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Abstract

Decentralized and unstructured peer-to-peer networks such as Gnutella are attractive for certain applications
because they require no centralized directories and no precise control over network topologies and data place-
ment. However, the flooding-based query algorithm used in Gnutella does not scale; each individual query gener-
ates a large amount of traffic and, as it grows, the system quickly becomes overwhelmed with the query-induced
load. This paper explores, through simulation, various alternatives to gnutella’s query algorithm, data replication
method, and network topology. We propose a query algorithm based on multiple random walks that resolves
queries almost as quickly as gnutella’s flooding method while reducing the network traffic by two orders of mag-
nitude in many cases. We also present a distributed replication strategy that yields close-to-optimal performance.
Finally, we find that among the various network topologies weconsider, uniform random graphs yield the best
performance.

1 Introduction

The computer science community has become accustomed to theInternet’s continuing rapid growth, but even to
such jaded observers the explosive increase in Peer-to-Peer (P2P) network usage has been astounding. Within a few
months of Napster’s [12] introduction in 1999 the system hadspread widely, and recent measurement data suggests
that P2P applications are having a very significant and rapidly growing impact on Internet traffic [11, 15]. Therefore,
it is important to study the performance and scalability of these P2P networks.

Currently, there are several different architectures for P2P networks:

Centralized: Napster and other similar systems have a constantly-updated directory hosted at central locations (i.e.,
the Napster web site). Nodes in the P2P network issue queriesto the central directory server to find which
other nodes hold the desired files. While Napster was extremely successful before its recent legal troubles, it
is clear that such centralized approaches scale poorly and have single points of failure.

Decentralized but Structured: These systems have no central directory server, and so are decentralized, but have
a significant amount of structure. By “structure” we mean that the P2P network topology (that is, the set
of connections between P2P members) is tightly controlled and that files are placed not at random nodes
but at specified locations that will make subsequent querieseasier to satisfy. In some systems, those with
“loose structure,” this placement of files is based on hints;the Freenet P2P network [8] is an example of such
a system. In systems with “tight structure”, the structure of the P2P network and the placement of files is
extremely precise and so subsequent queries can be satisfiedvery efficiently. There is a growing literature
on what might be calledlookup systemswhich support a hash-table-like interface; see [16, 20, 18,23]. Such
tightly structured P2P designs are quite prevalent in the research literature, but almost completely invisible
on the current network. Moreover, it isn’t clear how well such designs work with an extremely transient
population of nodes, which seems to be a characteristic of the Napster community.

Decentralized and Unstructured: These are systems in which there is neither a centralized directory nor any
precise control over the network topology or file placement.Gnutella [9] is an example of such designs. The
network is formed by nodes joining the network following simple loose rules (for example, those described
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in [6]). The resultant topology has certain properties, butthe placement of files is not based on any knowledge
of the topology (as it is in structured designs). To find a file,a node queries its neighbors. The most typical
query method is flooding, where the query is propogated to allneighbors within a certain radius [6]. These
unstructured designs are extremely resilient to nodes entering and leaving the system. However, the current
search mechanisms are extremely unscalable, generating large loads on the network participants.

In this paper, we focus on gnutella-like decentralized, unstructured P2P systems. We do so because (1) these
systems are actively used by a large community of Internet users [22, 7], and (2) these systems have not yet been
subject to much serious research, except for empirical studies.

The goal of this paper is to study more-scalable alternatives to existing Gnutella algorithms, focusing on the
search and replication aspects. We first quantify the poor scaling properties of the flooding search algorithms. We
then propose, as an alternative, a k-walker random walk algorithm that greatly reduces the load generated by each
query. We also show that active replication (where the files may be stored at arbitrary nodes) produces lower overall
query load than non-active node-based replication (i.e., a file is only replicated at nodes requesting the file). Path
replication, where the file is replicated along the path fromthe requester to the destination, yields a close-to-optimal
replication distribution. Finally, we show that for unstructured networks, power-law random graphs are less desirable
than uniform random graphs and so P2P system should adopt graph-building algorithms that reduce the likelihood
of very-high degree nodes.

This paper has 8 sections. In Section 2 we describe our model of unstructured P2P systems and our evaluation
methodology. In Section 3 we discuss the limitations of the flooding approach currently used by gnutella, and then,
in Section 4, we propose and evaluate various alternative approaches. We discuss replication strategies in Section 5
and evaluate these approaches in Section 6. We discuss related work in Section 7 and conclude in Section 8.

2 Modeling and Evaluation Methodology

It is impossible to model all the dynamics in a P2P system on the Internet. Hence, we use simple models to derive
understanding of the behavior of different algorithms, andverify the behavior of the algorithms on slightly more
realistic simulations. We are not looking for quantitativeresults, but rather qualitative ones, so we omit many details
in our modeling and simulation.

2.1 Abstractions

We look at three aspects of a P2P system: network topology, query distribution and replication distribution. By
network topology, we mean the graph formed by nodes in the network at an instant. For simplicity, we assume that
the graph does not change during the simulation of our algorithms. By query distribution, we mean the distribution
of frequency of lookups to files. Again, we assume that this distribution is fixed. By replication distribution, we
mean the distribution of the percentage of nodes that have a particular file. During our study of search algorithms,
we assume static replication distributions.

Our assumption of fixed network topology and fixed query distributions are obviously gross simplifications.
However, for the purpose of our study, if one assumes that thetime to complete a search is short compared to the
time of change in network topology and change in query distribution, results obtained from these settings are still
indicative of performance in real systems.

