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Abstract— The design of the IP protocol makes it difficult to reliably
identify the originator of an IP packet. Even in the absence of any delib-
erate attempt to disguise a packet’s origin, wide-spread packet forwarding
techniques such as NAT and encapsulation may obscure the packet’s true
source. Techniques have been developed to determine the source of large
packet flows, but, to date, no system has been presented to track individual
packets in an efficient, scalable fashion. We present a hash-based technique
for IP traceback that generates audit trails for traffic within the network,
and can trace the origin of a single IP packet delivered by the network in
the recent past. We demonstrate that the system is effective, space-efficient
(requiring approximately 0.5% of the link capacity per unit time in stor-
age), and implementable in current or next-generation routing hardware.
We present both analytic and simulation results showing the system’s effec-
tiveness.

I. I NTRODUCTION

TODAY’S Internet infrastructure is extremely vulnerable to
motivated and well-equipped attackers. Tools are readily

available, from covertly exchanged exploit programs to publicly
released vulnerability assessment software, to degrade perfor-
mance or even disable vital network services. The consequences
are serious and, increasingly, financially disastrous. While dis-
tributed denial-of-service attacks, typically conducted by flood-
ing network links with large amounts of traffic, are the most
widely reported, there are other forms of network attacks, many
of which require significantly smaller packet flows. In fact, there
are a number of widely-deployed operating systems and routers
that can be disabled by a single well-targeted packet (e.g., the
Teardrop attack crashes versions of Microsoft Windows with
one packet [1]). To institute accountability for these attacks,
the source of individual packets must be identified.

Unfortunately, the anonymous nature of the IP protocol
makes it difficult to accurately identify the true source of an IP
datagram if the source wishes to conceal it. The network rout-
ing infrastructure is stateless and based largely on destination
addresses; no entity in an IP network is officially responsible for
ensuring the source address is correct. Many routers employ a
technique calledingress filtering [2] to limit source addresses of
IP datagrams from a stub network to addresses belonging to that
network, but not all routers have the resources necessary to ex-
amine the source address of each incoming packet, and ingress
filtering provides no protection on transit networks. Further-
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more, spoofed source addresses are legitimately used by net-
work address translators (NATs), Mobile IP, and various unidi-
rectional link technologies such as hybrid satellite architectures.

Accordingly, a well-placed attacker can generate offending IP
packets that appear to have originated from almost anywhere.
While techniques such as ingress filtering, which suppresses
packets arriving from a given network with source addresses that
do not properly belong to that network, increase the difficulty of
mounting an attack, transit networks are dependent upon their
peers to perform the appropriate filtering. This interdependence
is clearly unacceptable from a liability perspective; each moti-
vated network must be able to secure itself independently.

Systems that can reliably trace individual packets back to their
sources are a first and important step in making attackers (or, at
least, the systems they use) accountable. There are a number of
significant challenges in the construction of such a tracing sys-
tem including determining which packets to trace, maintaining
privacy (a tracing system should not adversely impact the pri-
vacy of legitimate users), and minimizing cost (both in router
time spent tracking rather than forwarding packets, and in stor-
age used to keep information).

We have developed aSource Path Isolation Engine (SPIE) to
enable IPtraceback, the ability to identify the source of a partic-
ular IP packet given a copy of the packet to be traced, its desti-
nation, and an approximate time of receipt. Historically, tracing
individual packets has required prohibitive amounts of memory;
one of SPIE’s key innovations is to reduce the memory require-
ment (down to 0.5% of link bandwidth per unit time) through the
use of Bloom filters [3]. By storing only packet digests, and not
the packets themselves, SPIE also does not increase a network’s
vulnerability to eavesdropping. SPIE therefore allows routers to
efficiently determine if they forwarded a particular packet within
a specified time interval while maintaining the privacy of unre-
lated traffic.

The rest of this paper examines SPIE in detail. We begin by
defining the problem of IP traceback in section II, and articulate
the desired features of a traceback system. We survey previ-
ous work in section III, relating their feature sets against our
requirements. Section IV describes the digesting process in de-
tail. Section V presents an overview of the SPIE architecture,
while section VI offers a practical implementation of the con-
cepts. Section VII provides both analytic and simulation results
evaluating SPIE’s traceback success rates. We discuss the issues
involved in deploying SPIE in section VIII before concluding in
section IX with a brief look at future work.

II. IP TRACEBACK

The concept of IP traceback is not yet well defined. In an at-
tempt to clarify the context in which SPIE was developed, this
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section presents a detailed and formal definition of traceback.
We hope that presenting a strawman definition of traceback
will also help the community better evaluate different traceback
schemes.

In order to remain consistent with the terminology in the liter-
ature, we will consider a packet of interest to be nefarious, and
term it anattack packet; similarly, the destination of the packet
is a victim. We note, however, that there are many reasons to
trace the source of a packet; many packets of interest are sent
with no ill intent whatsoever.

A. Assumptions

There are several important assumptions that a traceback sys-
tem should make about a network and the traffic it carries:

• Packets may be addressed to more than one physical host
• Duplicate packets may exist in the network
• Routers may be subverted, but not often
• Attackers are aware they are being traced
• The routing behavior of the network may be unstable
• The packet size should not grow as a result of tracing
• End hosts may be resource constrained
• Traceback is an infrequent operation

The first two assumptions are simply characteristics of the In-
ternet Protocol. IP packets may contain a multicast or broadcast
address as their destination, causing the routing infrastructure to
duplicate them internally. An attacker can also inject multiple
identical packets itself, possibly at multiple locations. A tracing
system must be prepared for a situation where there are multi-
ple sources of the same (identical) packet, or a single source of
multiple (also typically identical) packets.

The next two assumptions speak to the capabilities of the at-
tacker(s). An attacker may gain access to routers along (or adja-
cent to) the path from attacker to victim by a variety of means.
Further, a sophisticated attacker is aware of the characteristics
of the network, including the possibility that the network is ca-
pable of tracing an attack. The traceback system must not be
confounded by a motivated attacker who subverts a router with
the intent to subvert the tracing system.

The instability of Internet routing is well known [4] and its
implications for tracing are important. Two packets sent by the
same host to the same destination may traverse wildly different
paths. As a result, any system that seeks to determine origins us-
ing multi-packet analysis techniques must be prepared to make
sense of divergent path information.

The assumption that the packet size should not grow is prob-
ably the most controversial. There are a number of protocols to-
day that cause the packet size to grow, for example technologies
that rely on packet encapsulation, such as IPsec and mobile IP.
However, increasing the packet size causes MTU problems and
increases overhead sharply (each byte of additional overhead re-
duces system bandwidth by about 1%, given the average packet
size of about 128 bytes). A recent study by the Cooperative
Association for Internet Data Analysis (CAIDA) [5] found that
packet encapsulation (and the resulting growth in packet size) is
the single largest cause of fragmentation on the Internet. It fol-
lows that an efficient traceback system should not cause packet
size to grow.

We assume that an end host, and in particular the victim of an
attack, may be resource-poor and unable to maintain substan-
tial additional administrative state regarding the routing state or
the packets it has previously received. This assumption comes
from the observed rise in special purpose devices such as mi-
croscopes, cameras, and printers that are attached to the Internet
yet have few internal resources other than those devoted to per-
forming their primary task.

The final assumption that traceback queries are infrequent has
important design implications. It implies queries can be han-
dled by a router’s control path, and need not be dealt with on
the forwarding path at line speed. While there may be audit-
ing tasks associated with packet forwarding to support traceback
that must be executed while forwarding, the processing of the
audit trails is infrequent with respect to their generation.

