Search and Replication in Unstructured Peer-to-Peer N&Bvo

Qin Lv Pei Cao Edith Cohen Kai Li Scott Shenker

Abstract

Decentralized and unstructured peer-to-peer networkis asdsnutella are attractive for certain applications
because they require no centralized directories and nasgreontrol over network topologies and data place-
ment. However, the flooding-based query algorithm used int@la does not scale; each individual query gener-
ates a large amount of traffic and, as it grows, the systenklyui@comes overwhelmed with the query-induced
load. This paper explores, through simulation, variousralitives to gnutella’s query algorithm, data replication
method, and network topology. We propose a query algorithsed on multiple random walks that resolves
queries almost as quickly as gnutella’s flooding methodevrgtucing the network traffic by two orders of mag-
nitude in many cases. We also present a distributed rejolicatrategy that yields close-to-optimal performance.
Finally, we find that among the various network topologiesamasider, uniform random graphs yield the best
performance.

1 Introduction

The computer science community has become accustomed taténeet’s continuing rapid growth, but even to
such jaded observers the explosive increase in Peer-todP2R) network usage has been astounding. Within a few
months of Napster’'s [12] introduction in 1999 the system $@kad widely, and recent measurement data suggests
that P2P applications are having a very significant and hagigdwing impact on Internet traffic [11, 15]. Therefore,

it is important to study the performance and scalabilityhede P2P networks.

Currently, there are several different architectures 2P lretworks:

Centralized: Napster and other similar systems have a constantly-ugditectory hosted at central locations(,
the Napster web site). Nodes in the P2P network issue querig® central directory server to find which
other nodes hold the desired files. While Napster was extyesuecessful before its recent legal troubles, it
is clear that such centralized approaches scale poorly aveldingle points of failure.

Decentralized but Structured: These systems have no central directory server, and so eeatdglized, but have
a significant amount of structure. By “structure” we meart tine P2P network topology (that is, the set
of connections between P2P members) is tightly controlied that files are placed not at random nodes
but at specified locations that will make subsequent quer@sser to satisfy. In some systems, those with
“loose structure,” this placement of files is based on hithite;Freenet P2P network [8] is an example of such
a system. In systems with “tight structure”, the structuféhe P2P network and the placement of files is
extremely precise and so subsequent queries can be satisfie@fficiently. There is a growing literature
on what might be calletbokup systemwhich support a hash-table-like interface; see [16, 20238, Such
tightly structured P2P designs are quite prevalent in tisearch literature, but almost completely invisible
on the current network. Moreover, it isn't clear how well bugdesigns work with an extremely transient
population of nodes, which seems to be a characteristiceoNtipster community.

Decentralized and Unstructured: These are systems in which there is neither a centralizesttdiy nor any
precise control over the network topology or file placemésnutella [9] is an example of such designs. The
network is formed by nodes joining the network following gile loose rules (for example, those described

in [6]). The resultant topology has certain properties,thatplacement of files is not based on any knowledge
of the topology (as it is in structured designs). To find a fileyode queries its neighbors. The most typical
query method is flooding, where the query is propogated tagitihbors within a certain radius [6]. These
unstructured designs are extremely resilient to nodegiagtand leaving the system. However, the current
search mechanisms are extremely unscalable, generatigléeads on the network participants.

In this paper, we focus on gnutella-like decentralized tuetured P2P systems. We do so because (1) these
systems are actively used by a large community of Internetsu®2, 7], and (2) these systems have not yet been
subject to much serious research, except for empiricalesud

The goal of this paper is to study more-scalable alternatteeexisting Gnutella algorithms, focusing on the
search and replication aspects. We first quantify the paalirgr properties of the flooding search algorithms. We
then propose, as an alternative, a k-walker random walkrigthgo that greatly reduces the load generated by each
guery. We also show that active replication (where the filag tve stored at arbitrary nodes) produces lower overall
guery load than non-active node-based replicatian, @ file is only replicated at nodes requesting the file). Path
replication, where the file is replicated along the path ftberequester to the destination, yields a close-to-optima
replication distribution. Finally, we show that for unsttured networks, power-law random graphs are less desirabl
than uniform random graphs and so P2P system should adqggt-gralding algorithms that reduce the likelihood
of very-high degree nodes.

This paper has 8 sections. In Section 2 we describe our mddelstructured P2P systems and our evaluation
methodology. In Section 3 we discuss the limitations of theding approach currently used by gnutella, and then,
in Section 4, we propose and evaluate various alternatipeoaphes. We discuss replication strategies in Section 5
and evaluate these approaches in Section 6. We discussdrelatk in Section 7 and conclude in Section 8.

2 Modeling and Evaluation Methodology

It is impossible to model all the dynamics in a P2P system enrternet. Hence, we use simple models to derive
understanding of the behavior of different algorithms, aedfy the behavior of the algorithms on slightly more
realistic simulations. We are not looking for quantitatresults, but rather qualitative ones, so we omit many detalil
in our modeling and simulation.

2.1 Abstractions

We look at three aspects of a P2P system: network topologrydtistribution and replication distribution. By
network topology, we mean the graph formed by nodes in thear&tat an instant. For simplicity, we assume that
the graph does not change during the simulation of our algus. By query distribution, we mean the distribution
of frequency of lookups to files. Again, we assume that th&sridhution is fixed. By replication distribution, we
mean the distribution of the percentage of nodes that haweteylar file. During our study of search algorithms,
we assume static replication distributions.

Our assumption of fixed network topology and fixed query itistions are obviously gross simplifications.
However, for the purpose of our study, if one assumes thatitiie to complete a search is short compared to the
time of change in network topology and change in query distion, results obtained from these settings are still
indicative of performance in real systems.