We use four network topologies in our study:� Power-Law Random Graph (PLRG): this is a 9230-node random graph. The node degrees follow a power-
law distribution; if one ranks all nodes from the most connected to the least connected, then thei’th most
connected node has!=i� neighbors, where! is a constant. Many real-life P2P networks have topologies that
are power-law random graphs[13]. This particular graph has� = 0:8. The graph is generated by a modified
version of the GT-ITM topology generator [21].
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Figure 1: Distribution of node degrees in the four network topology graphs. Note that we use log scale for PLRG
and Gnutella, and linear scale for Random and Grid.� Normal Random Graph (Random): a 9836-node random graph generated by a modified version of GT-ITM

topology generator[21]. The average degree of nodes in the graph is 4. The distribution is shown in Figure 1.� Gnutella graph (Gnutella): a snapshot of the gnutella P2P network in August 2001 [4]. The graph has 4736
nodes. Its node degrees roughly follow a two-segment power-law distribution, as shown in Figure 1.� Two-Dimensional Grid (Grid): a 10000-node two-dimension grid (100x100). We choose this simple graph for
comparison purposes.

Node degree distributions of the four graphs are shown in Figure 1. Key statistics of the graphs are also summarized
in Table 2.1.

#nodes total #edges avg. node degree std. dev. max degree median degree
PLRG 9230 20599 4.46 27.9 1746 1
Random 9836 20099 4.09 1.95 13 4
Gnutella 4736 13022 5.50 10.7 136 2
Grid 10000 19800 3.96 0.20 4 4

Table 1: Key statistics of the network topologies that we used.
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For query distribution, we assume that there areN objects of interest. (In this paper we use the terms “file” and
“object” interchangeably.) We investigate the following distributions:� Uniform: all objects are equally popular. In other words, the probability that an object will be searched by a

node in the network is1=N , whereN is the number of objects of interest.� Zipf-like: object popularity follows a Zipf-like distribution. If one ranks all objects from the most popular to
the least popular, then the probability that thei’th ranked object is searched by a node is proportional to1=i�.
Studies have shown that Napster, Gnutella and Web queries tend to follow Zipf-like distributions [3, 19].

In other words, our query distributions are: NXi=1 qi = 1 (1)Uniform : qi = 1N (2)Zipf � like : qi / i�� (3)

For replication distribution, we simulate it in two ways. Inthe first part of our study, where we focus on search
methods, we assumestatic replication, where objecti is randomly placed atri nodes, withri following certain
distribution. Since we study unstructured networks, when an object is replicated atri nodes, theri nodes are
randomly choosen in the graph. In the second part of the study, where we study different replication strategies and
their impact on search efficiency, we simulate the dynamic replication of the objects.

We use the following static replication distributions:� Uniform: all objects are replicated at roughly the same number of nodes. In the simulation, we assume that
each object is replicated at 1% of the nodes.� Proportional: the replication ratio of an objecti is proportional to the query probability of the object. If
one assumes only nodes requesting an object store the object, then the replication distribution is usually
proportional to query distribution.� Square-root: replication ratio of an objecti is proportional to the square root of its query probabilityqi. The
reason for the square-root distribution is discussed in Section 5.

In other words, our replication distributions are: NXi=1 ri = R�N (4)Uniform : ri = R (5)Proportional : ri / qi (6)Square� root : ri / q 12i (7)

where R is the average replication ratio.

Clearly, there are three combinations of query distribution and replication distribution: uniform/uniform, zipf/proportional,
and zipf/square-root.
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2.2 Metrics

Performance issues in real P2P systems are extremely complicated. In addition to issues such as load on the network,
load on network participants, and delays in getting positive answers, there are a host of other criteria such as success
rate of the search, the bandwidth of the selected provider nodes, and fairness to both the requester and the provider.
It is impossible for us to use all of these criteria in evaluating search and replication algorithms.

Instead, we focus on efficiency aspects of the algorithms solely, and use the following simple metrics in our
abstract P2P networks. These metrics, though simple, reflect the fundamental properties of the aglorithms.� User aspects:

– Pr(success): the probability of success of finding the queried object before the search terminates. Dif-
ferent algorithms have different criteria for terminatingthe search, and lead to different probability of
success under various replication distributions.

– #hops: delay in finding an object as measured in number of hops. We do not model the actual network
latency here, but rather just measure the abstract number ofhops that a successful search message travels
before it replies to the originator.� Load aspects:

– avg. #msgs per node: overhead of an algorithm as measured in average number of search messages each
node in the network has to process. The motivation for this metrics is that in P2P systems, the most
notable overhead tend to be the processing load that the network imposes on each participant. The load,
usually interrupt processing or message processing, is directly proportional to the number of messages
that the node has to process.

– #nodes visited: the number of network participants that a query’s search messages travel through. This
is an indirect measure of the impact that a query generates onthe whole network,

– peak #msgs: to identify hot spots in the network, we calculate the number of messages that the busiest
node has to process for a set of queries.� Aggregate performance: for each of the above measures, which are per-query measures, we calculate an

aggregate performance number, which is the performance of each query convoluted with the query probability.
That is, for each objecti, under each network settings, if the performance measure isa(i), then the aggregate
is sum(qi � a(i)).

2.3 Simulation Methodology

In our evalution of each search method, we run a set of simulations for each combination of query distribution and
replicatin distribution, and report results averaged overthe set of simulations. In all the simulations, the number of
objects,N , is 100, the average replication ratio,R, is 1.0%, and the parameter� in the Zipf-like distribution is 1.20.

For each set of simulations, we first select the topology file.We then generatenumPlacesets of replica place-
ments; replicas are are placedrandomlyin the network, and the distribution of replicas follows thespecified replica-
tion distriubtion. For each replica placement, we generatenumQuerydifferent queries following the specified query
distribution. Then for each of the queries, we simulate the searching process using the designated search method.
We can run the simulation for each query independent of otherqueries because the object replication is fixed, and
hence running all the queries concurrently is the same as running each one separately and then summing the results.

Statistics are collected from thenumPlace� numQueryqueries. In each set of simulations,numPlace = 10
andnumQuery = 100. This results in1000 different queries. We then calculate the results in the following way:
Pr(success)is the number of successful queries divided by the total number of queries generated;avgHopsis the
average number of hops taken for each successful query;avgMsgsis the average number of messages generated for
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Figure 2: How the probability of success and the per-node message overhead vary by the TTL setting in four network
topologies.

each query divided by the total number of nodes in that network; avgNodesis the average number of nodes visited
(i.e. received at least one message) during each query;dupMsgsis the average duplication percentage calcualted as
(msgs - nodes)/msgs; andpeakMsgis the maximal sum of messages received by any single node during the set of
simuliations, divided by the total number of queries in thatset of simulation. These averages are presented in tables
and figures in this paper. Due to space limitation we do not present standard deviations associated with the averages,
except to point out that the standard deviation data do not change the conclusions in the paper. We plan to present
all the data in a web site later.