B. The goal

Ideally, a traceback system should be able to identify the
source of any piece of data sent across the network. In an IP
framework, the packet is the smallest atomic unit of data. Any
smaller division of data (a byte, for instance) is contained within
a unique packet. Hence an optimal IP traceback system would
precisely identify the source of an arbitrary IP packet. Any
larger data unit or stream can be isolated by searching for any
particular packet containing data within the stream.1

As with any auditing system, a traceback system can only be
effective in networks in which it has been deployed. Hence we
consider the source of a packet to be one of:
• The ingress point to the traceback-enabled network
• The actual host or network of origin
• One or more compromised routers within the enabled network

If one assumes that any router along the path may be co-opted
to assist in concealing a packet’s source, it becomes obvious that
one must attempt to discern not only the packet’s source, but
its entire path through the network. Because subverted routers
can fabricate trace information, the path can only be guaranteed
to be accurate on the portion from the victim to the a source
or subverted router, whichever comes first. While subverted
routers may attempt to conceal their identity by appending ad-
ditional sources further up-stream, the subverted routers them-
selves must still appear as a node in the trace. We consider sub-
verted routers that attempt to conceal the true source of a packet
as co-conspirator, and therefore attack sources themselves.

Hence, we are interested in constructing anattack path, where
the path consists of each router traversed by the packet on its
journey from source to the victim. Each node in an attack
path either forwarded the packet or lies upstream of a subverted
router that did. Further, since multiple, indistinguishable pack-
ets may be injected into the network from different sources in
the general case, a traceback system should construct anattack
graph composed of the attack paths for every instance of the
attack packet that arrived at the victim.

If routers are subverted, they may provide mis-information to
the traceback system, causing the attack graph to contain false

1Indeed, we would argue that it is desirable to trace the individual packets
within a stream because the individual packets may have originated at different
sites (meeting only at the victim) and are likely to have followed different paths
through the network.
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positives; that is, the attack graph may implicate sources that
did not actually emit the packet. We argue these false positives
are unavoidable consequence of admitting the possibility of sub-
verted routers. An ideal traceback system, however, produces no
falsenegatives while attempting to minimize false positives; it
must never exonerate an attacker by not including the attacker
in the attack graph.

Further, when a traceback system is deployed, it must not
reduce the privacy of IP communications. In particular, enti-
ties not involved in the generation, forwarding, or receipt of the
original packet should not be able to gain access to packet con-
tents by either utilizing or as part of participating in the IP trace-
back system. An ideal IP traceback system must not expand the
eavesdropping capabilities of a malicious party.

C. Transformations

It is important to note that packets may be modified during
the forwarding process. In addition to the standard decrement-
ing of the time to live (TTL) field and checksum recomputation,
IP packets may be further transformed by intermediate routers.
Packettransformation may be the result of valid processing,
router error, or malicious intent. A traceback system need not
concern itself with packet transformations resulting from error
or malicious behavior. Packets resulting from such transforma-
tions only need be traced to the point of transformation, as the
transforming node either needs to be fixed or can be considered
a co-conspirator (source). A complete traceback system should
trace packets through valid transformations back to the source
of the original packet.

Valid packet transformations are defined as a change of packet
state that allows for or enhances network data delivery. Trans-
formations occur due to such reasons as hardware needs, net-
work management, protocol requirements, and source request.
Based on the transform produced, packet transformations are
categorized as follows:

1. Packet Encapsulation: A new packet is generated in which
the original packet is encapsulated as the payload (e.g., IPsec).
The new packet is forwarded to an intermediate destination for
de-encapsulation. Also known astunneling.
2. Packet Generation: One or more packets are generated as a
direct result of an action by the router on the original packet
(e.g., an ICMP Echo Reply sent in response to an ICMP Echo
Request, or packet duplication in IP Multicast). The new packets
are forwarded and processed independent of the original packet.
(A large number ofreflector attacks utilize such transforms to
hide their source [6].)

Common packet transformations include those performed by
RFC 1812-compliant routers [7] such as packet fragmentation,
IP option processing, ICMP processing, and packet duplication.
Network address translation (NAT) and both IP-in-IP and IPsec
tunneling are also notable forms of packet transformation. Many
of these transformations result in a loss of the original packet
state due to the stateless nature of IP networks.

A recent CAIDA study of wide-area traffic patterns found that
less than 3% of IP traffic underwent common transformation and
IP tunneling [8]. While this study did not encompass all forms
of transformation (NAT processing being a notable omission),

it seems safe to assume that packet transformations account for
a relatively small fraction of the overall IP traffic traversing the
Internet today. However, attackers may transmit packets engi-
neered to experience transformation. The ability to trace packets
that undergo transformation is, therefore, an essential feature of
any viable traceback system.

III. R ELATED WORK

There are two approaches to the problem of determining the
route of a packet flow: one can audit the flow as it traverses the
network, or one can attempt to infer the route based upon its
impact on the state of the network. Both approaches become in-
creasingly difficult as the size of the flow decreases, but the latter
becomes infeasible when flow sizes approach a single packet be-
cause small flows generally have no measurable impact on the
network state.

Route inference was pioneered by Burch and Cheswick [9]
who considered the problem of large packet flows and proposed
a novel technique that systematically floods candidate network
links. By watching for variations in the received packet flow
due to the restricted link bandwidth, they are able to infer the
flow’s route. This technique requires considerable knowledge of
network topology and the ability to generate large packet floods
on arbitrary network links.

One can categorize auditing techniques into two classes ac-
cording to the way in which they balance resource requirements
across the network components. Some techniques require re-
sources at both the end host and the routing infrastructure, others
require resources only within the network itself. Of those that
require only infrastructure support, some add packet processing
to the forwarding engine of the routers while others offload the
computation to the control path of the routers.

A. End-host storage

Some auditing approaches attempt to distribute the burden by
storing state and performing computation at the end hosts rather
than in the network. Routers notify the packet destination of
their presence on the route. Because IP packets cannot grow
arbitrarily large, schemes have been developed to reduce the
amount of space required to send such information. Recently
proposed techniques by Savageet al. [10] and Bellovin [11] ex-
plore in-band and out-of-band signaling, respectively.

Because of the high overhead involved, neither Savage nor
Bellovin attempt to provide audit information for every packet.
Instead, each employs probabilistic methods that allow suffi-
ciently large packet flows to be traced. By providing partial
information on a subset of packets in a flow, auditing routers
enable an end host to reconstruct the entire path traversed by
the packet flow after receiving a sufficient number of packets
belonging to the flow.

The two schemes diverge in the methods used to communi-
cate the information to the end host. Savageet al. employ a
packet marking scheme that encodes the information in rarely-
used fields within the IP header itself. This approach has been
extended by Song and Perrig to improve the reconstruction of
paths and authenticate the encodings [12]. In order to avoid the
backwards compatibility issues and increased computation re-
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quired by the sophisticated encoding schemes employed in the
packet marking schemes, Bellovin’s scheme (and later “inten-
tional” extension [13]) simply sends the audit information in an
ICMP message.

B. Infrastructure approaches

End-host schemes require the end hosts to log meta data in
case an incoming packet proves to be offensive. Alternatively,
the network itself can be charged with maintaining the audit
trails.

The obvious approach to auditing packet flow is simply to log
packets at various points throughout the network and then use
appropriate extraction techniques to discover the packet’s path
through the network. Logging requires no computation on the
router’s fast path and, thus, can be implemented efficiently in
today’s router architecture. Sager suggests such a monitoring
approach [14]. However, the effectiveness of the logs is limited
by the amount of space available to store them. Given today’s
link speeds, packet logs quickly grow to intractable sizes, even
over relatively short time frames. An OC-192 link is capable
of transferring 1.25GB per second. If one allows 60 seconds to
conduct a query, a router with 16 links would require 1.2TB of
high-speed storage.