We use four network topologies in our study:

e Power-Law Random Graph (PLRG): this is a 9230-node randaphgr The node degrees follow a power-
law distribution; if one ranks all nodes from the most coriedcto the least connected, then iftb most
connected node has/i® neighbors, where is a constant. Many real-life P2P networks have topolodias t
are power-law random graphs[13]. This particular graphdaas 0.8. The graph is generated by a modified
version of the GT-ITM topology generator [21].

Power-Law Random Graph (PLRG): 9230 nodes Random Graph: 9836 nodes

10000 14 T T
PLRG + random graph +
alpha=0.8 X
12 +
000 F & o«
10 =
-
8
2 2
£ 100} X —
ES ®
6 —
-
4+ -
10 ¢
A
2F —
-
1 L L L 0 L L L L L L L L L
1 10 100 1000 10000 0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000
Gnutella Graph: 4736 nodes Two-Dimensional Grid Graph: 10000 nodes (100 x 100)
1000 T 5
gnutella graph +
4
100 | +
T + 4t
. 3+ —
L L
£ £
S £
2 +
10
-
-
-
-
- 1
-_—
_—
. ‘ ‘ ‘ o L_gidgraph - ‘ ‘ ‘ ‘
1 10 100 1000 10000 0 2000 4000 6000 8000 10000

Figure 1: Distribution of node degrees in the four netwongdiogy graphs. Note that we use log scale for PLRG
and Gnutella, and linear scale for Random and Grid.

¢ Normal Random Graph (Random): a 9836-node random graphaedeby a modified version of GT-ITM
topology generator[21]. The average degree of nodes inrbqehgs 4. The distribution is shown in Figure 1.

e Gnutella graph (Gnutella): a snapshot of the gnutella P2Rark in August 2001 [4]. The graph has 4736
nodes. Its node degrees roughly follow a two-segment péavedistribution, as shown in Figure 1.

e Two-Dimensional Grid (Grid): a 10000-node two-dimensioia 100x100). We choose this simple graph for
comparison purposes.

Node degree distributions of the four graphs are shown inr€id. Key statistics of the graphs are also summarized
in Table 2.1.

#nodes| total #edges avg. node degree std. dev.| max degree median degree
PLRG 9230 20599 4.46 27.9 1746 1
Random| 9836 20099 4.09 1.95 13 4
Gnutella|| 4736 13022 5.50 10.7 136 2
Grid 10000 19800 3.96 0.20 4 4

Table 1: Key statistics of the network topologies that weduse

For query distribution, we assume that there Arebjects of interest. (In this paper we use the terms “file” and
“object” interchangeably.) We investigate the followinigtdbutions:

e Uniform: all objects are equally popular. In other wordse firobability that an object will be searched by a
node in the network i$/N, whereN is the number of objects of interest.

e Zipf-like: object popularity follows a Zipf-like distribiion. If one ranks all objects from the most popular to
the least popular, then the probability that thl ranked object is searched by a node is proportional/i6.
Studies have shown that Napster, Gnutella and Web queridgddollow Zipf-like distributions [3, 19].

In other words, our query distributions are:

N
da =1 1)
i=1

1
Uniform:q; = N (2)

Zipf —like 1 q; o< i ¢ 3)

)

For replication distribution, we simulate it in two ways. thme first part of our study, where we focus on search
methods, we assunwatic replication, where object is randomly placed at; nodes, withr; following certain
distribution. Since we study unstructured networks, wherobject is replicated at; nodes, ther; nodes are
randomly choosen in the graph. In the second part of the studgre we study different replication strategies and
their impact on search efficiency, we simulate the dynanptication of the objects.

We use the following static replication distributions:

e Uniform: all objects are replicated at roughly the same nends nodes. In the simulation, we assume that
each object is replicated at 1% of the nodes.

e Proportional: the replication ratio of an objecis proportional to the query probability of the object. If
one assumes only nodes requesting an object store the ,otbjent the replication distribution is usually
proportional to query distribution.

e Square-root: replication ratio of an objeds proportional to the square root of its query probabiljty The
reason for the square-root distribution is discussed iniG@e&.

In other words, our replication distributions are:

N

Z r, = Rx N (4)
=1
Uniform:r; = R 5)
Proportional : r; o~ g (6)
1
Square —root : r; o< ¢ (7)

where R is the average replication ratio.

Clearly, there are three combinations of query distributiad replication distribution: uniform/uniform, zipfgportional,
and zipf/square-root.

2.2 Metrics

Performance issues in real P2P systems are extremely aatgali In addition to issues such as load on the network,
load on network participants, and delays in getting posiéiaswers, there are a host of other criteria such as success
rate of the search, the bandwidth of the selected providdesicand fairness to both the requester and the provider.
It is impossible for us to use all of these criteria in evalugsearch and replication algorithms.

Instead, we focus on efficiency aspects of the algorithmelhsahnd use the following simple metrics in our
abstract P2P networks. These metrics, though simple, réfledundamental properties of the aglorithms.

e User aspects:

— Pr(success): the probability of success of finding the gdeobject before the search terminates. Dif-
ferent algorithms have different criteria for terminatitige search, and lead to different probability of
success under various replication distributions.

— #hops: delay in finding an object as measured in number of. Wdesdo not model the actual network
latency here, but rather just measure the abstract numibepsfthat a successful search message travels
before it replies to the originator.

e Load aspects:

— avg. #msgs per node: overhead of an algorithm as measuredrige number of search messages each
node in the network has to process. The motivation for thiriogeis that in P2P systems, the most
notable overhead tend to be the processing load that theretmposes on each participant. The load,
usually interrupt processing or message processing, ésttirproportional to the number of messages
that the node has to process.

