxi(xi) and Qxi(xi) is of the same form as the known pa-rameter posterior:Qxi(xi) / f(xi;yi) exp��(�)>u(xi;yi)	 = P (xijyi;�(�))where �(�) = h�(�)iQ.Sin
e Q�(�) and Qxi(xi) are 
oupled, (a) and (b) do not provide an analyti
 so-lution to the minimisation problem. We therefore solve the optimisation problemnumeri
ally by iterating between the �xed point equations given by (a) and (b), andwe obtain the following variational Bayesian generalisation of the EM algorithm:VE Step: Compute the expe
ted suÆ
ient statisti
s t(y) = Pi u(yi)under the hidden variable distributions Qxi(xi).VM Step: Compute the expe
ted natural parameters �(�) under theparameter distribution given by ~� and ~�.This redu
es to the EM algorithm if we restri
t the parameter density to a pointestimate (i.e. Dira
 delta fun
tion), Q�(�) = Æ(� � ��), in whi
h 
ase the M stepinvolves re-estimating ��.Note that unless we make the assumption that the parameters and hidden variablesfa
torise, we will not generally obtain the further hidden variable fa
torisation overn in (b). In that 
ase, the distributions of xi and xj will be 
oupled for all 
ases i; jin the data set, greatly in
reasing the overall 
omputational 
omplexity of inferen
e.4 Belief Networks and Markov NetworksThe above result 
an be used to derive variational Bayesian learning algorithms forexponential family distributions that fall into two important spe
ial 
lasses.2Corollary 1: Conjugate-Exponential Belief Networks. Let M be a
onjugate-exponential model with hidden and visible variables z = (x;y) that sat-isfy a belief network fa
torisation. That is, ea
h variable zj has parents zpj andP (zj�) = Qj P (zj jzpj ;�). Then the approximating joint distribution for M satis-�es the same belief network fa
torisation:Qz(z) =Yj Q(zj jzpj ; ~�)2A tutorial on belief networks and Markov networks 
an be found in [9℄.



where the 
onditional distributions have exa
tly the same form as those in theoriginal model but with natural parameters �(~�) = �(�). Furthermore, with themodi�ed parameters ~�, the expe
tations under the approximating posterior Qx(x) /Qz(z) required for the VE Step 
an be obtained by applying the belief propagationalgorithm if the network is singly 
onne
ted and the jun
tion tree algorithm if thenetwork is multiply-
onne
ted.This result is somewhat surprising as it shows that it is possible to infer the hiddenstates tra
tably while integrating over an ensemble of model parameters. This resultgeneralises the derivation of variational learning for HMMs in [8℄, whi
h uses theforward-ba
kward algorithm as a subroutine.Theorem 2: Markov Networks. Let M be a model with hidden and visible vari-ables z = (x;y) that satisfy a Markov network fa
torisation. That is, the joint den-sity 
an be written as a produ
t of 
lique-potentials  j , P (zj�) = g(�)Qj  j(Cj ;�),where ea
h 
lique Cj is a subset of the variables in z. Then the approximating jointdistribution for M satis�es the same Markov network fa
torisation:Qz(z) = ~gYj  j(Cj)where  j(Cj) = exp fhln j(Cj ;�)iQg are new 
lique potentials obtained by averag-ing over Q�(�), and ~g is a normalisation 
onstant. Furthermore, the expe
tationsunder the approximating posterior Qx(x) required for the VE Step 
an be obtainedby applying the jun
tion tree algorithm.Corollary 2: Conjugate-Exponential Markov Networks. Let M be a
onjugate-exponential Markov network over the variables in z. Then the approx-imating joint distribution for M is given by Qz(z) = ~gQj  j(Cj ; ~�), where the
lique potentials have exa
tly the same form as those in the original model but withnatural parameters �(~�) = �(�).For 
onjugate-exponential models in whi
h belief propagation and the jun
tion treealgorithm over hidden variables is intra
table further appli
ations of Jensen's in-equality 
an yield tra
table fa
torisations in the usual way [7℄.In the following se
tion we derive a variational Bayesian treatment of linear-Gaussian state-spa
e models. This serves two purposes. First, it will illustratean appli
ation of Theorem 1. Se
ond, linear-Gaussian state-spa
e models are the
ornerstone of sto
hasti
 �ltering, predi
tion and 