These requirements can be reduced by sampling techniques
similar to those of the end-host schemes, but down-sampling
reduces the probability of detecting small flows and does not al-
leviate the security issues raised by storing complete packets in
the router. The ability of an attacker to break into a router and
capture terrabytes of actual traffic has severe privacy implica-
tions.

Alternatively, routers can be tasked to perform more sophis-
ticated auditing in real time, extracting a smaller amount of
information as packets are forwarded. Many currently avail-
able routers supportinput debugging, a feature that identifies
on which incoming port a particular outgoing packet (or set of
packets) of interest arrived. Since no history is stored, however,
this process must be activated before an attack packet passes by.
Furthermore, due to the high overhead of this operation on many
popular router architectures, activating it may have adverse ef-
fects on the traffic currently being serviced by the router.

C. Specialized routing

One of the main problems with the link testing or logging
methods above is the large amount of repetition required. A
trace is conducted in a hop-by-hop fashion, querying each router
along the way. Once the incoming link or links have been iden-
tified, the process must be repeated at the upstream router.

Several techniques have been developed to streamline and au-
tomate this process. Some ISPs have developed their own ad
hoc mechanisms for automatically conducting input debugging
across their networks. Schnackenberget al. [15] propose a more
general Intruder Detection and Isolation Protocol (IDIP) to facil-
itate interaction between routers involved in a traceback effort.
IDIP does not specify how participating entities should track
packet traffic; it simply requires that they be able to determine
whether or not they have seen a component of an attack match-
ing a certain description. Even with automated tools, however,

each router in the ISP must support input debugging or logging
which are not common in today’s high-speed routers for reasons
discussed above.

In order to avoid this requirement, Stone [16] suggests con-
structing an overlay network connecting all the edge routers of
an ISP. By using a deliberately simple topology of specialized
routers, suspicious flows can be dynamically rerouted across the
special tracking network for analysis. This approach has two
major shortcomings. First, the attack must be sufficiently long-
lived to allow the ISP to effect the rerouting before the relevant
flow terminates. Second, the routing change is perceptible by
the attacker, and an especially motivated attacker may be able to
escape detection by taking appropriate action. While techniques
exist to hide precisely what changed about the route, changes in
layer-three topology are hard to mask.

IV. PACKET DIGESTING

SPIE, the Source Path Isolation Engine, uses auditing tech-
niques to support the traceback of individual packets while re-
ducing the storage requirements by several orders of magnitude
over current log-based techniques [14]. Traffic auditing is ac-
complished by computing and storing packet digests rather than
storing the packets themselves. In addition to reducing stor-
age requirements, storing packet digests instead of the actual
packet contents preserves traffic confidentiality by preventing
SPIE from being used as a tool for eavesdropping.

A. Digest input

The packet content used as input to the digesting function
must uniquely represent an IP packet and enable the identifi-
cation of the packet across hops in the forwarding path. At the
same time, it is desirable to limit the size of the digest input both
for performance and for reasons discussed below (c.f. section V-
C). Duffield and Grossglauser encountered similar requirements
while sampling a subset of forwarded packets in an attempt to
measure traffic flows [17]. We use a similar approach, masking
variant packet content and selecting an appropriate-length pre-
fix of the packet to use as input to the digesting function. Our
choice of invariant fields and prefix length is slightly different,
however.2

Figure 1 shows an IP packet and the fields included by the
SPIE digesting function. SPIE computes digests over the invari-
ant portion of the IP header and the first 8 bytes of the payload.
Frequently modified header fields are masked prior to digesting.
Note that beyond the obvious fields (TTL, TOS, and checksum),
certain IP options cause routers to rewrite the option field at var-
ious intervals. To ensure a packet appears identical at all steps
along its route, SPIE masks or compensates for these fields when
computing the packet digests. It is important to note that the in-
variant IP fields used for SPIE digesting may occasionally be
modified by a packet transform (c.f. section V-C).

Our research indicates that the first 24invariant bytes of a
packet (20-byte IP header with 4 bytes masked out plus the first
8 bytes of payload) are sufficient to differentiate almost all non-

2Because we sample a smaller portion of the packet (28 vs. 40 bytes), we
include fields like header length and protocol that Duffield and Grossglauser
eschewed due to their lower entropy.
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Fig. 1. The fields of an IP packet. Fields in gray are masked out before digest-
ing, including the Type of Service, Time to Live (TTL), IP checksum, and IP
options fields.
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Fig. 2. The fraction of packets that collide (with ToS, TTL, and checksum fields
masked out) as a function of prefix length. The WAN trace represents 985,150
packets (with 5,801 duplicates removed) between 6,031 host pairs collected on
July 20, 2000 at the University of Florida OC-3 gateway. The LAN trace con-
sists of one million packets (317 duplicates removed) between 2,879 host pairs
observed on an Ethernet segment at the MIT Lab for Computer Science.

identical packets. Figure 2 presents the rate of packet collisions
for an increasing prefix length for two representative traces: a
WAN trace from an OC-3 gateway router, and a LAN trace
from an active 100Mb Ethernet segment. (Results were sim-
ilar for traces across a number of sites.) Two unique packets
which are identical up to the specified prefix length are termed
a collision. A 28-byte prefix (only 24 non-masked bytes) results
in a collision rate of approximately 0.00092% in the wide area
and 0.139% on the LAN.

Unlike similar results reported by Duffield and Gross-
glauser [17, fig. 4], our results include only unique packets;
exact duplicates were removed from the packet trace. Close in-
spection of packets in the wide area with identical prefixes in-
dicates that packets with matching prefix lengths of 22 and 23
bytes are ICMP Time Exceeded error packets with the IP iden-
tification field set to zero. Similarly, packets with matching pre-
fixes between 24 and 31 bytes in length are TCP packets with IP
identifications also set to zero which are first differentiated by
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1

1

2n

bits

Fig. 3. For each packet received, SPIE computesk independentn-bit digests,
and sets the corresponding bits in the2n-bit digest table.

the TCP sequence number or acknowledgment fields.3

The markedly higher collision rate in the local area is due
to the lack of address and traffic diversity. This expected re-
sult does not significantly impact SPIE’s performance, how-
ever. LANs are likely to exist at only two points in an attack
graph: immediately surrounding the victim and the attacker(s).
False positives on the victim’s local network can be easily elimi-
nated from the attack graph—they likely share the same gateway
router in any event. False positives at the source are unlikely if
the attacker is using spoofed source addresses, as this provides
the missing diversity in attack traffic, and remain in the imme-
diate vicinity of the true attacker by definition. Hence, for the
purposes of SPIE, IP packets are effectively distinguished by the
first 24 invariant bytes of the packet.

B. Bloom filters

Constructing a digest table containing packet digests corre-
sponding to the traffic forwarded by a router for a given time
interval is a challenging task. A naive technique that simply
stored the digests themselves would require massive amounts of
storage. Instead, SPIE implements digest tables using space-
efficient data structures known as Bloom filters [3]. A Bloom
filter computesk distinct packet digests for each packet using
independent uniform hash functions, and uses then-bit results
to index into a2n-sized bit array. The array is initialized to all
zeros, and bits are set to one as packets are received. Figure 3
depicts a Bloom filter withk hash functions.

Membership tests can be conducted simply by computing the
k digests on the packet in question and checking the indicated
bit positions. If any one of them is zero, the packet was not
stored in the table. If, however, all the bits are one, it is highly
likely the packet was stored. It is possible that some set of other
insertions caused all the bits to be set, creating afalse positive,
but the rate of such false positives can be controlled by only
allowing an individual Bloom filter to store a limited number
of digests [18]. Saturated filters can be swapped out for a new,
empty filter, and archived for later querying.