— #nodes visited: the number of network participants thatergsi search messages travel through. This
is an indirect measure of the impact that a query generatéiseowhole network,

— peak #msgs: to identify hot spots in the network, we caleulaé number of messages that the busiest
node has to process for a set of queries.

e Aggregate performance: for each of the above measureshveri per-query measures, we calculate an
aggregate performance number, which is the performancaabf guery convoluted with the query probability.
That is, for each objeat under each network settings, if the performance measurg)isthen the aggregate
is sumg; * a(7)).

2.3 Simulation Methodology

In our evalution of each search method, we run a set of sionkfor each combination of query distribution and
replicatin distribution, and report results averaged dhierset of simulations. In all the simulations, the number of
objects,NV, is 100, the average replication ratiB, is 1.0%, and the parameterin the Zipf-like distribution is 1.20.

For each set of simulations, we first select the topology e then generataumPlacesets of replica place-
ments; replicas are are placethdomlyin the network, and the distribution of replicas follows gpecified replica-
tion distriubtion. For each replica placement, we genenateQuenydifferent queries following the specified query
distribution. Then for each of the queries, we simulate #&rching process using the designated search method.
We can run the simulation for each query independent of ajberies because the object replication is fixed, and
hence running all the queries concurrently is the same asngreach one separately and then summing the results.

Statistics are collected from thmumPlacex numQueryqueries. In each set of simulationsymPlace = 10
andnumQuery = 100 This results in1000 different queries. We then calculate the results in theofailhg way:
Pr(success)s the number of successful queries divided by the total remolb queries generate@vgHopsis the
average number of hops taken for each successful qaegysgds the average number of messages generated for

5

Flooding: Pr(success) vs TTL Flooding: avg #msgs per node vs TTL

100 e Gnutella ------ I Koo Herrrn s *
Grid -8 e

80 -

/ Gnutella ---*---
60 * Grid @

Pr(success) %
avg #msgs per node

40

20f 1

TTL TTL

Figure 2: How the probability of success and the per-nodesamsoverhead vary by the TTL setting in four network
topologies.

each query divided by the total number of nodes in that ndéwargNodess the average number of nodes visited
(i.e. received at least one message) during each qdapMsgss the average duplication percentage calcualted as
(msgs - nodes)/msgandpeakMsgis the maximal sum of messages received by any single nodiegdilne set of
simuliations, divided by the total number of queries in thett of simulation. These averages are presented in tables
and figures in this paper. Due to space limitation we do natgarestandard deviations associated with the averages,
except to point out that the standard deviation data do nmg the conclusions in the paper. We plan to present
all the data in a web site later.

As a final note about our abstractions and metrics, we sthegstliey omit a lot of issues, including the true
dynamics of node coming and going in the network, the mesdalgg's in the network, the actual load on a network
node for processing and propogating messages, etc. Hawhese models help us understand the fundamental
properties of various search and replication algorithms.

3 Limitations of Flooding

One of the major load isssues in P2P networks is the load dvidinél! network participants. Typically, the par-
ticipants are PCs at home or office, and are used for normét awd entertainment. If a PC has to handle many
network interrupts when it joins the P2P network, the usdirlve forced to take the PC off the P2P network to get
“real” work done. This in turn limits the size and the use@sgr of the P2P network.

Unfortunately, the simple flooding-style search used in t@lfaiexacerbates this problem. There are two issues
with flooding. First, it is difficult to choose an appropriafene-To-Live (TTL) to terminate the flood. Typically,
each query has a TTL assigned to it at the beginning. Eachitimsepropagated from one node to the node’s
neighbors, the TTL is reduced by 1. The process continugs Rt reaches 0. For a node that wants to find an
object but does not know how widely replicated the objegpisking the right TTL is tricky. If the TTL is too high,
the node unnecessarily burdens the network. If the TTL iddapthe node might not find the object even though a
copy exists somewhere.

To illustrate the problem, Figure 2 shows the probabilitysoécess and average per-node message overhead of
flooding as TTL increases. The search is for an object thatlis replicated at 0.125% of the nodes, which means
that on average, 800 nodes need to be visited to find the ohjdxtan see from the figures that different TTLs are
needed to reach this coverage in different network topelgUnfortunately, since in practice the replication ratio
of an object is unknown, users have to set TTLs high to enswgeess of the query.

Flooding: % duplicated msgs vs TTL Flooding: #nodes visited vs TTL
10000

©
S

- Gnutella ---%---
Heeeeermmameeeoen Komommmnnnnae Koo Koo Grid &

8000

@
S

~
=]
T
%
X

o
S

6000

o
<]
T

4000 -

IS
S
T
=)

#nodes visited

dupplicated msgs (%)

w
S
*

Yy 2000
20 /7

Gnutella ------
Grid -8

L I I I I I I I I I
2 3 4 5 6 7 8 9 2 3 4 5 6 7 8 9
TTL TTL

Figure 3: As the TTL increases, the percentage of query rgesdhat are duplicates increases because a node has
more neighbors forwarding the messages to it.

Second, there are many duplicate messages introduced bniipgarticularly in high connectivity graphs. By
duplicate messages we mean the multiple copies of a quergriaent to a node by its multiple neighbors. Flood-
style search does have duplication detection built in, ireguthe node to detect and discard duplicate queries.
However, duplicate queries are pure overhead in floodingeyTihcur extra network interrupt processing at the
nodes receiving them, and do not contribute to increasedcehaf finding the object. The problem worsens as the
TTL increases.

Figure 3 shows the percentage of duplicate messages andrtitzen of ungiue nodes visited as TTL increases.
As we can see from the graphs, when TTL increases, the nunhib@ique nodes visited increases, but at the same
time, the percentage of duplicate messages also increasether words, in flooding, it is not possible to increase
the number of nodes covered in a search without increasmgduplication in the search.