ontrol. A variational Bayesiantreatment of these models provides a novel way to learn their stru
ture, i.e. toidentify the optimal dimensionality of their state-spa
e.5 State-spa
e modelsIn state-spa
e models (SSMs), a sequen
e of D-dimensional real-valued observationve
tors fy1; : : : ;yT g, denoted y1:T , is modeled by assuming that at ea
h time stept, yt was generated from a K-dimensional real-valued hidden state variable xt, andthat the sequen
e of x's de�ne a �rst-order Markov pro
ess. The joint probabilityof a sequen
e of states and observations is therefore given by (Figure 1):P (x1:T ;y1:T ) = P (x1)P (y1jx1) TYt=2P (xtjxt�1)P (ytjxt):We fo
us on the 
ase where both the transition and output fun
tions are linear andtime-invariant and the distribution of the state and observation noise variables isGaussian. This model is the linear-Gaussian state-spa
e model:xt = Axt�1 +wt; yt = Cxt + vt
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YTFigure 1: Belief network representation of a state-spa
e model.where A and C are the state transition and emission matri
es and wt and vt arestate and output noise. It is straightforward to generalise this to a linear systemdriven by some observed inputs, ut. A Bayesian analysis of state-spa
e models usingMCMC methods 
an be found in [4℄.The 
omplete data likelihood for state-spa
e models is Gaussian, whi
h falls withinthe 
lass of exponential family distributions. In order to derive a variationalBayesian algorithm by applying the results in the previous se
tion we now turnto de�ning 
onjugate priors over the parameters.Priors. Without loss of generality we 
an assume that wt has 
ovarian
e equal tothe unit matrix. The remaining parameters of a linear-Gaussian state-spa
e modelare the matri
es A and C and the 
ovarian
e matrix of the output noise, vt, whi
hwe will 
all R and assume to be diagonal, R = diag(�)�1, where �i are the pre
isions(inverse varian
es) asso
iated with ea
h output.Ea
h row ve
tor of the A matrix, denoted a>i , is given a zero mean Gaussian priorwith inverse 
ovarian
e matrix equal to diag(�). Ea
h row ve
tor of C, 
>i , isgiven a zero-mean Gaussian prior with pre
ision matrix equal to diag(�i�). Thedependen
e of the pre
ision of 
>i on the noise output pre
ision �i is motivated by
onjuga
y. Intuitively, this prior links the s
ale of the signal and noise.The prior over the output noise 
ovarian
e matrix, R, is de�ned through the pre-
ision ve
tor, �, whi
h for 
onjuga
y is assumed to be Gamma distributed3 withhyperparameters a and b: P (� ja; b) = QDi=1 ba�(a)�a�1i expf�b�ig. Here, �, � arehyperparameters that we 
an optimise to do automati
 relevan
e determination(ARD) of hidden states, thus inferring the stru
ture of the SSM.Variational Bayesian learning for SSMsSin
e A, C, � and x1:T are all unknown, given a sequen
e of observations y1:T , anexa
t Bayesian treatment of SSMs would require 
omputing marginals of the poste-rior P (A;C;�;x1:T jy1:T ). This posterior 
ontains intera
tion terms up to �fth order(for example, between elements of C, x and �), and is not analyti
ally manageable.However, sin
e the model is 
onjugate-exponential we 
an apply Theorem 1 to de-rive a variational EM algorithm for state-spa
e models analogous to the maximum-likelihood EM algorithm [10℄. Moreover, sin
e SSMs are singly 
onne
ted beliefnetworks Corollary 1 tells us that we 
an make use of belief propagation, whi
h inthe 
ase of SSMs is known as the Kalman smoother.Writing out the expression for logP (A;C;�;x1:T ;y1:T ), one sees that it 
ontainsintera
tion terms between � and C, but none between A and either � or C. Thisobservation implies a further fa
torisation, Q(A;C;�) = Q(A)Q(C;�), whi
h fallsout of the initial fa
torisation and the 
onditional independen
ies of the model.Starting from some arbitrary distribution over the hidden variables, the VM stepobtained by applying Theorem 1 
omputes the expe
ted natural parameters ofQ�(�), where � = (A;C;�).3More generally, if we let R be a full 
ovarian
e matrix for 
onjuga
y we would giveits inverse V = R�1 a Wishart distribution: P (V j�; S) / jV j(��D�1)=2 exp�� 12 tr V S�1	 ;where tr is the matrix tra
e operator.