3Further investigation indicates a number of current operating systems, in-
cluding recent versions of Linux, frequently set the IP ID to zero.
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C. Hash functions

SPIE places three major restrictions on the family of hash
functions,F , used as digesting functions in its Bloom filters.
First, each member function must distribute a highly correlated
set of input values (IP packet prefixes),P , as uniformly as pos-
sible over the hash’s result value space. That is, for a hash func-
tion H : P → 2m in F , and distinct packetsx �= y ∈ P ,
Pr[H(x) = H(y)] = 2−m. This is a standard property of good
hash functions.

SPIE further requires that the event that two packets collide
in one hash function (H(x) = H(y) for someH) be inde-
pendent of collision events in any other functions (H ′(x) =
H ′(y), H ′ �= H). Intuitively, this implies false positives at one
router are independent of false positives at neighboring routers.
Formally, for any functionH ∈ F chosen at random indepen-
dently of the input packetsx andy, Pr[H(x) = H(y)] = 2−m

with high probability. Such hash families, calleduniversal hash
families, were first defined by Carter and Wegman [19] and can
be implemented in a variety of fashions [20], [21], [22].

Finally, member functions must be straightforward to com-
pute at high link speeds. This requirement is not impractical
because SPIE hash functions do not require any cryptographic
“hardness” properties. That is, it does not have to be difficult to
generate a valid input packet given a particular hash value. Be-
ing able to create a packet with a particular hash value enables
three classes of attacks, each of which is fairly benign. One
attack would ensure that all attack packets have the same finger-
print in the Bloom filter at some router (which is very difficult
since there are multiple, independent hashes at each router), but
this achievement is of little use, as the packet fingerprints would
be distinct at neighboring routers (due to the independent hash
functions at each router). Another attack is to ensure all attack
packets have different fingerprints, but that is the common case
already. The third, and most difficult attack, is to create an attack
packet with the same fingerprint as another, non-attack packet.
In general, this attack simply adds one additional false-positive
node (where the two packets are indistinguishable) to the attack
graph of both packets.

V. SOURCE PATH ISOLATION ENGINE

SPIE-enhanced routers maintain a cache of packet digests for
recently forwarded traffic. If a packet is determined to be offen-
sive by some intrusion detection system (or judged interesting
by some other metric), a query is dispatched to SPIE which in
turn queries routers for packet digests of the relevant time peri-
ods. The results of this query are used in a simulated reverse-
path flooding algorithm to build an attack graph that indicates
the packet’s source(s).

A. Architecture

The tasks of packet auditing, query processing, and attack
graph generation are dispersed among separate components in
the SPIE system. Figure 4 shows the three major architectural
components of the SPIE system. Each SPIE-enhanced router
has a Data Generation Agent (DGA) associated with it. Depend-
ing upon the type of router in question, the DGA can be imple-
mented and deployed as a software agent, an interface card plug

Router

Router

DGA

Router
Router

Router

DGA

SCAR
Router

Router

Router

DGA

STM

ISP's Network

Fig. 4. The SPIE network infrastructure, consisting of Data Generation Agents
(DGAs), SPIE Collection and Reduction Agents (SCARs), and a SPIE Trace-
back Manager (STM).

to the switching background bus, or a separate auxiliary box
connected to the router through some auxiliary interface.

The DGA produces packet digests of each packet as it departs
the router, and stores the digests in time-stamped digest tables.
The tables are paged every so often, and represent the set of
traffic forwarded by the router for a particular interval of time.
Each table is annotated with the time interval and the set of hash
functions used to compute the packet digests over that interval.
The digest tables are stored locally at the DGA for some period
of time, depending on the resource constraints of the router.

SCARs are responsible for a particular region of the network,
serving as data concentration points for several routers and fa-
cilitating traceback of any packets that traverse the region. Due
to the complex topologies of today’s ISPs, there will typically
be several SCARs distributed over an entire network. Upon re-
quest, each SCAR produces an attack graph for its particular
region. The attack graphs from each SCAR are grafted together
to form a complete attack graph by the SPIE Traceback Manager
(STM).

The STM controls the whole SPIE system. The STM is the in-
terface to the intrusion detection system or other entity request-
ing a packet trace. When a request is presented to the STM, it
verifies the authenticity of the request, dispatches the request to
the appropriate SCARs, gathers the resulting attack graphs, and
assembles them into a complete attack graph. Upon comple-
tion of the traceback process, the STM replies to the intrusion
detection system with the final attack graph.

B. Traceback processing

Before the traceback process can begin, an attack packet must
be identified. Most likely, an intrusion detection system will de-
termine that an exceptional event has occurred and provide the
STM with a packet,P , victim, V , and time of attack,T . SPIE
places two constraints on the intrusion detection system: the
victim must be expressed in terms of the last-hop router, not
the end host itself, and the attack packet must be identified in a
timely fashion. The first requirement provides the query process
with a starting point; the latter stems from the fact that traceback
must be initiated before the appropriate digest tables are over-
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written by the DGAs. This time constraint is directly related to
the amount of resources dedicated to the storage of traffic di-
gests. (We discuss timing and resource tradeoffs in section VII).

Upon receipt of traceback request, the STM cryptographically
verifies its authenticity and integrity. Any entity wishing to em-
ploy SPIE to perform a traceback operation must be properly
authorized in order to prevent denial-of-service attacks. Upon
successful verification, the STM dispatches the query to the rele-
vant SCARs for processing. Beginning at the SCAR responsible
for the victim’s region of the network, the STM sends a query
message containingP , V , andT as provided by the intrusion
detection system. The SCAR polls its DGAs and responds with
a partial attack graph, the timeT ′ the packet entered the region,
and the entering packet itselfP ′ (it may have been transformed,
possibly multiple times, within the region).

The attack graph either terminates within the region managed
by the SCAR, in which case a source has been identified, or it
contains nodes at the edge of the SCAR’s network region. In
the latter case the STM sends a new query for the transformed
packetP ′ to the SCAR for the abutting network region. This
query uses the border router between the two network regions
as its victim,V ′, andT ′ as the time of attack. This process
continues until all branches of the attack graph terminate, either
at a source within the network, or at the edge of the SPIE sys-
tem. The STM then constructs a composite attack graph which
it returns to the intrusion detection system.

C. Transformation processing

IP packets may undergo valid transformation while traversing
the network, and SPIE must be capable of tracing through such
transformations. In particular, SPIE must be able to reconstruct
the original packet from the transformed packet. Unfortunately,
many transformations are not invertible without additional infor-
mation due to the stateless nature of IP networks. Consequently,
SPIE must record sufficient packet data at the time of transfor-
mation to allow the original packet to be reconstructed.

The packet data chosen as input to the digesting function de-
termines the set of packet transformations SPIE must handle—
SPIE need only consider transformations that modify fields used
as input to the digest function. SPIE computes digests over
the IP header and the first eight bytes of the packet payload
but masks out (or omits in the case of IP options) several fre-
quently updated fields before digesting, as shown in figure 1
of section IV. Masking hides most hop-by-hop transformations
from the digesting function, but forces SPIE to explicitly handle
each of the following transformations: fragmentation, network
address translation (NAT), ICMP messages, IP-in-IP tunneling,
and IP security (IPsec).

Recording the information necessary to reconstruct the orig-
inal packet from a transformed packet requires additional re-
sources. Fortunately for SPIE, the circumstances that cause
a packet to undergo a transformation will generally take that
packet off of the fast path of the router and put it onto the con-
trol path, relaxing the timing requirements. The router’s mem-
ory constraints remain unchanged, however; hence, transforma-
tion information must be stored in a scalable and space-efficient
manner.

