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AbstratVariational approximations are beoming a widespread tool forBayesian learning of graphial models. We provide some theoret-ial results for the variational updates in a very general family ofonjugate-exponential graphial models. We show how the beliefpropagation and the juntion tree algorithms an be used in theinferene step of variational Bayesian learning. Applying these re-sults to the Bayesian analysis of linear-Gaussian state-spae modelswe obtain a learning proedure that exploits the Kalman smooth-ing propagation, while integrating over all model parameters. Wedemonstrate how this an be used to infer the hidden state dimen-sionality of the state-spae model in a variety of syntheti problemsand one real high-dimensional data set.1 IntrodutionBayesian approahes to mahine learning have several desirable properties. Bayesianintegration does not su�er over�tting (sine nothing is �t to the data). Prior knowl-edge an be inorporated naturally and all unertainty is manipulated in a onsis-tent manner. Moreover it is possible to learn model strutures and readily omparebetween model lasses. Unfortunately, for most models of interest a full Bayesiananalysis is omputationally intratable.Until reently, approximate approahes to the intratable Bayesian learning prob-lem had relied either on Markov hain Monte Carlo (MCMC) sampling, the Laplaeapproximation (Gaussian integration), or asymptoti penalties like BIC. The reentintrodution of variational methods for Bayesian learning has resulted in the seriesof papers showing that these methods an be used to rapidly learn the model stru-ture and approximate the evidene in a wide variety of models. In this paper wewill not motivate advantages of the variational Bayesian approah as this is done inprevious papers [1, 5℄. Rather we fous on deriving variational Bayesian (VB) learn-ing in a very general form, relating it to EM, motivating parameter-hidden variablefatorisations, and the use of onjugate priors (setion 3). We then present severaltheoretial results relating VB learning to the belief propagation and juntion treealgorithms for inferene in belief networks and Markov networks (setion 4). Fi-nally, we show how these results an be applied to learning the dimensionality ofthe hidden state spae of linear dynamial systems (setion 5).



2 Variational Bayesian LearningThe basi idea of variational Bayesian learning is to simultaneously approximate theintratable joint distribution over both hidden states and parameters with a simplerdistribution, usually by assuming the hidden states and parameters are independent;the log evidene is lower bounded by applying Jensen's inequality twie:lnP (yjM) � Z d� Q�(�) �Z dx Qx(x) ln P (x;yj�;M)Qx(x) + ln P (�jM)Q�(�) � (1)= F(Q�(�); Qx(x);y)where y, x, � and M, are observed data, hidden variables, parameters and modellass, respetively; P (�jM) is a parameter prior under model lass M. The lowerbound F is iteratively maximised as a funtional of the two free distributions, Qx(x)and Q�(�). From (1) we an see that this maximisation is equivalent to minimisingthe KL divergene between Qx(x)Q�(�) and the joint posterior over hidden statesand parameters P (x;�jy;M).This approah was �rst proposed for one-hidden layer neural networks [6℄ under therestrition thatQ�(�) is Gaussian. It has sine been extended to models with hiddenvariables and the restritions on Q�(�) and Qx(x) have been removed in ertainmodels to allow arbitrary distributions [11, 8, 3, 1, 5℄. Free-form optimisation withrespet to the distributions Q�(�) and Qx(x) is done using alulus of variations,often resulting in algorithms that appear losely related to the orresponding EMalgorithm. We formalise this relationship and others in the following setions.3 Conjugate-Exponential ModelsWe onsider variational Bayesian learning in models that satisfy two onditions:Condition (1). The omplete data likelihood is in the exponential family:P (x;yj�) = f(x;y) g(�) exp��(�)>u(x;y)	where �(�) is the vetor of natural parameters, and u and f and g are the funtionsthat de�ne the exponential family.The list of latent-variable models of pratial interest with omplete-data likeli-hoods in the exponential family is very long. We mention a few: Gaussian mixtures,fator analysis, hidden Markov models and extensions, swithing state-spae mod-els, Boltzmann mahines, and disrete-variable belief networks.1 Of ourse, thereare also many as yet undreamed-of models ombining Gaussian, Gamma, Poisson,Dirihlet, Wishart, Multinomial, and other distributions.Condition (2). The parameter prior is onjugate to the omplete data likelihood:P (�j�;�) = h(�;�) g(�)� exp��(�)>�	where � and � are hyperparameters of the prior.Condition (2) in fat usually implies ondition (1). Apart from some irregular ases,it has been shown that the exponential families are the only lasses of distributionswith a �xed number of suÆient statistis, hene allowing them to have naturalonjugate priors. From the de�nition of onjugay it is easy to see that the hyper-parameters of a onjugate prior an be interpreted as the number (�) and values(�) of pseudo-observations under the orresponding likelihood. We all models thatsatisfy onditions (1) and (2) onjugate-exponential.1Models whose omplete-data likelihood is not in the exponential family (suh as ICAwith the logisti nonlinearity, or sigmoid belief networks) an often be approximated bymodels in the exponential family with additional hidden variables.