These limitations mean that flooding incurs considerablssage processing overhead for each query, increasing
the load on each node as the network expands and the quergargases, to the point that a node can be so loaded
that it has to leave the network. Other researchers havenatsal the limitations of flooding [17].

Our simulations also show that Power-Law random graphs amadBa style graphs are particularly bad with
flooding. The presence of the highly connected nodes mearntshduplication ratios are much higher than those
in the random graph, because many nodes’ neighbors ovérldact, for flooding, the random graph would be the
best topology, because in a true random graph, the duglicadtio (liklihood that the next node already recieved
the query) is the same as the fraction of nodes visited saddgng as that fraction is small.

The random graph is also better for load distribution amasgdodes. In the random graph, the maximum load
on any one node is logarithmic to the total number of nodessthi®asearch visits. In contrast, the high degree nodes
in PLRG and Gnutella graphs have much higher load than othdes: Due to space constraints we omit the data
on peak # of messages here.

4 Finding Better Search Methods

Since flooding has inherent limitations, we try to find moralable search methods for unstructured networks. Our
first try is aimed at addressing the TTL selection problem.

25 T T

Expanding Ring: stopping TTL vs replication ratio

Expanding Ring: avg #msgs per node vs replication ratio

20 |

T T T T

Gnutella ---*---
Grid

18 f

14

12+

16 F

T T T T T T

RG ~——x-—-
Gnutella ---*---

Grid

=

1F b

stopping TTL
avg #msgs per node

0 I I I I I I I I
0.125 0.25 0.5 1.0 20 4.0 8.0 16.0 32.0 64.0

0 L S
0.125 0.25 0.5 1.0 2.0 4.0 8.0 16.0 32,0 64.0

replication ratio (%) replication ratio (%)

Figure 4: The stopping TTL and the per-node message overtmeagkpanding ring when searching objects of
various replication ratio.

4.1 Expanding Ring

One might be tempted to solve the TTL selection problem byngskodes to check with the original requester
before forwarding the query to neighbors. This way, the fload be called off when the object is found. However,
the approach can lead to message implosion at the requester iHence, we do not adopt this approach.

Instead, we use successive floods with increasing TTLs. A& statts a flood with small TTL, and waits to see if
the search is successful. Ifitis, then the node stops. @tkerthe node increases the TTL and starts another flood.
The process repeats until the object is found. We expectibifiod to perform particularly well when hot objects
are replicated more widely than cold objects, which is lkikle case in practice. We call this method “expanding
ring.”

To understand how well expanding ring works, we measure ¥eeage stopping TTL for searches to objects
with increasing replication ratios. In our simulations theanding ring starts witli'T' L = 1, and expands the TTL
linearly by 2 each time. Figure 4 shows the results for varitmpologies. As we can see, expanding ring successfully
reins in the TTL as the object’s replication ratio incread#hile searches for objects with low replication ratio need
TTLs larger than 5, the searches stop at TTL of 1 or 2 when tlgcobeplication is over 10%.

However, this adaptivity does not necessarily translatevier message overhead, because the successive retries
could lead to more messages. To understand the messageadaerhexpanding ring, we also record the average
number of messages a node has to process. The results ame shBigure 4. Comparing the message overhead
results between flooding and expanding ring, we can seeftitaibjects that are replicated at .125% of the nodes,
even if flooding uses the best TTL for each network topologgamding ring still halfs the per-node message
overhead.

To understand the overall impact of expanding rings in a P@Wwaerk, we simulate the completion of 1000
queries in P2P networks with different combinations of guastribution and replication distribution. The resulte a
shown in the “expanding ring” column in Tables 2 through Shé€Tables are a comparison of various performance
metrics of search methods in the four network topologies.)

The results show that, despite the successive retriesndiparing still reduces message overhead significantly
compared with regular flooding with a fixed TTL. The savings abtained across all query and replication dis-
tributions, even for uniform replication distributions.h& improvements are also more pronounced for Random
and Gnutella graphs than for PLRG graph, partly because @éhehigh degree nodes in PLRG graph reduce the
oppurtunity for incremental retries in expanding ring.

Expanding ring achieves the savings at the expense of stigigase in the delays to find the object. Since we
do not simulate actual network latency but use number of kmpstimate the latency, the tables also include a row

8

distribution model 50 % (queries for hot objects 100 % (all queries)

query/replication metrics flood | ring | walk | state || flood | ring | walk | state
#hops 3.40 | 5.77 | 10.30| 7.00 || 3.40 | 5.77 | 10.30| 7.00

Uniform / #msgs per nodg 2.509| 0.062| 0.031| 0.024 || 2.509| 0.061 | 0.031| 0.024
Uniform #nodes visited|| 9220 | 536 149 163 9220 | 536 149 163
peak msgs 6.37 | 026 | 0.22 | 0.19 || 6.37 | 0.26 | 0.22 | 0.19

#hops 160 | 2.08 | 1.72 | 1.64 || 251 | 403 | 9.12 | 6.66

Zipf-like / #msgs per nod¢ 1.265| 0.004 | 0.010| 0.010| 1.863| 0.053| 0.027 | 0.022
Proportional #nodes visited|| 6515 | 36 33 47 7847 | 396 | 132 | 150
peak msgs 401 002 | 0.11 | 0.10 | 523 | 0.20 | 0.17 | 0.14

#hops 223 | 319 | 282 | 251 | 270 | 4.24 | 574 | 4.43
Zipf-like / #msgs per nod¢ 2.154| 0.010| 0.014 | 0.013| 2.308| 0.031| 0.021| 0.018
Square root #nodes visited|| 8780 | 92 50 69 8983 | 269 89 109

peak msgs 588 | 0.04 | 0.16 | 0.16 | 6.14 | 0.12 | 0.17 | 0.16

Table 2: Simulation results of search methods for Randonpk&raihe first set of columns are results for queries to
the top 50% of hottest objects; the second set of columnseatdts for all queries. “Flood” is flooding with TTL=8.
“Ring” is expanding ring. “Walk” is 32-walker random walk thi checking. “State” is 32-walker random walk with
checking and state keeping.

on average number of hops as an indication of user-expetedelay. As we can see, for Random, PLRG and
Gnutella, the average # of hops only increases from 2 to 4 aulfia to 3 to 6 in expanding ring, which we believe
is tolerable for users.