As a final note about our abstractions and metrics, we stress that they omit a lot of issues, including the true
dynamics of node coming and going in the network, the messagedelays in the network, the actual load on a network
node for processing and propogating messages, etc. However, these models help us understand the fundamental
properties of various search and replication algorithms.

3 Limitations of Flooding

One of the major load isssues in P2P networks is the load on individual network participants. Typically, the par-
ticipants are PCs at home or office, and are used for normal work and entertainment. If a PC has to handle many
network interrupts when it joins the P2P network, the user will be forced to take the PC off the P2P network to get
“real” work done. This in turn limits the size and the usefulness of the P2P network.

Unfortunately, the simple flooding-style search used in Gnutella exacerbates this problem. There are two issues
with flooding. First, it is difficult to choose an appropriateTime-To-Live (TTL) to terminate the flood. Typically,
each query has a TTL assigned to it at the beginning. Each timeit is propagated from one node to the node’s
neighbors, the TTL is reduced by 1. The process continues until TTL reaches 0. For a node that wants to find an
object but does not know how widely replicated the object is,picking the right TTL is tricky. If the TTL is too high,
the node unnecessarily burdens the network. If the TTL is toolow, the node might not find the object even though a
copy exists somewhere.

To illustrate the problem, Figure 2 shows the probability ofsuccess and average per-node message overhead of
flooding as TTL increases. The search is for an object that is only replicated at 0.125% of the nodes, which means
that on average, 800 nodes need to be visited to find the object. We can see from the figures that different TTLs are
needed to reach this coverage in different network topologies. Unfortunately, since in practice the replication ratio
of an object is unknown, users have to set TTLs high to ensure success of the query.
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Figure 3: As the TTL increases, the percentage of query messages that are duplicates increases because a node has
more neighbors forwarding the messages to it.

Second, there are many duplicate messages introduced by flooding, particularly in high connectivity graphs. By
duplicate messages we mean the multiple copies of a query that are sent to a node by its multiple neighbors. Flood-
style search does have duplication detection built in, requiring the node to detect and discard duplicate queries.
However, duplicate queries are pure overhead in flooding. They incur extra network interrupt processing at the
nodes receiving them, and do not contribute to increased chance of finding the object. The problem worsens as the
TTL increases.

Figure 3 shows the percentage of duplicate messages and the number of unqiue nodes visited as TTL increases.
As we can see from the graphs, when TTL increases, the number of unique nodes visited increases, but at the same
time, the percentage of duplicate messages also increases.In other words, in flooding, it is not possible to increase
the number of nodes covered in a search without increasing the duplication in the search.

These limitations mean that flooding incurs considerable message processing overhead for each query, increasing
the load on each node as the network expands and the query rateincreases, to the point that a node can be so loaded
that it has to leave the network. Other researchers have alsonoted the limitations of flooding [17].

Our simulations also show that Power-Law random graphs and Gnutella style graphs are particularly bad with
flooding. The presence of the highly connected nodes mean that its duplication ratios are much higher than those
in the random graph, because many nodes’ neighbors overlap.In fact, for flooding, the random graph would be the
best topology, because in a true random graph, the duplication ratio (liklihood that the next node already recieved
the query) is the same as the fraction of nodes visited so far,as long as that fraction is small.

The random graph is also better for load distribution among its nodes. In the random graph, the maximum load
on any one node is logarithmic to the total number of nodes that the search visits. In contrast, the high degree nodes
in PLRG and Gnutella graphs have much higher load than other nodes. Due to space constraints we omit the data
on peak # of messages here.

4 Finding Better Search Methods

Since flooding has inherent limitations, we try to find more scalable search methods for unstructured networks. Our
first try is aimed at addressing the TTL selection problem.
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Figure 4: The stopping TTL and the per-node message overheadfor expanding ring when searching objects of
various replication ratio.

4.1 Expanding Ring

One might be tempted to solve the TTL selection problem by asking nodes to check with the original requester
before forwarding the query to neighbors. This way, the floodcan be called off when the object is found. However,
the approach can lead to message implosion at the requester node. Hence, we do not adopt this approach.

Instead, we use successive floods with increasing TTLs. A node starts a flood with small TTL, and waits to see if
the search is successful. If it is, then the node stops. Otherwise, the node increases the TTL and starts another flood.
The process repeats until the object is found. We expect thismethod to perform particularly well when hot objects
are replicated more widely than cold objects, which is likely the case in practice. We call this method “expanding
ring.”

To understand how well expanding ring works, we measure the average stopping TTL for searches to objects
with increasing replication ratios. In our simulations theexpanding ring starts withTTL = 1, and expands the TTL
linearly by 2 each time. Figure 4 shows the results for various topologies. As we can see, expanding ring successfully
reins in the TTL as the object’s replication ratio increases. While searches for objects with low replication ratio need
TTLs larger than 5, the searches stop at TTL of 1 or 2 when the object replication is over 10%.

However, this adaptivity does not necessarily translate tolower message overhead, because the successive retries
could lead to more messages. To understand the message overhead of expanding ring, we also record the average
number of messages a node has to process. The results are shown in Figure 4. Comparing the message overhead
results between flooding and expanding ring, we can see that,for objects that are replicated at .125% of the nodes,
even if flooding uses the best TTL for each network topology, expanding ring still halfs the per-node message
overhead.

To understand the overall impact of expanding rings in a P2P network, we simulate the completion of 1000
queries in P2P networks with different combinations of query distribution and replication distribution. The results are
shown in the “expanding ring” column in Tables 2 through 5. (The tables are a comparison of various performance
metrics of search methods in the four network topologies.)