In Bayesian inferene we want to determine the posterior over parameters andhidden variables P (x;�jy; �;�). In general this posterior is neither onjugate nor inthe exponential family. We therefore approximate the true posterior by the followingfatorised distribution: P (x;�jy; �;�) � Q(x;�) = Qx(x)Q�(�), and minimiseKL(QkP ) = Z dx d� Q(x;�) ln Q(x;�)P (x;�jy; �;�)whih is equivalent to maximising F(Qx(x); Q�(�);y). We provide several generalresults with no proof (the proofs follow from the de�nitions and Gibbs inequality).Theorem 1 Given an iid data set y = (y1; : : :yn), if the model satis�es onditions(1) and (2), then at the maxima of F(Q;y) (minima of KL(QkP )):(a) Q�(�) is onjugate and of the form:Q�(�) = h(~�; ~�)g(�)~� exp��(�)>~�	where ~� = �+n, ~� = �+Pni=1 u(yi), and u(yi) = hu(xi;yi)iQ, using h�iQto denote expetation under Q.(b) Qx(x) = Qni=1Qxi(xi) and Qxi(xi) is of the same form as the known pa-rameter posterior:Qxi(xi) / f(xi;yi) exp��(�)>u(xi;yi)	 = P (xijyi;�(�))where �(�) = h�(�)iQ.Sine Q�(�) and Qxi(xi) are oupled, (a) and (b) do not provide an analyti so-lution to the minimisation problem. We therefore solve the optimisation problemnumerially by iterating between the �xed point equations given by (a) and (b), andwe obtain the following variational Bayesian generalisation of the EM algorithm:VE Step: Compute the expeted suÆient statistis t(y) = Pi u(yi)under the hidden variable distributions Qxi(xi).VM Step: Compute the expeted natural parameters �(�) under theparameter distribution given by ~� and ~�.This redues to the EM algorithm if we restrit the parameter density to a pointestimate (i.e. Dira delta funtion), Q�(�) = Æ(� � ��), in whih ase the M stepinvolves re-estimating ��.Note that unless we make the assumption that the parameters and hidden variablesfatorise, we will not generally obtain the further hidden variable fatorisation overn in (b). In that ase, the distributions of xi and xj will be oupled for all ases i; jin the data set, greatly inreasing the overall omputational omplexity of inferene.4 Belief Networks and Markov NetworksThe above result an be used to derive variational Bayesian learning algorithms forexponential family distributions that fall into two important speial lasses.2Corollary 1: Conjugate-Exponential Belief Networks. Let M be aonjugate-exponential model with hidden and visible variables z = (x;y) that sat-isfy a belief network fatorisation. That is, eah variable zj has parents zpj andP (zj�) = Qj P (zj jzpj ;�). Then the approximating joint distribution for M satis-�es the same belief network fatorisation:Qz(z) =Yj Q(zj jzpj ; ~�)2A tutorial on belief networks and Markov networks an be found in [9℄.