Digest Type I Packet Data

29 bits 3 bits 32 bits

Fig. 5. A Transform Lookup Table (TLT) stores sufficient information to invert
packet transformations at SPIE routers. The table is indexed by packet digest,
specifies the type of transformation, and stores any irrecoverable packet data.

C.1 Transform lookup table

Along with each packet digest table collected at a DGA, SPIE
maintains a corresponding transform table for the same inter-
val of time called atransform lookup table, or TLT. Each en-
try in the TLT contains three fields, shown in figure 5. The
first field stores a digest of the transformed packet. The second
field specifies the type of transformation—three bits are suffi-
cient to uniquely identify the transformation type among those
supported by SPIE. The last field contains a variable amount of
packet data the length of which depends upon the type of trans-
formation being recorded.

For space efficiency, the data field is limited to 32 bits. Some
transformations, such as network address translation, may re-
quire more space. These transformations utilize a level of
indirection—one bit of the transformation type field is reserved
as anindirect flag. If the indirect, or I, flag is set, the third field of
the TLT is treated as a pointer to an external data structure which
contains the information necessary to reconstruct the packet.

The indirect flag can also be used for flow caching. In many
cases (e.g., tunneling or NAT), packets undergoing a particular
transformation are related. In such cases, it is possible to reduce
the storage requirements by suppressing duplicate packet data,
instead referencing a single copy of the required data that can
be used to reconstruct any packet in the flow. Such a scheme
requires, however, that the SPIE-enabled router itself be capable
of flow caching, or at least identification, so that the packets
within the flow can be correlated and stored appropriately.

In order to preserve alignment, it is likely efficient implemen-
tations would store only 29 bits of the packet digest resulting
in 64-bit wide TLT entries. This width implies eight distinct
packet digests will map to the same TLT entry. The relative rar-
ity of packet transformations [8], the sparsity of the digest table,
and the uniformity of the digesting function combine to make
collisions extremely rare in practice. Assuming a digest table
capacity of roughly 3.2Mpkts (16Mb SRAM, see section VII-
B) and a transformation rate of 3%, the expected collision rate
is approximately 1:5333 packets. Even if a collision occurs, it
simply results in an additional possible transformation of the
queried packet. Each transformation is computed (including the
null transformation) and traceback continues. Incorrectly trans-
formed packets likely will not exist at neighboring routers and,
thus, will not contribute any false nodes to the attack graph.

C.2 Special-purpose gateways

Some classes of packet transformations, notably NAT and
tunneling, are often performed on a large fraction of packets
passing through a particular gateway. The transform lookup ta-
ble would quickly grow to an unmanageable size in such in-
stances; hence, SPIE considers the security gateway or NAT
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functionality of routers as a separate entity. Standard routing
transformations are handled as above, but special purpose gate-
way transformations require a different approach to transforma-
tion handling. Transformations in these types of gateways are
generally computed in a stateful way (usually based on a static
rule set); hence, they can be inverted in a similar fashion. While
the details are implementation-specific, inverting such transfor-
mations is straightforward; we do not consider it here.

C.3 Sample transformations

A good example of transformation is packet fragmentation.
To avoid needing to store any of the packet payload, SPIE sup-
ports inversion of only the first packet fragment, i.e., only the
first fragment may be traced back beyond the point of fragmen-
tation. The remaining fragments may be traced to the point
of fragmentation, but no further. Note that for most fragment-
based attacks [1], the attacker inserts fragments directly into the
network (i.e., the attacker is the point of fragmentation) so the
traceback is complete. (If only a subset of the fragments is re-
ceived by the victim the packet cannot be reassembled; hence,
the only viable attack is a denial-of-service attack on the victim’s
reassembly engine. But, if the fragmentation occurs within the
network itself, an attacker cannot control which fragments are
received by the victim so the victim will eventually receive a
first fragment to use in traceback.) Packet data to be recorded
includes the total length, fragment offset, and more fragments
(MF) field. Since properly-behaving IP routers cannot create
fragments with less than 8 bytes of payload information [23],
when given the first fragment, SPIE is always able to invert frag-
mentation and reconstruct the header and at least 64 bits of pay-
load of the pre-fragmented packet which is sufficient to continue
traceback.

Observe that SPIE never needs to record any packet payload
information. ICMP transformations can be inverted because
ICMP error messages always include at least the first 64 bits
of the offending packet [24]. Careful readers may be concerned
that encapsulation cannot be inverted if the encapsulated packet
is subsequently fragmented and the fragments containing the en-
capsulated IP header and first 64 bits of payload are not avail-
able. While this is strictly true, such transformations need to be
inverted only in extreme cases as it takes a very sophisticated
attacker to cause a packet to be first encapsulated, then frag-
mented, and then ensure fragment loss. If all the fragments are
received, the original header can be extracted from the reassem-
bled payload. It seems quite difficult for an attacker to ensure
that packet fragments are lost. It can cause packet loss by flood-
ing the link, but to do so requires sending such a large number
of packets that it is very likely that all the fragments for at least
one packet will be successfully received by the de-encapsulator
for use in traceback.

D. Graph construction

Each SCAR constructs a subgraph using topology informa-
tion about its particular region of the network. After querying
each of the DGAs in its region, a SCAR simulates reverse-path
flooding by examining the results in the order they would be
queried if an actual reverse path flood was conducted on the

V

R6

R8 R9

R7

R1S1

S3S2

R4

A S4

R3R2

R5S5

Fig. 6. Reverse path flooding, starting at the victim’s router,V , and proceeding
backwards toward the attacker,A. Solid arrows represent the attack path; dashed
arrows are SPIE queries. Queries are dropped by routers that did not forward
the packet in question.

topology that existed at the time the packet was forwarded. (The
topology information itself is collected and stored independently
at each DGA along with the digest tables, and returned to the
SCAR as part of the query response.) Figure 6 shows how
reverse-path flooding would discover the attack path fromV to
A, querying routersR8, R9, R7, R4, S5, R5, R3, andR2 along
the way. It is important to note that the routers need not ac-
tually be queried sequentially—the SCAR proactively queries
each DGA and caches the results locally.

In order to respond to a SCAR’s query, a DGA computes the
appropriate set of digests and consults the digest table for the
indicated time period. If an entry exists for the packet in ques-
tion, the router is considered to have forwarded the packet. If,
however, the digest is not found in the indicated table, it may
be necessary to search the digest table corresponding to the im-
mediately preceding time period. Depending on the link latency
between routers, DGAs may need to search multiple digest ta-
bles in order to assure they have examined an appropriate time
frame (which is determined by the link latency and maximum
queuing delay at that router). Once a digest is located, the packet
arrival time is always considered to be the latest possible time in
the interval. This ensures the packet must have been seen at an
earlier time at adjacent routers.

Along with the digest tables, each DGA also consults its TLTs
for the same time intervals. If the packet was transformed, the
DGA informs the SCAR, which then reissues queries to the
other DGAs in the region containing the transformed packet and
an updated arrival time. If the packet is not found in any of
the digest tables or TLTs for the relevant time period, a nega-
tive result is returned by the DGA, and the SCAR considers that
particular branch of the search tree to be terminated.

The result of this procedure is a connected graph containing
the set of nodes believed to have forwarded the packet toward
the victim. Assuming correct operation of the routers, this graph
is guaranteed to be a superset of the actual attack graph. But due
to digest collisions, there may be nodes in the attack graph that
are not in the actual attack graph. We call these nodesfalse
positives and base the success of SPIE on its ability to limit the
number of false positives contained in a returned attack graph.
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Fig. 7. A sample SPIE DGA hardware implementation for high-speed routers.