The results show that, despite the successive retries, expanding ring still reduces message overhead significantly
compared with regular flooding with a fixed TTL. The savings are obtained across all query and replication dis-
tributions, even for uniform replication distributions. The improvements are also more pronounced for Random
and Gnutella graphs than for PLRG graph, partly because the very high degree nodes in PLRG graph reduce the
oppurtunity for incremental retries in expanding ring.

Expanding ring achieves the savings at the expense of slightincrease in the delays to find the object. Since we
do not simulate actual network latency but use number of hopsto estimate the latency, the tables also include a row
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distribution model 50 % (queries for hot objects) 100 % (all queries)
query/replication metrics flood ring walk state flood ring walk state

#hops 3.40 5.77 10.30 7.00 3.40 5.77 10.30 7.00
Uniform / #msgs per node 2.509 0.062 0.031 0.024 2.509 0.061 0.031 0.024
Uniform #nodes visited 9220 536 149 163 9220 536 149 163

peak msgs 6.37 0.26 0.22 0.19 6.37 0.26 0.22 0.19

#hops 1.60 2.08 1.72 1.64 2.51 4.03 9.12 6.66
Zipf-like / #msgs per node 1.265 0.004 0.010 0.010 1.863 0.053 0.027 0.022

Proportional #nodes visited 6515 36 33 47 7847 396 132 150
peak msgs 4.01 0.02 0.11 0.10 5.23 0.20 0.17 0.14

#hops 2.23 3.19 2.82 2.51 2.70 4.24 5.74 4.43
Zipf-like / #msgs per node 2.154 0.010 0.014 0.013 2.308 0.031 0.021 0.018
Square root #nodes visited 8780 92 50 69 8983 269 89 109

peak msgs 5.88 0.04 0.16 0.16 6.14 0.12 0.17 0.16

Table 2: Simulation results of search methods for Random Graph. The first set of columns are results for queries to
the top 50% of hottest objects; the second set of columns are results for all queries. “Flood” is flooding with TTL=8.
“Ring” is expanding ring. “Walk” is 32-walker random walk with checking. “State” is 32-walker random walk with
checking and state keeping.

on average number of hops as an indication of user-experienced delay. As we can see, for Random, PLRG and
Gnutella, the average # of hops only increases from 2 to 4 in flooding to 3 to 6 in expanding ring, which we believe
is tolerable for users.

Though expanding ring solves the TTL selection problem, it does not address the message duplication issue
inherent in flooding. Inspection of simulation results shows that the duplication contributes significantly to the
message overhead, particularly for PLRG and Gnutella graphs. To reduce message duplication, we try a different
approach, random walk.

4.2 Random Walks

Random walk is a well-known technique. To search for an object using random walk, a node chooses a neighbor
randomly and sends the query to it. The neighbor in turns chooses one of its neighbors randomly and forwards the
query. The process continues until the object is found. For each query, only one copy of it is present in the network.
We call the copy a “walker.”

Our initial attempt is to use the standard random walk as a search method. As expected, random walk cuts
down the message overhead significantly, by an order of magnitude compared to expanding ring across the network
topologies. However, this efficiency comes at an order of magnitude increase in user-perceived delay of successful
searches.

Investigations show that the key to reducing this delay is toreach the desired number of nodes as quickly as
possible. Hence, we decide to increase the number of “walkers” in the random walk. That is, instead of just sending
out one query message, a requesting node sends N query messages, and each query message takes its own random
walk. The expectation is thatN walkers afterT steps should reach the same number of nodes as 1 walker afterN �T
steps, and indeed simulations confirm that. Therefore, by using N walkers, we can expect to cut the delay down by
a factor ofN .

Since multiple-walker random walks require a mechanism to terminate the walks, we experimented with two
methods, TTL and “checking.”. TTL means that, similar to flooding, each random walk terminates after a certain
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distribution model 50 % (queries for hot objects) 100 % (all queries)
query/replication metrics flood ring walk state flood ring walk state

#hops 2.37 3.50 8.95 8.47 2.37 3.50 8.95 8.47
Uniform / #msgs per node 3.331 1.325 0.030 0.029 3.331 1.325 0.030 0.029
Uniform #nodes visited 8935 4874 147 158 8935 4874 147 158

peak msgs 510.4 132.7 12.3 11.7 510.4 132.7 12.3 11.7

#hops 1.74 2.36 1.81 1.82 2.07 2.93 9.85 8.98
Zipf-like / #msgs per node 2.397 0.593 0.011 0.011 2.850 0.961 0.031 0.029

Proportional #nodes visited 6969 2432 43 49 7923 3631 136 145
peak msgs 412.7 58.3 4.9 5.1 464.3 98.9 12.7 11.7

#hops 2.07 2.94 2.65 2.49 2.21 3.17 5.37 4.79
Zipf-like / #msgs per node 3.079 0.967 0.014 0.014 3.199 1.115 0.021 0.020
Square root #nodes visited 8434 3750 62 69 8674 4200 97 103

peak msgs 496.0 93.7 6.3 6.3 499.6 111.7 8.9 8.4

Table 3: Simulation results of search methods for Power-LawRandom Graph (PLRG). The legends are the same as
in Table 2.

distribution model 50 % (queries for hot objects) 100 % (all queries)
query/replication metrics flood ring walk state flood ring walk state

#hops 2.39 3.40 7.30 6.11 2.39 3.40 7.30 6.11
Uniform / #msgs per node 4.162 0.369 0.051 0.045 4.162 0.369 0.051 0.045
Uniform #nodes visited 4556 933 141 151 4556 933 141 151

peak msgs 64.9 6.4 1.3 1.2 64.9 6.4 1.3 1.2

#hops 1.60 2.18 1.66 1.66 2.03 3.05 9.39 7.94
Zipf-like / #msgs per node 2.961 0.109 0.021 0.021 3.548 0.423 0.058 0.051