where the onditional distributions have exatly the same form as those in theoriginal model but with natural parameters �(~�) = �(�). Furthermore, with themodi�ed parameters ~�, the expetations under the approximating posterior Qx(x) /Qz(z) required for the VE Step an be obtained by applying the belief propagationalgorithm if the network is singly onneted and the juntion tree algorithm if thenetwork is multiply-onneted.This result is somewhat surprising as it shows that it is possible to infer the hiddenstates tratably while integrating over an ensemble of model parameters. This resultgeneralises the derivation of variational learning for HMMs in [8℄, whih uses theforward-bakward algorithm as a subroutine.Theorem 2: Markov Networks. Let M be a model with hidden and visible vari-ables z = (x;y) that satisfy a Markov network fatorisation. That is, the joint den-sity an be written as a produt of lique-potentials  j , P (zj�) = g(�)Qj  j(Cj ;�),where eah lique Cj is a subset of the variables in z. Then the approximating jointdistribution for M satis�es the same Markov network fatorisation:Qz(z) = ~gYj  j(Cj)where  j(Cj) = exp fhln j(Cj ;�)iQg are new lique potentials obtained by averag-ing over Q�(�), and ~g is a normalisation onstant. Furthermore, the expetationsunder the approximating posterior Qx(x) required for the VE Step an be obtainedby applying the juntion tree algorithm.Corollary 2: Conjugate-Exponential Markov Networks. Let M be aonjugate-exponential Markov network over the variables in z. Then the approx-imating joint distribution for M is given by Qz(z) = ~gQj  j(Cj ; ~�), where thelique potentials have exatly the same form as those in the original model but withnatural parameters �(~�) = �(�).For onjugate-exponential models in whih belief propagation and the juntion treealgorithm over hidden variables is intratable further appliations of Jensen's in-equality an yield tratable fatorisations in the usual way [7℄.In the following setion we derive a variational Bayesian treatment of linear-Gaussian state-spae models. This serves two purposes. First, it will illustratean appliation of Theorem 1. Seond, linear-Gaussian state-spae models are theornerstone of stohasti �ltering, predition and ontrol. A variational Bayesiantreatment of these models provides a novel way to learn their struture, i.e. toidentify the optimal dimensionality of their state-spae.5 State-spae modelsIn state-spae models (SSMs), a sequene of D-dimensional real-valued observationvetors fy1; : : : ;yT g, denoted y1:T , is modeled by assuming that at eah time stept, yt was generated from a K-dimensional real-valued hidden state variable xt, andthat the sequene of x's de�ne a �rst-order Markov proess. The joint probabilityof a sequene of states and observations is therefore given by (Figure 1):P (x1:T ;y1:T ) = P (x1)P (y1jx1) TYt=2P (xtjxt�1)P (ytjxt):We fous on the ase where both the transition and output funtions are linear andtime-invariant and the distribution of the state and observation noise variables isGaussian. This model is the linear-Gaussian state-spae model:xt = Axt�1 +wt; yt = Cxt + vt
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YTFigure 1: Belief network representation of a state-spae model.where A and C are the state transition and emission matries and wt and vt arestate and output noise. It is straightforward to generalise this to a linear systemdriven by some observed inputs, ut. A Bayesian analysis of state-spae models usingMCMC methods an be found in [4℄.The omplete data likelihood for state-spae models is Gaussian, whih falls withinthe lass of exponential family distributions. In order to derive a variationalBayesian algorithm by applying the results in the previous setion we now turnto de�ning onjugate priors over the parameters.Priors. Without loss of generality we an assume that wt has ovariane equal tothe unit matrix. The remaining parameters of a linear-Gaussian state-spae modelare the matries A and C and the ovariane matrix of the output noise, vt, whihwe will all R and assume to be diagonal, R = diag(�)�1, where �i are the preisions(inverse varianes) assoiated with eah output.Eah row vetor of the A matrix, denoted a>i , is given a zero mean Gaussian priorwith inverse ovariane matrix equal to diag(�). Eah row vetor of C, >i , isgiven a zero-mean Gaussian prior with preision matrix equal to diag(�i�). Thedependene of the preision of >i on the noise output preision �i is motivated byonjugay. Intuitively, this prior links the sale of the signal and noise.The prior over the output noise ovariane matrix, R, is de�ned through the pre-ision vetor, �, whih for onjugay is assumed to be Gamma distributed3 withhyperparameters a and b: P (� ja; b) = QDi=1 ba�(a)�a�1i expf�b�ig. Here, �, � arehyperparameters that we an optimise to do automati relevane determination(ARD) of hidden states, thus inferring the struture of the SSM.Variational Bayesian learning for SSMsSine A, C, � and x1:T are all unknown, given a sequene of observations y1:T , anexat Bayesian treatment of SSMs would require omputing marginals of the poste-rior P (A;C;�;x1:T jy1:T ). This posterior ontains interation terms up to �fth order(for example, between elements of C, x and �), and is not analytially manageable.However, sine the model is onjugate-exponential we an apply Theorem 1 to de-rive a variational EM algorithm for state-spae models analogous to the maximum-likelihood EM algorithm [10℄. Moreover, sine SSMs are singly onneted beliefnetworks Corollary 1 tells us that we an make use of belief propagation, whih inthe ase of SSMs is known as the Kalman smoother.Writing out the expression for logP (A;C;�;x1:T ;y1:T ), one sees that it ontainsinteration terms between � and C, but none between A and either � or C. Thisobservation implies a further fatorisation, Q(A;C;�) = Q(A)Q(C;�), whih fallsout of the initial fatorisation and the onditional independenies of the model.Starting from some arbitrary distribution over the hidden variables, the VM stepobtained by applying Theorem 1 omputes the expeted natural parameters ofQ�(�), where � = (A;C;�).3More generally, if we let R be a full ovariane matrix for onjugay we would giveits inverse V = R�1 a Wishart distribution: P (V j�; S) / jV j(��D�1)=2 exp�� 12 tr V S�1	 ;where tr is the matrix trae operator.