Though expanding ring solves the TTL selection problem oigsinot address the message duplication issue
inherent in flooding. Inspection of simulation results skaivat the duplication contributes significantly to the
message overhead, particularly for PLRG and Gnutella grapb reduce message duplication, we try a different
approach, random walk.

4.2 Random Walks

Random walk is a well-known technique. To search for an ahjetg random walk, a node chooses a neighbor
randomly and sends the query to it. The neighbor in turns sé®one of its neighbors randomly and forwards the
query. The process continues until the object is found. Boheuery, only one copy of it is present in the network.
We call the copy a “walker.”

Our initial attempt is to use the standard random walk as eckaaethod. As expected, random walk cuts
down the message overhead significantly, by an order of radgcompared to expanding ring across the network
topologies. However, this efficiency comes at an order ofmitade increase in user-perceived delay of successful
searches.

Investigations show that the key to reducing this delay isetch the desired number of nodes as quickly as
possible. Hence, we decide to increase the number of “wallkethe random walk. That is, instead of just sending
out one query message, a requesting node sends N query e®saad each query message takes its own random
walk. The expectation is thaf walkers aftefl” steps should reach the same number of nodes as 1 walkeNaftEr
steps, and indeed simulations confirm that. Therefore, lmgu¥ walkers, we can expect to cut the delay down by
a factor of V.

Since multiple-walker random walks require a mechanisnetminate the walks, we experimented with two
methods, TTL and “checking.”. TTL means that, similar to flow, each random walk terminates after a certain

distribution model 50 % (queries for hot objects 100 % (all queries)

query/replication metrics flood | ring | walk | state || flood | ring | walk | state
#hops 237 | 350 | 895 | 847 || 2.37 | 3.50 | 895 | 8.47

Uniform / #msgs per nod¢ 3.331| 1.325| 0.030| 0.029| 3.331| 1.325| 0.030| 0.029
Uniform #nodes visited || 8935 | 4874 | 147 158 || 8935 | 4874 | 147 158
peak msgs 510.4| 132.7| 12.3 | 11.7 || 510.4| 132.7| 12.3 | 11.7

#hops 1.74 | 236 | 1.81 | 182 | 207 | 293 | 9.85 | 8.98

Zipf-like / #msgs per nod¢ 2.397| 0.593| 0.011| 0.011| 2.850| 0.961| 0.031| 0.029
Proportional #nodes visited|| 6969 | 2432 | 43 49 7923 | 3631 | 136 | 145
peak msgs | 412.7| 58.3 | 4.9 5.1 || 464.3| 989 | 12.7 | 11.7

#hops 207 | 294 | 265 | 249 || 221 | 3.17 | 537 | 4.79

Zipf-like / #msgs per nodg 3.079| 0.967| 0.014| 0.014| 3.199| 1.115| 0.021| 0.020
Square root #nodes visited|| 8434 | 3750 | 62 69 8674 | 4200 | 97 103
peak msgs | 496.0| 93.7 | 6.3 6.3 || 499.6| 111.7| 8.9 8.4

Table 3: Simulation results of search methods for Power-Bandom Graph (PLRG). The legends are the same as
in Table 2.

distribution model 50 % (queries for hot objects 100 % (all queries)
query/replication metrics flood | ring | walk | state || flood | ring | walk | state
#hops 239 | 340 | 730 | 6.11 || 239 | 3.40 | 7.30 | 6.11
Uniform / #msgs per noddgl 4.162| 0.369| 0.051| 0.045|| 4.162| 0.369 | 0.051| 0.045
Uniform #nodes visited| 4556 | 933 | 141 | 151 | 4556 | 933 | 141 | 151
peak msgs 649 | 64 1.3 1.2 649 | 64 1.3 1.2
#hops 160 | 2.18 | 1.66 | 1.66 || 2.03 | 3.05 | 9.39 | 7.94
Zipf-like / #msgs per nod¢ 2.961| 0.109| 0.021| 0.021| 3.548| 0.423| 0.058| 0.051

Proportional #nodes visited|| 3725 | 357 49 60 4137 | 810 | 143 | 153
peak msgs 43.8 | 2.0 0.7 0.8 545 | 7.0 1.6 15
#hops 188 | 270 | 231 | 215 | 2.10 | 3.02 | 4.61 | 4.12
Zipf-like / #msgs per nodeg 3.874| 0.208 | 0.027| 0.026 | 4.007 | 0.302| 0.038| 0.035
Square root #nodes visited || 4404 | 621 67 80 4479 | 789 | 101 | 114
peak msgs 62.5| 3.8 0.8 0.9 63.8 | 5.3 11 11

Table 4: Simulation results of search methods for Gnutelt@p®. The legends are the same as in Table 2.