Proportional #nodes visited 3725 357 49 60 4137 810 143 153
peak msgs 43.8 2.0 0.7 0.8 54.5 7.0 1.6 1.5

#hops 1.88 2.70 2.31 2.15 2.10 3.02 4.61 4.12
Zipf-like / #msgs per node 3.874 0.208 0.027 0.026 4.007 0.302 0.038 0.035
Square root #nodes visited 4404 621 67 80 4479 789 101 114

peak msgs 62.5 3.8 0.8 0.9 63.8 5.3 1.1 1.1

Table 4: Simulation results of search methods for Gnutella Graph. The legends are the same as in Table 2.
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distribution model 50 % (queries for hot objects) 100 % (all queries)
query/replication metrics flood ring walk state flood ring walk state

#hops 6.52 19.15 27.95 15.20 6.52 19.15 27.95 15.20
Uniform / #msgs per node 0.472 0.070 0.068 0.041 0.472 0.070 0.068 0.041
Uniform #nodes visited 1692 128 107 128 1692 128 107 128

peak msgs 0.72 0.18 0.30 0.16 0.72 0.18 0.30 0.16

#hops 1.70 2.32 1.95 1.77 4.71 19.04 33.78 15.14
Zipf-like / #msgs per node 0.321 0.003 0.011 0.010 0.392 0.120 0.082 0.040

Proportional #nodes visited 1398 14 22 28 1533 118 111 121
peak msgs 0.57 0.02 0.07 0.06 0.64 0.25 0.26 0.16

#hops 2.77 4.64 4.60 3.32 4.31 10.66 15.53 8.22
Zipf-like / #msgs per node 0.437 0.008 0.018 0.015 0.450 0.034 0.041 0.025
Square root #nodes visited 1647 31 34 42 1656 70 67 77

peak msgs 0.68 0.04 0.10 0.08 0.68 0.10 0.19 0.12

Table 5: Simulation results of search methods for Grid Graph. The legends are the same as in Table 2.

number of hops. “Checking” means that a walker periodicallychecks with the original requester before walking to
the next node (of course, the checking is actually done by thenode forwarding the walker). The checking method
still uses a TTL, but the TTL is very large and is mainly used toprevent loops.

Our simulations show that checking is the right approach forterminating searches in random walks. The TTL
approach runs into the same TTL selection issue in flooding. Meanwhile, since there are a fixed number of walkers
(typically 16 to 64), having the walkers check back with the requester will not lead to message implosion at the
requester node. Of course, checking does have overhead; each check requires a message exchange between a node
and the requester node. Further experiments show that checking once every fourth step along the way strikes a good
balance between the overhead of the checking messages and the benefits of checking.

We experimented with different number of walkers. With morewalkers, we can find objects faster, but also
generate more loads. And when the number of walkers is big enough, increasing it further yield little reduction in
the number of hops, but significantly increases the message traffic. Usually, 16 to 64 walkers give good results. We
choose 32 walkers in our simulations. (Due to space limitations we omit the results here.)

Tables 2 through 5 compare the discussed search methods under all combinations of query and replication dis-
tributions for the four network topologies. There are two sets of columns in each table; the first set are results of the
queries to 50th percentile of hottest objects, and the second set are results of all queries.

The results show that the 32-walker random walk reduces message overhead bytwo orders of magnitudefor
all queries across all network topologies, at the expense ofslight increase in the number of hops (increasing from
2-6 to 7-15). The 32-walker random walk generally outperforms expanding ring as well, particularly in PLRG and
Gnutella graphs.

We also studied an improvement to the above approach by asking each node to keep states. When a search is
started, allN walkers are tagged with a unique ID. For each ID, a node remembers the neighbors to which it has
forwarded queries of that ID, and when a new query with the same ID arrives, the node forwards it to a different
neighbor (randomly chosen). This state keeping accelerates the walks because walkers are less likely to cover the
same route and hence they visit more nodes. Simulation results, also shown in the tables, confirm the improvement.
Compared with random walks without state keeping, random walk with state keeping shows the biggest improvement
in Random and Grid graphs, reducing message overhead by up to30%, and reducing number of hops by up to 30%.
However, the improvements for PLRG and Gnutella graphs are small. Hence, depending on the implementation
overhead of state keeping, each P2P network should decide separately whether state keeping is worthwhile.
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4.3 Principles of Scalable Searches in Unstructured Networks

Our results show that thek-walker random walk is a much more scalable search method than flooding. However,
perhaps more important than this conclusion is the understanding we have gained from this exercise. We summarize
it here.

The key to scalable searches in unstructured network is to cover the right number of nodes as quickly as possible
and with as little overhead as possible. In unstructured network, the only way to find objects is to visit enough nodes
so that, statistically speaking, one of the nodes has the object. However, in reaching the required node coverage, one
must pay attention to the following:� Adaptive termination is very important.TTL-based mechanism does not work. Any adaptive/dynamic termi-

nation mechanism must avoid the implosion problem at the requester node. The checking method described
above is a good example of adaptive termination.� Message duplication should be minimized.Preferrably, each query should visit a node just once. More visits
are wasteful in terms of the message overhead.� Granularity of the coverage should be small.Each additional step in the search should not significantly in-
crease the number of nodes visited. This perhaps is the fundamental difference between flooding and multiple-
walker random walk. In flooding, an additional step could expoentially increase the number of nodes visited;
in random walk, an additional step increases the number of nodes visited by a constant. Since each search
only requires a certain number of nodes to be visited, the extra nodes covered by flooding merely increase the
per-node load.

Under these constraints, a search algorithm should reduce the latency as much as possible.

We have not done an exhaustive study of all search algorithms, and we do not claim thek-walker random walk is
optimal. However, we hope that the above principles will aidthe understanding and search for the optimal methods.

5 Replication: Theory

Our study in the previous section examined how one should search for an object, assuming that it is replicated at some
random locations in the network. Certain P2P systems such asGnutella have rigid assumptions on how replications
of objects happen in the system; that is, only nodes that request an object make copies of the object. Other P2P
systems such as FreeNet allow for more proactive replications of objects, where an object may be replicated at a
node even though the node has not requested the object.