We proeed to solve for Q(A). We know from Theorem 1 that Q(A) is multivariateGaussian, like the prior, so we only need to ompute its mean and ovariane. Ahas mean S>(diag(�) +W )�1 and eah row of A has ovariane (diag(�) +W )�1,where S = PTt=2 
xt�1x>t �, W = PT�1t=1 
xtx>t �, and h:i denotes averaging w.r.t.the Q(x1:T ) distribution.Q(C;�) is also of the same form as the prior. Q(�) is a produt of Gamma densitiesQ(�i) = G(�i; ~a; ~bi) where ~a = a + T2 , ~bi = b + 12gi, gi = PTt=1 y2ti � Ui(diag(�) +W 0)�1U>i , Ui = PTt=1 ytihx>t i and W 0 = W + 
xTx>T �. Given �, eah row ofC is Gaussian with ovariane Cov(i) = (diag(�) + W 0)�1=�i and mean �i =�i Ui Cov(i). Note that S, W and Ui are the expeted omplete data suÆientstatistis u mentioned in Theorem 1(a). Using the parameter distributions thehyperparameters an also be optimised.4We now turn to the VE step: omputing Q(x1:T ). Sine the model is a onjugate-exponential singly-onneted belief network, we an use belief propagation (Corol-lary 1). For SSMs this orresponds to the Kalman smoothing algorithm, whereevery appearane of the natural parameters of the model is replaed with the fol-lowing orresponding expetations under the Q distribution: h�iii, h�ii>i i, hAi,hA>Ai. Details an be found in [2℄.Like for PCA [3℄, independent omponents analysis [1℄, and mixtures of fatoranalysers [5℄, the variational Bayesian algorithm for state-spae models an be usedto learn the struture of the model as well as average over parameters. Spei�ally,using F it is possible to ompare models with di�erent state-spae sizes and optimisethe dimensionality of the state-spae, as we demonstrate in the following setion.6 ResultsExperiment 1: The goal of this experiment was to see if the variational methodould infer the struture of a variety of state spae models by optimising over � and�. We generated a 200-step time series of 10-dimensional data from three models:5(a) a fator analyser (i.e. an SSM with A = 0) with 3 fators (stati state variables);(b) an SSM with 3 dynamial interating state variables, i.e. A 6= 0; () an SSMwith 3 interating dynamial and 1 stati state variables. The variational Bayesianmethod orretly inferred the struture of eah model in 2-3 minutes of CPU timeon a 500 MHz Pentium III (Fig. 2 (a){()).Experiment 2: We explored the e�et of data set size on omplexity of the reov-ered struture. 10-dim time series were generated from a 6 state-variable SSM. Onreduing the length of the time series from 400 to 10 steps the reovered struturebeame progressively less omplex (Fig. 2(d){(j)), to a 1-variable stati model (j).This result agrees with the Bayesian perspetive that the omplexity of the modelshould reet the data support.Experiment 3 (Steel plant): 38 sensors (temperatures, pressures, et) weresampled at 2 Hz from a ontinuous asting proess for 150 seonds. These sensorsovaried and were temporally orrelated, suggesting a state-spae model ould ap-ture some of its struture. The variational algorithm inferred that 16 state variableswere required, of whih 14 emitted outputs. While we do not know whether this isreasonable struture we plan to explore this as well as other real data sets.4 The ARD hyperparameters beome �k = KhA>Aikk , and �k = DhC>diag(�)Cikk . Thehyperparameters a and b solve the �xed point equations  (a) = ln b+ 1D PDi=1 hln �ii, and1b = 1aDPDi=1 h�ii, where  (w) = ��w ln �(w) is the digamma funtion.5Parameters were hosen as follows: R = I, and elements of C sampled from� Unif(�5; 5), and A hosen with eigen-values in [0:5; 0:9℄.
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