10

distribution model 50 % (queries for hot objects 100 % (all queries)

query/replication metrics flood | ring | walk | state || flood | ring | walk | state
#hops 6.52 | 19.15| 27.95| 15.20| 6.52 | 19.15| 27.95| 15.20

Uniform / #msgs per nodgl 0.472| 0.070| 0.068| 0.041 || 0.472| 0.070| 0.068| 0.041
Uniform #nodes visited|| 1692 | 128 107 128 1692 | 128 107 128
peak msgs 0.72 | 0.18 | 0.30 | 0.16 | 0.72 | 0.18 | 0.30 | 0.16

#hops 1.70 | 232 | 195 | 1.77 || 4.71 | 19.04| 33.78| 15.14

Zipf-like / #msgs per nod¢ 0.321| 0.003| 0.011| 0.010| 0.392| 0.120| 0.082| 0.040
Proportional #nodes visited|| 1398 | 14 22 28 1533 | 118 | 111 | 121
peak msgs 0.57 | 0.02 | 0.07 | 0.06 | 0.64 | 0.25 | 0.26 | 0.16

#hops 277 | 464 | 460 | 3.32 || 431 | 10.66| 15.53| 8.22
Zipf-like / #msgs per nod¢ 0.437| 0.008| 0.018| 0.015]| 0.450| 0.034| 0.041| 0.025
Square root #nodes visited|| 1647 | 31 34 42 1656 | 70 67 77

peak msgs 068 | 0.04 | 0.10 | 0.08 | 0.68 | 0.10 | 0.19 | 0.12

Table 5: Simulation results of search methods for Grid Grapte legends are the same as in Table 2.

number of hops. “Checking” means that a walker periodiceligcks with the original requester before walking to
the next node (of course, the checking is actually done bytue forwarding the walker). The checking method
still uses a TTL, but the TTL is very large and is mainly useg@ievent loops.

Our simulations show that checking is the right approachidaminating searches in random walks. The TTL
approach runs into the same TTL selection issue in floodingamwhile, since there are a fixed number of walkers
(typically 16 to 64), having the walkers check back with tleguester will not lead to message implosion at the
requester node. Of course, checking does have overheatrback requires a message exchange between a node
and the requester node. Further experiments show thaticigeakce every fourth step along the way strikes a good
balance between the overhead of the checking messageseabeinéfits of checking.

We experimented with different number of walkers. With maralkers, we can find objects faster, but also
generate more loads. And when the number of walkers is biggimancreasing it further yield little reduction in
the number of hops, but significantly increases the messafijie.t Usually, 16 to 64 walkers give good results. We
choose 32 walkers in our simulations. (Due to space linaitetive omit the results here.)

Tables 2 through 5 compare the discussed search methodsalhcdembinations of query and replication dis-
tributions for the four network topologies. There are twissg columns in each table; the first set are results of the
gueries to 50th percentile of hottest objects, and the sksenhare results of all queries.

The results show that the 32-walker random walk reduces agessverhead bjwo orders of magnitudéor
all queries across all network topologies, at the expensdigtit increase in the number of hops (increasing from
2-6 to 7-15). The 32-walker random walk generally outperferexpanding ring as well, particularly in PLRG and
Gnutella graphs.

We also studied an improvement to the above approach bygskich node to keep states. When a search is
started, allN walkers are tagged with a unique ID. For each ID, a node remsesrtbe neighbors to which it has
forwarded queries of that ID, and when a new query with theesHiinarrives, the node forwards it to a different
neighbor (randomly chosen). This state keeping acceketatwalks because walkers are less likely to cover the
same route and hence they visit more nodes. Simulationtsesldo shown in the tables, confirm the improvement.
Compared with random walks without state keeping, randoik wih state keeping shows the biggest improvement
in Random and Grid graphs, reducing message overhead byd@¥34pand reducing number of hops by up to 30%.
However, the improvements for PLRG and Gnutella graphs am&ls Hence, depending on the implementation
overhead of state keeping, each P2P network should deqdeasely whether state keeping is worthwhile.

11

4.3 Principles of Scalable Searches in Unstructured Netwé&s

Our results show that the-walker random walk is a much more scalable search methadfthading. However,
perhaps more important than this conclusion is the undetistg we have gained from this exercise. We summarize
it here.

The key to scalable searches in unstructured network iswer¢be right number of nodes as quickly as possible
and with as little overhead as possible. In unstructurediowd, the only way to find objects is to visit enough nodes
so that, statistically speaking, one of the nodes has trecbljiowever, in reaching the required node coverage, one
must pay attention to the following:

¢ Adaptive termination is very important.TL-based mechanism does not work. Any adaptive/dynanninite
nation mechanism must avoid the implosion problem at thaesigr node. The checking method described
above is a good example of adaptive termination.

¢ Message duplication should be minimiz&teferrably, each query should visit a node just once. M@iesv
are wasteful in terms of the message overhead.

e Granularity of the coverage should be smallach additional step in the search should not significantly i
crease the number of nodes visited. This perhaps is the fiuedizl difference between flooding and multiple-
walker random walk. In flooding, an additional step couldamqtially increase the number of nodes visited;
in random walk, an additional step increases the number déswisited by a constant. Since each search
only requires a certain number of nodes to be visited, theaaxades covered by flooding merely increase the
per-node load.

Under these constraints, a search algorithm should redheckatency as much as possible.

We have not done an exhaustive study of all search algorjtantswe do not claim the-walker random walk is
optimal. However, we hope that the above principles willthielunderstanding and search for the optimal methods.

5 Replication: Theory

Our study in the previous section examined how one shouldlséar an object, assuming that it is replicated at some
random locations in the network. Certain P2P systems su@natella have rigid assumptions on how replications
of objects happen in the system; that is, only nodes thatestqan object make copies of the object. Other P2P
systems such as FreeNet allow for more proactive replioatmf objects, where an object may be replicated at a
node even though the node has not requested the object.

For systems that allow proactive replications, we studyghestion: how many copies of each object should
there be so that the search overhead for the object is miatnmassuming that the total amount of storage for objects
in the network is fixed? Answers to this question have imfilices to non-proactive replication systems as well,
because the information of an object’s location could baptigely replicated to expedite the searches.

To formulate this question more precisely, we first use a ganple model to address the question theoretically.
This model is more extensively analyzed in [5]. In the nextisa we use simulations to analyze the question.