We pro
eed to solve for Q(A). We know from Theorem 1 that Q(A) is multivariateGaussian, like the prior, so we only need to 
ompute its mean and 
ovarian
e. Ahas mean S>(diag(�) +W )�1 and ea
h row of A has 
ovarian
e (diag(�) +W )�1,where S = PTt=2 
xt�1x>t �, W = PT�1t=1 
xtx>t �, and h:i denotes averaging w.r.t.the Q(x1:T ) distribution.Q(C;�) is also of the same form as the prior. Q(�) is a produ
t of Gamma densitiesQ(�i) = G(�i; ~a; ~bi) where ~a = a + T2 , ~bi = b + 12gi, gi = PTt=1 y2ti � Ui(diag(�) +W 0)�1U>i , Ui = PTt=1 ytihx>t i and W 0 = W + 
xTx>T �. Given �, ea
h row ofC is Gaussian with 
ovarian
e Cov(
i) = (diag(�) + W 0)�1=�i and mean �
i =�i Ui Cov(
i). Note that S, W and Ui are the expe
ted 
omplete data suÆ
ientstatisti
s u mentioned in Theorem 1(a). Using the parameter distributions thehyperparameters 
an also be optimised.4We now turn to the VE step: 
omputing Q(x1:T ). Sin
e the model is a 
onjugate-exponential singly-
onne
ted belief network, we 
an use belief propagation (Corol-lary 1). For SSMs this 
orresponds to the Kalman smoothing algorithm, whereevery appearan
e of the natural parameters of the model is repla
ed with the fol-lowing 
orresponding expe
tations under the Q distribution: h�i
ii, h�i
i
>i i, hAi,hA>Ai. Details 
an be found in [2℄.Like for PCA [3℄, independent 
omponents analysis [1℄, and mixtures of fa
toranalysers [5℄, the variational Bayesian algorithm for state-spa
e models 
an be usedto learn the stru
ture of the model as well as average over parameters. Spe
i�
ally,using F it is possible to 
ompare models with di�erent state-spa
e sizes and optimisethe dimensionality of the state-spa
e, as we demonstrate in the following se
tion.6 ResultsExperiment 1: The goal of this experiment was to see if the variational method
ould infer the stru
ture of a variety of state spa
e models by optimising over � and�. We generated a 200-step time series of 10-dimensional data from three models:5(a) a fa
tor analyser (i.e. an SSM with A = 0) with 3 fa
tors (stati
 state variables);(b) an SSM with 3 dynami
al intera
ting state variables, i.e. A 6= 0; (
) an SSMwith 3 intera
ting dynami
al and 1 stati
 state variables. The variational Bayesianmethod 
orre
tly inferred the stru
ture of ea
h model in 2-3 minutes of CPU timeon a 500 MHz Pentium III (Fig. 2 (a){(
)).Experiment 2: We explored the e�e
t of data set size on 
omplexity of the re
ov-ered stru
ture. 10-dim time series were generated from a 6 state-variable SSM. Onredu
ing the length of the time series from 400 to 10 steps the re
overed stru
turebe
ame progressively less 
omplex (Fig. 2(d){(j)), to a 1-variable stati
 model (j).This result agrees with the Bayesian perspe
tive that the 
omplexity of the modelshould re
e
t the data support.Experiment 3 (Steel plant): 38 sensors (temperatures, pressures, et
) weresampled at 2 Hz from a 
ontinuous 
asting pro
ess for 150 se
onds. These sensors
ovaried and were temporally 
orrelated, suggesting a state-spa
e model 
ould 
ap-ture some of its stru
ture. The variational algorithm inferred that 16 state variableswere required, of whi
h 14 emitted outputs. While we do not know whether this isreasonable stru
ture we plan to explore this as well as other real data sets.4 The ARD hyperparameters be
ome �k = KhA>Aikk , and �k = DhC>diag(�)Cikk . Thehyperparameters a and b solve the �xed point equations  (a) = ln b+ 1D PDi=1 hln �ii, and1b = 1aDPDi=1 h�ii, where  (w) = ��w ln �(w) is the digamma fun
tion.5Parameters were 
hosen as follows: R = I, and elements of C sampled from� Unif(�5; 5), and A 
hosen with eigen-values in [0:5; 0:9℄.
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es after learning are displayed graphi
ally.A link is drawn from node k in xt�1 to node l in xt i� 1�k > �, and either 1�l > � or1�l > �, for a small threshold �. Similarly links are drawn from node k of xt to yt if 1�k > �.Therefore the graph shows the links that take part in the dynami
s and the output.7 Con
lusionsWe have derived a general variational Bayesian learning algorithm for models in the
onjugate-exponential family. There are a large number of interesting models thatfall in this family, and the results in this paper should allow an almost automatedproto
ol for implementing a variational Bayesian treatment of these models.We have given one example of su
h an implementation, state-spa
e models, andshown that the VB algorithm 
an be used to rapidly infer the hidden state dimen-sionality. Using the theory laid out in this paper it is straightforward to generalisethe algorithm to mixtures of SSMs, swit
hing SSMs, et
.For 
onjugate-exponential models, integrating both belief propagation and the jun
-tion tree algorithm into the variational Bayesian framework simply amounts to 
om-puting expe
tations of the natural parameters. Moreover, the variational Bayesianalgorithm 
ontains EM as a spe
ial 
ase. We believe this paper provides the founda-tions for a general algorithm for variational Bayesian learning in graphi
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