VI. PRACTICAL IMPLEMENTATION

For our PC-based SPIE prototype, we simulate a universal
hash family using MD5 [25]. A random member is defined by
selecting a random input vector to prepend to each packet. The
properties of MD5 ensure that the digests of identical packets
with different input vectors are independent. The 128-bit out-
put of MD5 is then considered as four independent 32-bit di-
gests which can support Bloom filters of dimension up to four.
Router implementations requiring higher performance are likely
to prefer other universal hash families specifically tailored to
hardware implementation [22]. A simple family amenable to
fast hardware implementation could be constructed by comput-
ing a CRC modulo a random member of the set of indivisible
polynomials overZ2k .

In order to ensure hash independence, each router periodi-
cally generates a set ofk independent input vectors and uses
them to selectk digest functions needed for the Bloom filter
from the family of universal hashes. These input vectors are
computed using a pseudo-random number generator which is
independently seeded at each router. For increased robustness
against adversarial traffic, the input vectors are changed each
time the digest table is paged, resulting in independence not only
across routers but also across time periods.

The size of the digest bit vector, ordigest table, varies with the
total traffic capacity of the router; faster routers need larger vec-
tors for the same time period. Similarly, the optimum number of
hash functions varies with the size of the bit vector. Routers
with tight memory constraints can compute additional digest
functions and provide the same false-positive rates as those who
compute fewer digests but provide a larger bit vector.

Figure 7 depicts a possible implementation of a SPIE Data
Generation Agent in hardware for use on high-speed routers. A
full discussion of the details of the architecture and an analy-
sis of its performance were presented previously [26]. Briefly,
each interface card in the router is outfitted with an Interface Tap
which computes multiple independent digests of each packet as
it is forwarded. These digests are passed to a separate SPIE pro-
cessor (implemented either in a line card form factor or as an
external unit) which stores them as described above in digest
tables for specific time periods.

As time passes, the forwarded traffic will begin to fill the di-
gest tables and they must be paged out before they become over-
saturated, resulting in unacceptable false-positive rates. The ta-
bles are stored in a history buffer implemented as a large ring
buffer. Digest tables can then be queried or archived by a sepa-
rate control processor while they are stored in the ring buffer.

VII. ANALYSIS

There are several tradeoffs involved when determining the op-
timum amount of resources to dedicate to SPIE on an individ-
ual router or the network as a whole. SPIE’s resource require-
ments can be expressed in terms of two quantities: the number of
packet digest functions used by the Bloom filter, and the amount
of memory used to store packet digests. Similarly, SPIE’s per-
formance can be characterized in two orthogonal dimensions.
The first is the length of time for which packet digests are kept.
Queries can only be issued while the digests are cached; un-
less archived to some external storage device within a reason-
able amount of time, the DGAs will discard the digest tables in
order to make room for more recent ones. The second is the ac-
curacy of the candidate attack graphs which can be measured in
the number of false positives in the graph returned by SPIE.

Both of these metrics can be controlled by adjusting oper-
ational parameters. In particular, the more memory available
for storing packet digests, the longer the time queries can be
issued. Similarly, digest tables with lower false-positive rates
yield more accurate attack graphs. Hence, we wish to character-
ize the performance of SPIE in terms of the amount of available
memory and digest table performance.

A. False positives

We first relate the rate of false positives in an attack graph
to the rate of false positives in an individual digest table. This
relationship depends on the actual network topology and traffic
being forwarded at the time. We can, however, make some sim-
plifying assumptions in order to derive an upper bound on the
number of false positives as a function of digest table perfor-
mance.

A.1 Analytic bounds

Suppose, for example, each router whose neighbors have de-
gree at mostd ensures its digest tables have a false-positive rate
of at mostP = p/d, where0 ≤ p/d ≤ 1 (p is an arbitrary tuning
factor). It is easy to show that for any true attack graphG with
n nodes, the attack graph returned by SPIE will have at most
np/(1 − p) extra nodes in expectation. In other words, an av-
erage traceback will result in an attack graph with no more than
np/(1 − p) false positives. We say “no more than” because the
digest tables will typically not be at full capacity when queried,
resulting in a lower false-positive rate than predicted.

The false-positive rate of a digest table varies over time, de-
pending on the traffic load at the router and the amount of time
since it was paged. Similarly, if the tables are paged on a strict
schedule based on maximum link capacity, and the actual traffic
load is less, digest tables will never reach their rated capacity.
Hence, the analytic result is a worst case bound since the digest
table performs strictly better while it is only partially full. It
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represents the expected number of false positives returned if the
query was conducted at the worst possible moment, i.e., when
all digest tables were at maximum capacity. Furthermore, our
analysis assumes the set of neighbors at each node is disjoint
which is not true in real networks. It seems reasonable to ex-
pect, therefore, that the false-positive rate over real topologies
with actual utilization rates would be substantially lower.

For the purposes of this discussion, we arbitrarily select a
false-positive rate ofn/7, resulting in no more than 5 additional
nodes in expectation for a path length of over 35 nodes (ap-
proaching the diameter of the Internet) according to our theoret-
ical model. Using the bound above,p = 1/8 is then a reason-
able starting point and we turn to considering its effectiveness in
practice.

A.2 Simulation results

In order to relate false-positive rate to digest table perfor-
mance in real topologies, we have run extensive simulations us-
ing the actual network topology of a national tier-one ISP made
up of roughly 70 backbone routers with links ranging from T-
1 to OC-3. We obtained a topology snapshot and average link
utilization data for the ISP’s network backbone for a week-long
period toward the end of 2000, sampled using periodic SNMP
queries, and averaged over the week.

We simulated an attack by randomly selecting a source and
victim, and sending 1000 attack packets at a constant rate be-
tween them. Each packet is recorded by every intermediate
router along the path from source to destination. A traceback is
then simulated starting at the victim router and (hopefully) pro-
ceeding toward the source. Uniformly distributed background
traffic is simulated by selecting a fixed maximum false-positive
rate,P , for the digest table at each off-path router. (Real back-
ground traffic is not uniform, which would result in slight de-
pendencies in the false-positive rates between routers, but we
believe that this represents a reasonable starting point.) In order
to accurately model performance with real traffic loads, the ef-
fective false-positive rate is scaled by the observed traffic load
at each router.

For clarity, we consider a non-transformed packet with only
one source and one destination. Preliminary experiments with
multiple sources (as might be expected in a distributed denial-
of-service (DDoS) attack) indicate false positives scale linearly
with respect to the size of the attack graph, which is the union of
the attack paths for each copy of the packet. We do not, however,
consider this case in the experiments presented here. (A DDoS
attack sending identical packets from multiple sources only aids
SPIE in its task. A wise attacker would instead senddistinct
packets from each source, forcing the victim to trace each packet
individually.)

In order to validate our analytic bound, we have plotted the
expected number of false positives as a function of attack path
length and digest table performance,np/(1 − p) as computed
above, and show that in comparison to the results of three sim-
ulations on our ISP backbone topology in figure 8. In the first
simulation, we set the maximum digest table false-positive prob-
ability to P = p/d, as prescribed above. This setting results
false-positive rate significantly lower than the analytic bound.
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Fig. 8. The number of false positives in a SPIE-generated attack graph as a
function of the attack path length, forp = 1/8. The analytic bound assuming
random topology and 100% link utilization is plotted against three simulation
results, two with false-positive rates conditioned on router degree, one without.
For the two degree-dependent runs, one considered observed link utilization,
while the other assumed full utilization. Each simulation represents the average
of 5000 runs using topology and utilization data from a national tier-one ISP.