We consider a simple model where there arsites andm objects. Each objeactis replicated at; random
(distinct) sites, and seR =) .r;. We assume that the objects are requested with relative gatevhere we
normalize this by setting °. ¢; = 1. For convenience, we assume that query and replicatiotegtes are such that
1 « r; < m and that searches go on until a copy is found. (The other @asetealt with in [5], and the conclusions
are consistent with, but a bit messier than, what we presenaf) h Search consists of randomly probing sites until
the desired object is found. Thus, the probabilty(k) that the object is found on thgth probe is given by:

Ty

ik
Pri(k) = " (1- E)k !

12

Theaverage search sizé; is merely the fraction of sites which have replicas of theeobj
A==
T
We are interested in the average search dizethereAd = ", ¢;A; =n), f— The average search size essentially
captures the message overhead of efficient searches.

If there were no limit on the; then clearly the optimal strategy would be to replicate y#ng everywhere,
settingr; = n, and then all searches become trivial. Instead, we assusmhéhin average number of these replicas
per site,p = g, is fixed and less tham. The question is how to allocate theReeplicas among the sites.

The simplest replication strategy is to create the same euwhreplicas of each object; = %. We call this
the uniformreplication strategy. In this case the average searchigform IS given by:

m m
Auniform= D _ di— = —
uniform i vp P

which is independent of the query distribution.

It is very clear, though, that uniformly replicating all @lots, even those that are not frequently queried, is
inefficient. A more natural policy, one that results from imavthe querying sites cache the results of their query, is
to replicateproportional to the querying rater; = Rgq;. This should reduce the search sizes for the more popular
objects.

However, a quick calculation reveals that tngerageremains the same:
4qi m

A 1 =n = —
proportional i Ry p

Thus, the Proportional and Uniform replication strategiesd exactlythe same average search size, and that average
search size is independent of the query distribution.

Another important metric that captures the load balanclitity of a replication strategy is thetilization rate

= Auniform

U; = RL

T
that is, the rate of requests that a replica of objeserves (the random probing search process implies that all
replicas of the same object have the same utilization ratédte that the average utilization over all objects
U = > ,rU;/R = 1is fixedfor all replication strategies. The maximum utilizatiemx; U;, however, varies
considerably.

The distributions of average search sizes and utilizatxesrfor an object are quite different between the Uni-
form and Proportional strategies. For Uniform replicatiat objects have the same average search size, but replicas
have utilization rateproportionalto their query rates. Proportional replication achieves$guot load balancing with
all replicas having the same utilization rate, but averaggch sizes vary with more popular objects having smaller
average search sizes than less popular ones. Objects whesergtes are greater than average (i.e., greater than
%) do better with Proportional replication, and the othereatg do better with Uniform replication. Interestingly,
the weighted average of the search sizes over all objecnted out to be unchanged.

Square-Root Replication Given that Uniform and Proportional have the same averageleaize, a natural ques-
tion is what is the optimal way to allocate the replicas sd tha average search size is minimized? A simple
calculation (see [9]) reveals that Square-Root replicaisooptimal; that isA is minimized whenr; = \,/g; where
A= ﬁ The average search size is

Aoptimal = Z Vi)’

Table 6 lists properties of the three replication strateg&quare-Root replication is such that both average search
size and utilization rate vary per object, but the variancetilization is considerably smaller than with Uniform,
and the variance in average search size is considerablyesrtien with Proportional.

13

Startegy H A ‘ T ‘ AZ = 77/7”7 ‘ U7 = RQi/Ti
Uniform p 'm R/m p 'm qim
Proportional p tm gR (pgi) ! 1

Square-Root| p~' (32, @i)? | B/a@i/ 25T | 07" 2 VGIVG | VT 25T

Table 6: Comparing the three replication strategies: Umfd’roportional, and Square-Root.

5.1 Specific Query Distributions

We now consider query distributiong > ¢ > --- > ¢,, which are truncated Geometric and Pareto distributions.
We compute the average search Sm%?otimal for these distributions.

Truncated Geometric Distribution G, ()\) is defined by
gi=MN/C@i=1,...,m),
where .
C=) M= A"t/
=1
is a normalization factor. Square-Root replication hgsk = \/?/ B where

B — Z)\l/? _ ()\1/2 .)\(m-l—l)/?)/(l o)\1/2) .
=1

We thus have)
LE 14+ A2
. _ i/2 _ p2 _
PAopnmal— (B/C) E;A/ =B7/C = AL/2 4 \(m+1)/2
1=

Truncated Pareto Distribution R,,(«) is a truncation ton objects of a Pareto distribution with shape parameter
«. Thus,
Gi=1 *""/Basim (@i =1,...,m),
where the normalization factor is

m

., m Ly mlfy_l

=1
For sufficiently largen we can approximate

Inm (y <1)
Bym=~{ m'Y/(1-y) (y=1)
/(y—-1) (y>1)

With Square-Root replication we obtain
ri/ R = i(7a71>/2/B(a+1)/2,m
and average search size of
dam* /(1 —a)? (a<1)

pAoptimal = (Bla+1)/2.m)* /Ba+1.m & In’m (a=1)
4o/ (a —1)2 (a>1)

14

Relative allocation. trunc Pareto: m=100, alpha=0.2 Average Search Size. trunc Pareto: m=100, alpha=0.2 Utilization Rate. trunc Pareto: m=100, alpha=0.2

1 1000 100
Uniform Uniform Uniform
900 |-
Proportional e 800 - Proportional e] Proportional e
01 bk] 700 -] ol
600 [4 s
4 a g
= @ 500 1 g
400 | 1 5
0.01 300 |] 1
200 | g
0.001 e, o L™ 0.1 ; n
0O 10 20 30 40 50 60 70 80 90 100 0O 10 20 30 40 50 60 70 80 90 100 0 10 20 30 40 50 60 70 80 90 100
Object Object Object
Relative allocation; /R Average search sizeA; Utilization rateU;

Figure 5: Uniform, Proportional, and Square-Root straegin a truncated Pareto distribution with= 100 and
a=0.2

We are now able to compute tigain factor, A niform/Aoptimar ©f USing Square-Root rather than Uniform
or Proportional replication. For Geometric distributiondafor Pareto distribution witlx > 1, the optimal average
search size igonstant Thus, the gain factor i®(m). The gain factor ig9(m®*) for Pareto witha < 1 and
Q(m/ln2 m) for a = 1.