For systems that allow proactive replications, we study thequestion: how many copies of each object should
there be so that the search overhead for the object is minimized, assuming that the total amount of storage for objects
in the network is fixed? Answers to this question have implications to non-proactive replication systems as well,
because the information of an object’s location could be proactively replicated to expedite the searches.

To formulate this question more precisely, we first use a verysimple model to address the question theoretically.
This model is more extensively analyzed in [5]. In the next section we use simulations to analyze the question.

We consider a simple model where there aren sites andm objects. Each objecti is replicated atri random
(distinct) sites, and setR = Pi ri. We assume that the objects are requested with relative rates qi, where we
normalize this by setting

Pi qi = 1. For convenience, we assume that query and replication strategies are such that1� ri � n and that searches go on until a copy is found. (The other casesare dealt with in [5], and the conclusions
are consistent with, but a bit messier than, what we present here). Search consists of randomly probing sites until
the desired object is found. Thus, the probabilityPr(k) that the object is found on thek’th probe is given by:Pri(k) = rin (1� rin )k�1
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Theaverage search sizeAi is merely the fraction of sites which have replicas of the object:Ai = nri
We are interested in the average search sizeA, whereA =Pi qiAi = nPi qiri . The average search size essentially
captures the message overhead of efficient searches.

If there were no limit on theri then clearly the optimal strategy would be to replicate everything everywhere,
settingri = n, and then all searches become trivial. Instead, we assume that the average number of these replicas
per site,� = Rn , is fixed and less thanm. The question is how to allocate theseR replicas among the sites.

The simplest replication strategy is to create the same number of replicas of each object:ri = Rm . We call this
theuniform replication strategy. In this case the average search sizeAuniform is given by:Auniform=Xi qim� = m�
which is independent of the query distribution.

It is very clear, though, that uniformly replicating all objects, even those that are not frequently queried, is
inefficient. A more natural policy, one that results from having the querying sites cache the results of their query, is
to replicateproportional to the querying rate:ri = Rqi. This should reduce the search sizes for the more popular
objects.

However, a quick calculation reveals that theaverageremains the same:Aproportional = nXi qiRqi = m� = Auniform

Thus, the Proportional and Uniform replication strategiesyield exactlythe same average search size, and that average
search size is independent of the query distribution.

Another important metric that captures the load balancing ability of a replication strategy is theutilization rate,Ui = Rqiri
that is, the rate of requests that a replica of objecti serves (the random probing search process implies that all
replicas of the same object have the same utilization rate).Note that the average utilization over all objectsU = Pi riUi=R = 1 is fixed for all replication strategies. The maximum utilizationmaxi Ui, however, varies
considerably.

The distributions of average search sizes and utilization rates for an object are quite different between the Uni-
form and Proportional strategies. For Uniform replication, all objects have the same average search size, but replicas
have utilization ratesproportional to their query rates. Proportional replication achieves perfect load balancing with
all replicas having the same utilization rate, but average search sizes vary with more popular objects having smaller
average search sizes than less popular ones. Objects whose query rates are greater than average (i.e., greater than1m ) do better with Proportional replication, and the other objects do better with Uniform replication. Interestingly,
the weighted average of the search sizes over all objects balances out to be unchanged.

Square-Root Replication Given that Uniform and Proportional have the same average search size, a natural ques-
tion is what is the optimal way to allocate the replicas so that the average search size is minimized? A simple
calculation (see [5]) reveals that Square-Root replication is optimal; that is,A is minimized whenri = �pqi where� = RPipqi . The average search size is Aoptimal= 1�(Xi pqi)2

Table 6 lists properties of the three replication strategies. Square-Root replication is such that both average search
size and utilization rate vary per object, but the variance in utilization is considerably smaller than with Uniform,
and the variance in average search size is considerably smaller than with Proportional.
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startegy A ri Ai = n=ri Ui = Rqi=ri
Uniform ��1m R=m ��1m qim

Proportional ��1m qiR (�qi)�1 1
Square-Root ��1(Pipqi)2 Rpqi=Pj pqj ��1Pjpqj=pqi pqiPjpqj

Table 6: Comparing the three replication strategies: Uniform, Proportional, and Square-Root.

5.1 Specific Query Distributions

We now consider query distributionsq1 � q2 � � � � � qm which are truncated Geometric and Pareto distributions.
We compute the average search sizesAoptimal for these distributions.

Truncated Geometric Distribution Gm(�) is defined byqi = �i=C (i = 1; : : : ;m) ;
where C = nXi=1 �i = (�� �m+1)=(1 � �)
is a normalization factor. Square-Root replication hasri=R = �i=2=B whereB = mXi=1 �i=2 = (�1=2 � �(m+1)=2)=(1 � �1=2) :
We thus have �Aoptimal= (B=C) mXi=1 �i=2 = B2=C = 1 + �1=2�1=2 + �(m+1)=2 :

Truncated Pareto Distribution Rm(�) is a truncation tom objects of a Pareto distribution with shape parameter�. Thus, qi = i���1=B�+1;m (i = 1; : : : ;m) ;
where the normalization factor isBy;m = mXi=1 i�y � Z m1 x�ydx = m1�y � 11� y (y 6= 1) or lnm (y = 1) :
For sufficiently largem we can approximateBy;m � 8<: lnm (y < 1)m1�y=(1� y) (y = 1)1=(y � 1) (y > 1)
With Square-Root replication we obtainri=R = i(���1)=2=B(�+1)=2;m
and average search size of�Aoptimal= (B(�+1)=2;m)2=B�+1;m � 8<: 4�m1��=(1 � �)2 (� < 1)ln2m (� = 1)4�=(� � 1)2 (� > 1)
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Figure 5: Uniform, Proportional, and Square-Root strategies on a truncated Pareto distribution withm = 100 and� = 0:2

We are now able to compute thegain factor, Auniform=Aoptimal, of using Square-Root rather than Uniform
or Proportional replication. For Geometric distribution and for Pareto distribution with� > 1, the optimal average
search size isconstant. Thus, the gain factor is�(m). The gain factor is�(m�) for Pareto with� < 1 and�(m= ln2m) for � = 1.