A significant portion of the disparity results from the relatively
low link utilizations maintained by operational backbones (77%
of the links in our data set had utilization rates of less than25%),
as can be seen by comparing the results to a second simulation
on the ISP topology assuming full link utilization. There re-
mains, however, a considerable gap between the analytic bound
and simulated performance in network backbones.

The non-linearity of the simulation results indicates there is a
strong damping factor due to the topological structure of the net-
work. Intuitively, routers with many neighbors are found at the
core of the network (or at peering points), and routers with fewer
neighbors are found toward the edge of the network. This sug-
gests false positives induced by core routers may quickly die out
as the attack graph proceeds toward less well-connected routers
at the edge.

To examine the dependence upon vertex degree, we con-
ducted a third simulation in the ISP topology. This time, we
removed the false-positive rate’s dependence upon the degree of
the router’s neighbors, setting the digest table performance to
simply P = p (and returning to actual utilization data). While
there is a marked increase in the number of false positives, it re-
mains well below the analytic bound. This somewhat surprising
result indicates that despite the analytic bound’s dependence on
router degree, the hierarchical structure of ISP backbones may
permit a relaxation of the coupling, allowing the false positive
rate of the digest tables,P , to be set independently of the degree,
d, resulting in significant space savings.

B. Time and memory utilization

The amount of time during which queries can be supported
is directly dependent on the amount of memory dedicated to
SPIE. The appropriate amount of time varies depending upon
the responsiveness of the method used to identify attack pack-
ets. For the purposes of discussion, however, we will assume
one minute is a reasonable amount of time in which to identify
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an attack packet and initiate a traceback. As discussed in sec-
tion V-A, once the appropriate digest tables have been queried
by the SCARs the actual traceback process can be delayed arbi-
trarily.

B.1 Memory size

Given a particular length of time, the amount of memory re-
quired varies linearly with the total link capacity at the router
and can be dramatically affected by the dimension of the Bloom
filter in use. Bloom filters are typically described in terms of the
number of digesting functions. The effective false-positive rate
for a Bloom filter that usesk digest functions to storen packets
in m bits of memory can be expressed as

P =

(
1 −

(
1 − 1

m

)kn
)k

≈
(
1 − e−kn/m

)k

. (1)

The performance of a Bloom filter can be quantified in terms
of its memory efficiency factor(n/m) and false-positive rate
P . For example, a Bloom filter with memory efficiency of0.2
would need5n bits in order to storen packets while deliver-
ing its expected false-positive rate. By solving equation 1 for
(n/m) and differentiating with respect tok, it is easy to check
that optimal memory efficiency is reached whenk = log(1/P ).
That is, a Bloom filter with either	− logP 
 or �− logP � hash
functions has the maximum memory efficiency for a given false-
positive rateP . The memory requirement of such a table can
easily be determined by substitutingP back into equation 1 (ob-
serveP (1/k) = 1/2):

m = −n · log(1/P )/ ln(1/2) ≈ 1.44n · log(1/P ). (2)

Tables providing the effective false-positive rates for various
memory efficiencies and digesting functions are readily avail-
able [18]. For the purposes of discussion, we will consider us-
ing a Bloom filter with three digesting functions(k = 3) and a
memory efficiency factor(n/m) of 0.2. Such a filter provides
an effective false-positive rate ofP = 0.092 when full.

While this is well below the value of1/8 or 0.125 used in
our degree-independent simulations, it is high if digest tables
are calibrated with respect to router degree. Luckily, by increas-
ing the number of digesting functions, Bloom filters are able
to achieve significantly lower false-positive rates with slight de-
creases in memory efficiency. For instance, a false-positive rate
of P = 0.00314, which corresponds to our degree-dependent
simulation,P = p/d, with p = 1/8 for routers with as many as
40 neighbors, can be achieved using 8 digesting functions, with
a memory efficiency factor of only0.083—slightly less than half
what we suggest.

SPIE’s memory needs are determined by the number of pack-
ets processed. Hence, we consider an average-sized packet of
approximately 1000 bits4, and describe link speeds in terms of
packets per second. We combine this with the Bloom filter ef-
ficiency factor of0.2 from above to compute a rule of thumb:

4This may in fact be a significant under-estimate. Recent studies have found
the mean packet size has grown to over 400 bytes in many instances [8], [27].
The corresponding decrease in packet arrival rate eases the load on SPIE’s digest
tables.

SPIE requires roughly0.5% of the total link capacity in digest
table storage. For a typical low-end router with four OC-3 links,
this results in roughly 23MB of storage. On the very high end,
a core router with 32 OC-192 links has a maximum capacity of
about 320Mpkts/sec which would require roughly 1.6Gb/sec of
digest table memory or 12GB for one minute’s worth of storage.
In practice, however, the size of a digest table will be limited by
the type of memory required.

B.2 Access rates

Size is not the only memory consideration, however—access
times turn out to be equally important. Packets must be recorded
in the digest table at a rate commensurate with their arrival.
Even given an optimistic DRAM cycle time of 50ns per read-
modify-write cycle, routers processing more than 20Mpkts/sec
(roughly 2 OC-192 links, or 8 OC-48s) require an SRAM digest
table. Current technology places pragmatic limits on SRAM
size when operating at very high access rates. The increased
power consumption, heat, and cost make it impractical to spread
digest tables across more than a few SRAM chips. Hence, an
entire minute’s worth of traffic can only be stored in one digest
table at low link speeds. Higher speed routers must page digest
tables to SDRAM in order to store a minute’s worth of digests as
described in section VI. Given the unavoidable need for a two-
tier digest architecture, the best choice of digest table size is
likely dictated by pragmatic concerns, and using a single 16Mb
SRAM avoids the timing problems inherent in grouping chips
into one memory bank.

One way to decrease the update rate is to maintain separate
digest tables for each input port. Unfortunately, since the input
and output ports for an arbitrary packet are uncorrelated in gen-
eral, this can complicate the query process. It may be especially
problematic if the digest tables are not time synchronized across
ports. In certain situations, however, the ability to isolate a spe-
cific input port may provide an additional benefit of reducing the
number of upstream neighbors that need to be queried. Unfor-
tunately, the ring and bus topologies common at many peering
points force routers to have many neighbors on the same input
port. The benefits of input port isolation are significantly re-
duced in such configurations, and are likely not worth the addi-
tional complexity.

In some border cases, it may be more practical to use a larger
amount of slower memory and reduce the number of memory
accesses required per packet, allowing DRAM to be used in-
stead of SRAM, for example. This is especially true when con-
sidering cached-based memory architectures where access lo-
cality becomes an issue. In such cases, packet digests could be
recorded in a hash table ofb-bit values and collisions managed
with open-addressed linear probing. If this table is never al-
lowed to fill up, then it admits only false positives, and no false
negatives, just like a Bloom filter. The false-positive rate of such
a data structure is given by [28]

P = 1 − e−n/2b

. (3)

Consider constructing a hash table intended to recordn
packet digests using1.44n b-bit entries, requiringm ′ = 1.44nb
bits. Such a table is less than70% full, hence, each packet in-
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sertion takes only∼2 memory accesses in expectation [28, sec.
6.4, table 4]. Solving equation 3 forb, and substituting into
the above equation, we see the memory required for a particular
false-positive rateP while storingn packets is given by

m′ = 1.44n · log(−n/ ln(1 − P )).

WhenP is much smaller than 1,ln(1 − P ) is approximated by
−P . Hence,

m′ = 1.44n · log(n/P ). (4)

Combining equations 2 and 4, the additional cost of using a
hash table instead of a Bloom filter, in terms of increased mem-
ory consumption, is a factor of (for small values ofP )

m′/m = 1 + log n/ log(1/P ) = 1 + log1/P (n). (5)

For slower routers with many neighbors (and therefore small
P ), the decrease in number and improved locality of memory
accesses may outweigh the additional storage requirements of a
hash table.