Figure 5 helps visualize the different properties of the three replication strategies. Both Uniform and Square-
Root allocate to popular objects less than their “fair share” and to less popular objects more than their “fair share”
of replicas, but Square-Root does so to a lesser extent. The variance in average search sizes of different objects
with Square-Root is considerably smaller than with Proportional. The maximum utilization rate with Square-Root,
is much lower than with Uniform (although larger than Proportional which provides optimal load balancing). The
same patterns occur for other values ofm and�, but the gaps grow with the skew, thus, are larger for more objects
(largerm) and larger values of the shape parameter value�.

5.2 Achieving Square-Root Replication

While the Uniform and Proportional strategies are significantly suboptimal with respect to the average query size
metric, they both have the advantage of being easy to implement in a distributed fashion. Uniform replication merely
calls for a fixed number of copies to be made for each object, and Proportional replication calls for a fixed number of
copies to be made of the requested object after each query. The question is then whether we can achieve the optimal
Square-Root replication strategy with a distributed algorithm.

Assume that each query keeps track of the search size, that is, how many probes it took before finding the object.
Then let’s assume that each time a query is finished, the object is copied to a number of sites proportional to the
number of probes. This means that on average thei’th object will be replicated� nri times each time a query is
issued (where� is an arbitrary constant). Thus, the number of copiesri can be roughly described by the differential
equation _ri = qi� nri
where _ri is the time derivative ofri.

If we look at the ratio of two objects, ask how the logarithm ofthis quantity changes, we find that, settingzi;j = ln rirj , _z = �n( qjr2j � qir2i )
Thus, Square-Root replication,ri = �pqi is a fixed point of this equation; once that allocation has been achieved,
the ratios don’t change (but the constant� does as the total number of copies changes).

This heuristic calculation suggests that perhaps replicating proportional to the number of sites probed would
yield Square-Root replication. In the next section we simulate a number of replication policies and evaluate their
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performance.

Our analysis above makes some implicit assumptions on the process governing thedeletion of replicas. In
particular, we mentioned two schemes for creation of new replicas: Proportional replication scheme where each
query generates a fixed number of replicas and Square-Root replication scheme where each query generates number
of replicas proportional to search size. The analysis of both schemes assumes that replicas disappear over time and
new replicas are created. The steady state is achieved when the creation rate equals the deletion rate. For these
schemes to achieve their respective fixed points, the lifetimes of replicas must beindependentof object identity or
query rate. Examples of deletion processes that have this independence are: assigning fixed lifetimes (or lifetimes
from a fixed distribution) for each replica, subject replicas at each site to First In First out (FIFO) replacement, or
perform random deletions. Interesting examples of deletion processes thatdo nothave this independence property
are usage-based replacement policies such as Least Recently Used (LRU) or Least Frequently Used (LFU). These
policies couldimpedethe Square-Root scheme: Recall that Square-Root replication has different utilization for
replicas of different objects; thus, the scheme would have adifferent fixed point under LRU or LFU. Since the fixed-
point of Proportional replication is such that all replicashave the same utilization rate, the fixed-point of that scheme
is still LRU and LFU, but the variance in replica lifetime would increase and thus stability would decrease.

Note that unlike FreeNet’s replication algorithm, the replication strategies studied here do not attempt to cluster
certain group of objects in certain regions of the network. In other words, they do not produce any correlation
between routing and object locations, or, “structure,” in the P2P network.

6 Evaluation of Replication Methods

We observe that there are two replication strategies that are easily implementable. One is “owner replication”, where,
when a search is successful, the object is stored at the requester node only. The other is “path replication”, where,
when a search succeeds, the object is stored at all nodes along the path from the requester node to the provider node.
Owner replication is used in systems such as Gnutella. Path replication is used in systems such as FreeNet.

The analysis in the previous section suggests that square-root replication distribution is needed to minimize the
overall search traffic, and an object should be replicated atthe number of nodes that is proportional to the number of
search probes. If a P2P system uses thek-walker random walk as the search algorithm, then on average, the number
of nodes between the requester node and the provider node is1=k of the total nodes visited. Path replication in this
system should result in square-root distribution.

However, an aspect of path replication that is not studied inthe previous section is that it tends to replicate objects
to nodes that are topologically along the same path. To understand how this impacts the overall search traffic, we
also study a third replication algorithm, “random replication.” In random replication, once a search succeeds, we
count the number of nodes on the path between the requester and the provider,m, then randomly pickm of the nodes
that thek walkers visited to replicate the object. “Random replication” is harder to implement, but the performance
difference between it and path replication highlights the topological impact of path replication.

We design a set of dynamic simulations to study the three replication strategies: owner replication, path replica-
tion, and random replication. We look at how they perform in the Random graph network topology.

A simulation starts by placing theM distinct objects randomly into the network. Then theQuery Generator
starts to generate queries according to a Poisson process with average generating rate at 5 queries per second. The
query distribution among theM objects follows Zipf-like distribution with a given� value. The� value for the
results presented here is 1.20. (We also run simulations with � = 0:80 and� = 2:40. The results are similar. ) For
each query, a node (that doesn’t have the requested object yet) is chosen randomly to start the query.

For the search method, we use the 32-walker random Walk with state keeping, with checking at every fourth
step..

Each node can store at mostobjAllow objects (40 in our simulations). Every time a node wants to store a new
object but its storage space is full, an object is randomly chosen to be tossed out (Random Deletion).
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Figure 6: Distribution of replication ratios under Path replication and Random replication.

Owner Replication Path Replication Random Replication
avg #msgs per node 56542.6 19155.5 14463.0

factor of improvement 1 2.95 3.91

Table 7: Message traffic of different replication strategies.

“Snapshots” are taken for every 2,000-query chunks. To allow for enough “warming up” process, we run each
simulation for 10,000 seconds (which would generate about 50,000 queries given our generating rate), and look at
the later part of the simulation.

For each replication strategy, we are interested in three questions:� what kind of replication ratio distribution does the strategy generate?� what is the average number of messages per node in a system using the strategy?� what is the distribution of number of hops in a system using the strategy?

Figure 6 shows log-log plots of the distribution of replication ratios under path replication and random repli-
cation. We also plot the distribution that is the square rootof the query distribution. Confirming our thereotical
predictions, the results show clearly that both path replication and random replication generates replication ratios
that are quite close to square-root of query ratios. (Due to space constraints we omit the graph for owner replication,
except to say that it matches proportional distribution very closely.)

Table 7 lists the average number of messages a node has to process during the simulation. The result shows
clearly the benefit of square-root distribution on reducingsearch traffic. Path replication and random replication
reduces the overall message traffic by a factor of three to four. Hence, proactive replication such as path or random
replication can improve the scalability of P2P systems significantly.

Much of the traffic reduction comes from reducing the number of hops it takes to find an object. Figure 7 shows
the cumulative hop distribution for all queries under the three replication strategies. Path replication and random
replication clearly outperform the owner replication; forexample, the percentage of queries that finish within four
hops are 71% for owner replication, 8691

The results also show that random replication improves uponthe path replication. Thus, the topological effects
of replicating along the path do hurt performance somewhat.Hence, if the implementation is not overly complex, a
P2P system should adopt random replication instead of path replication.
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For P2P systems that do not want to store an object at nodes that have not requested it, are there ways to reduce
the search traffic? We think the answer is yes. Such systems can still replicate the information that an object is
stored at certain nodes following path or random replication, so that future searches for the object can be shortened.
Each node can randomly delete a “hint” when it runs out of space to hold them all. As demonstrated in the above
simulation, this simple step can improve the scalability ofthe system.

7 Related Work

As we mentioned in the Introduction, there are several different kinds of P2P networks. The highly structured P2P
networks, such as CAN, Chord, Past, and Tapestry, all use precise placement algorithms to make searching efficient.
However these systems have not been widely deployed, and their ability to operate with extremely unreliable nodes
has not yet been demonstrated. Moreover, they cannot deal with partial-match queries (e.g., searching for all objects
whose titles contain two specific words).

There are also many loosely structured P2P networks. FreeNet [8], FreeHaven [10], MojoNation [14] are a but
few examples of this rapidly growing list. Some of these systems, such as FreeHaven and MojoNation, focus on
the trust, reputation management and security issues in Peer-to-Peer systems. Others, such as FreeNet, focus on
file storage aspects of the system. Most of these loosely structured P2P networks use either directories or placement
hints to improve the scalability of the search process. However, centralized directories don’t scale well and placement
hints don’t handle partial-match queries.

Unstructured P2P systems like Gnutella can handle partial match queries, so the main question is whether their
query performance can be made scalable, and that is what we focused on in this paper. We found that by adopting ak-
random walk search method the performance of the search, in terms of load upon the network, could be improved by
two orders of magnitude. Moreover, we found that the P2P network should not have a power-law degree distribution,
nor resemble a mesh; random graphs P2P networks produce goodresults.

An interesting paper by Adamicet al. [1] studies random-walk search strategies in power-law networks, and finds
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that by modifying walkers to seek out high degree nodes the search performance can be greatly increased. However,
such strategies greatly reduce the scalability of the search algorithm, which is our focus and not the subject of [1],
because then almost all queries are sent to the very high degree nodes, making them bear the burden of almost the
entire query load of the network.

The random walk search style is used in Freenet as well. There, the walk is guided; each node uses hints to
help it choose which node to forward the query to. It also usesonly one “walker”. In comparison, our focus is on
unstructured network, where hints are not available,

We found a wealth of information on Gnutella at web sites suchas www.openP2P.com and gnutella.wego.com.
We are also aware of a number of published research studies onthe Gnutella network. For example, the freeloader
phenomenon is examined in [2], and the topology and query distribution are studied in [19, 13]. However, none of
these papers address the issue of better search algorithms or replication algorithms.

8 Conclusions and Future Work

This paper reports our simulation and modeling studies of several search algorithms and replication strategies for
decentralized, unstructured peer-to-peer networks.

From simulation studies, we have learned that scalable search algorithm designs for such networks should con-
sider three properties: adaptive termination, minimizingmessage duplication, and small granularity of coverage.
The flooding algorithm being used In Gnutella does not satisfy any of the properties. We show that it generates a lot
of network traffic and does not scale well. The expanding ringapproach improves the flooding algorithm by using an
adaptive termination mechanism. It can find data reasonablyquickly while reducing the network traffic substantially,
sometimes by an order of magnitude. The k-walker random walkwith checking approach can find data more quickly
while reducing the traffic further by another order of magnitude, because it reduces the granularity of coverage by
using a fixed number of random walkers.

Our study on replication strategies show that for a fixed average number of replicas per node, square-root replica-
tion distribution is theoretically optimal in terms of minimizing the overall search traffic. Our simulations validated
the theoretical analysis. We simulated owner, path and random replications, with the k-walker random walk with
state keeping. Since path and random replications lead to square-root replication distribution, their overall message
traffic is about four times less than the owner replication approach.

We have also learned from our simulation studies that uniformly random graphs are better for searching and data
replication. The high degree nodes in power-law random graph and the current gnutella network bear much higher
load than average and introduce more duplication overhead in searches. The results imply that it is better to form a
uniformly random network topology using graph-building algorithms in peer-to-peer systems.

This study is our first step towards understanding the properties of scalable search algorithms, replication strate-
gies, and network topologies for decentralized, unstructured peer-to-peer networks. There are still many open issues
to study. It would be useful to model various search algorithms with certain network topologies and study them
analytically. The k-walker random walk with checking and state keeping has a lot of rooms to improve. There is
still a large gap between this algorithm and the optimal casein terms of minimum number of hops and minimum
message traffic.
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