C. Timing uncertainties

For routers with a single OC-192 link, a 16Mb SRAM would
hold roughly 10ms of traffic data; hence, the history buffer
would store 6,000 individual digest tables. This observation
gives rise to another important issue: imperfect timing may
cause SPIE to need to examine multiple packet digests at a par-
ticular router. The more digests that must be considered, the
greater the chance of false positives, so it is advantageous to
make the digest tables as large as possible (within practical hard-
ware limits). For reasonable link speeds, the memory access
time becomes slow enough that SDRAM can be used which, us-
ing current technology, would allow 256Mb digest tables, with
a capacity of roughly 50Mpkts.

It may be the case that the approximate packet service time
cannot be confined to an interval covered by one digest table.
In that case, we expect the false-positive rate to increase lin-
early with the number of digest tables examined. For high-speed
routers, it is especially important to maintain precise timing syn-
chronization between adjacent routers. We have not yet exam-
ined the impact of typical NTP clock skew on SPIE’s perfor-
mance, but believe synchronization can be maintained to within
a small number of digesting intervals, not significantly impact-
ing our false-positive rate.

VIII. D ISCUSSION

We believe there are three main areas that affect the practical-
ity of SPIE. We examine several issues relating to deployment,
vulnerability, and transform handling below.

A. Deployment

SPIE’s usefulness increases greatly with widespread deploy-
ment because SPIE can only construct an attack graph for that
portion of the packet’s path within the SPIE domain. Within a
particular ISP, however, it is likely that DGAs need not be de-
ployed at every router. If a particular region of the network can
be identified as transit-only, meaning no traffic originates within

the region, and further, that no transforms are computed in the
region, then the region need only be instrumented at the edges.
Since all packets leaving the region are guaranteed to have en-
tered the region, a traceback can consider the entire region as a
single router without any loss of precision or reliability. When
considering the network topology, the SCAR could simply col-
lapse all the region’s edge routers into one virtual router, and
consider the virtual router’s neighbors to be the set of all routers
bordering the region.

Between ISPs, however, the situation is significantly more
complicated. It is likely that independent ISPs may lack suf-
ficient levels of technical or political cooperation to unite their
SPIE infrastructures. Hence, regardless of the degree of deploy-
ment within adjacent ISPs, many ISPs will prefer to have their
own STM responsible for all queries within their network. In
such a case, one ISP’s STM must be granted the authority to
issue queries to adjacent ISPs’ STMs in order to complete the
traceback.

B. Vulnerabilities

SPIE’s vulnerabilities can be divided into three distinct
classes; we discuss each separately below.

B.1 Denial of service

Traceback operations will often be requested when the net-
work is unstable (likely due to the attack that triggered the trace-
back); SPIE communications must succeed in a timely fash-
ion even in the face of network congestion and instability. If
SPIE traffic is not properly insulated from normal network traf-
fic, SPIE may be unable to complete a traceback during periods
of network congestion or routing failures. The best solution is
to provide SPIE with an out-of-band channel, possibly through
either physically or logically separate (e.g., ATM VCs) links.
Even without private channels, it is still possible to ensure suc-
cessful transmission by granting sufficient priority and config-
uring static routes for SPIE traffic.

B.2 Flow amplification

SPIE is designed to trace any distinct IP packet to its
source(s). It does not, however, concern itself with the mul-
tiplicity of any particular packet. It is possible to exploit this
fact to launch an “amplification” denial-of-service attack that
SPIE alone is not able to isolate. Specifically, a router or host
cannot surreptitiously insert a new, distinct packet into a SPIE-
enabled network. It may, however, duplicate packets already in
the network without detection, effectively amplifying the size of
a traffic flow. In particular, a routerR on the path between two
hostsA andB may duplicate all packets going fromA to B in
an attempt to overwhelm downstream resources, including any
routers and network links on the path fromR to B, and evenB
itself.

The usefulness of such an attack is limited by the requirement
thatR lie on the path betweenA andB. Furthermore, duplicate
packets are only undetectable if they fall within the same di-
gest table page. Duplicate packets inserted significantly after
the original packet will likely fall into a later digest table page
on some downstream router, and therefore be detected as a dis-
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tinct, later packet. Similarly, large numbers of duplicate packets
would become apparent even to extremely simplistic network
monitoring tools. Hence, an attacker likely can only increase
the size of an individual flow by a small factor.

A naive attacker might attempt to increase the attack’s effec-
tiveness by amplifying a large number of flows destined to the
same destination. This serves only to help isolate the attacker’s
location, however. If packets from several of the amplified flows
are traced using SPIE, and their attack paths compared, the at-
tacker must lie on the shared portion of the paths. As the num-
ber of flows amplified by the attacker grows, the portion of the
path shared by all attack paths will converge to the path between
the attacker and the destination, effectively identifying the rogue
sourceR.

B.3 Information leakage

In the normal course of operation, SPIE requires a query-
ing intrusion detection system to submit the packet it wishes to
trace. This obviously provides information to the entity admin-
istering SPIE about traffic a particular party finds interesting. In
some rare cases, a querying party may not wish to leak such in-
formation by exposing the content of the packet, yet still wish
to employ SPIE. In such a case, it might be possible to support
call-backs from SCARs which would provide the querying in-
trusion detection system with the applicable digesting function
and transformation information and ask it to do actual digesting.
This is an expensive operation, but the existence of such a case
implies the querying intrusion detection system has grave cause
for concern in the first place and is likely willing to dedicate a
great deal of resources to the traceback.

C. Transformations

Finally, transformations raise several additional issues, some
related to performance, others to policy. In particular, assum-
ing that packet transformations represent a small percentage of
the overall IP traffic traversing a router, an efficient SPIE imple-
mentation can easily handle the resource requirements of log-
ging transformation information. Attackers, though, may view
packet transformations as a method of denial-of-service attack
on SPIE. The number of transformations that are recorded dur-
ing a given time interval is bounded by the rate at which the
router is able to process the packet transformations. Therefore,
SPIE aims to handle packet transformations at a rate equal or
greater than the router. As a result, the router rather than SPIE
is the bottleneck in processing packet transformations. This task
is made easier when one realizes that the vast majority of trans-
formations occur only at low-to-medium speed routers. Sophis-
ticated transformations such as tunneling, NAT, and the like are
typically done at customer premises equipment. Further, many
ISPs turn off standard transformation handing, often even ICMP
processing, at their core routers.

IX. CONCLUSION & FUTURE WORK

Developing a traceback system that can trace a single packet
has long been viewed as impractical due to the tremendous stor-
age requirements of saving packet data and the increased eaves-
dropping risks the packet logs posed. We believe that SPIE’s

key contribution is to demonstrate that single packet tracing is
feasible. SPIE has low storage requirements and does not aid in
eavesdropping. Furthermore, SPIE is a complete, practical sys-
tem. It deals with the complex problem of transformations and
can be implemented in high-speed routers (often a problem for
proposed tracing schemes).

The most pressing challenges for SPIE are increasing the win-
dow of time in which a packet may be successfully traced and re-
ducing the amount of information that must be stored for trans-
formation handling. One possible way to extend the length of
time queries can be conducted without linearly increasing the
memory requirements is by relaxing the set of packets that can
be traced. In particular, SPIE can support traceback of large
packet flows for longer periods of time in a fashion similar to
probabilistic marking schemes—rather than discard packet di-
gests as they expire, discard them probabilistically as they age.
For large packet flows, odds are quite high some constituent
packet will remain traceable for longer periods of time.
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