Figure 5 helps visualize the different properties of the¢hreplication strategies. Both Uniform and Square-
Root allocate to popular objects less than their “fair sharel to less popular objects more than their “fair share”
of replicas, but Square-Root does so to a lesser extent. dti@nece in average search sizes of different objects
with Square-Root is considerably smaller than with Prapogl. The maximum utilization rate with Square-Root,
is much lower than with Uniform (although larger than Prdfmral which provides optimal load balancing). The
same patterns occur for other valuesmofandc«, but the gaps grow with the skew, thus, are larger for moreaibj
(largerm) and larger values of the shape parameter value

5.2 Achieving Square-Root Replication

While the Uniform and Proportional strategies are signiftbasuboptimal with respect to the average query size
metric, they both have the advantage of being easy to impiema distributed fashion. Uniform replication merely
calls for a fixed number of copies to be made for each objedtPaaportional replication calls for a fixed number of
copies to be made of the requested object after each quesyqdéstion is then whether we can achieve the optimal
Square-Root replication strategy with a distributed atban.

Assume that each query keeps track of the search size, thatwsmany probes it took before finding the object.
Then let’'s assume that each time a query is finished, the oilsj@opied to a humber of sites proportional to the
number of probes. This means that on averagei'theobject will be rephcateda" times each time a query is
issued (wherex is an arbitrary constant). Thus, the number of copjesan be roughly described by the differential
equation

. n
T = qo—
Ti

wherer; is the time derivative of;.

If we look at the ratio of two objects, ask how the logarithmtleis quantity changes, we find that, setting
Zi,j =In :—;,

. a; 4
z= an(r—‘; — T—;)
j i

Thus, Square-Root replication, = \,/g; is a fixed point of this equation; once that allocation haseeghieved,
the ratios don't change (but the constardoes as the total number of copies changes).

This heuristic calculation suggests that perhaps rejatiggiroportional to the number of sites probed would
yield Square-Root replication. In the next section we satai number of replication policies and evaluate their

15

performance.

Our analysis above makes some implicit assumptions on theeps governing thdeletion of replicas In
particular, we mentioned two schemes for creation of nevigag Proportional replication scheme where each
guery generates a fixed number of replicas and Square-Rgaaton scheme where each query generates number
of replicas proportional to search size. The analysis dfilschemes assumes that replicas disappear over time and
new replicas are created. The steady state is achieved wberrdation rate equals the deletion rate. For these
schemes to achieve their respective fixed points, thertifeti of replicas must biedependenbf object identity or
query rate. Examples of deletion processes that have tiiépandence are: assigning fixed lifetimes (or lifetimes
from a fixed distribution) for each replica, subject repficat each site to First In First out (FIFO) replacement, or
perform random deletions. Interesting examples of datgpimcesses thato nothave this independence property
are usage-based replacement policies such as Least Beldsetl (LRU) or Least Frequently Used (LFU). These
policies couldimpedethe Square-Root scheme: Recall that Square-Root repiicéitas different utilization for
replicas of different objects; thus, the scheme would hadifferent fixed point under LRU or LFU. Since the fixed-
point of Proportional replication is such that all replides/e the same utilization rate, the fixed-point of that saem
is still LRU and LFU, but the variance in replica lifetime wduncrease and thus stability would decrease.

Note that unlike FreeNet'’s replication algorithm, the reg@lion strategies studied here do not attempt to cluster
certain group of objects in certain regions of the network. other words, they do not produce any correlation
between routing and object locations, or, “structure,”ha P2P network.

6 Evaluation of Replication Methods

We observe that there are two replication strategies tleedasily implementable. One is “owner replication”, where,
when a search is successful, the object is stored at thestguede only. The other is “path replication”, where,
when a search succeeds, the object is stored at all nodagsth®path from the requester node to the provider node.
Owner replication is used in systems such as Gnutella. Ratltation is used in systems such as FreeNet.

The analysis in the previous section suggests that squateeplication distribution is needed to minimize the
overall search traffic, and an object should be replicatedeabhumber of nodes that is proportional to the number of
search probes. If a P2P system usesithelker random walk as the search algorithm, then on avetagenumber
of nodes between the requester node and the provider nddé isf the total nodes visited. Path replication in this
system should result in square-root distribution.

However, an aspect of path replication that is not studigderprevious section is that it tends to replicate objects
to nodes that are topologically along the same path. To gtatedt how this impacts the overall search traffic, we
also study a third replication algorithm, “random replioat” In random replication, once a search succeeds, we
count the number of nodes on the path between the requestéraprovideryn, then randomly pickn of the nodes
that thek walkers visited to replicate the object. “Random repligatiis harder to implement, but the performance
difference between it and path replication highlights thgological impact of path replication.

We design a set of dynamic simulations to study the threecegmn strategies: owner replication, path replica-
tion, and random replication. We look at how they performha Random graph network topology.

A simulation starts by placing th&/ distinct objects randomly into the network. Then Qeaery Generator
starts to generate queries according to a Poisson procHssiverage generating rate at 5 queries per second. The
query distribution among thé/ objects follows Zipf-like distribution with a givenx value. Thea value for the
results presented here is 1.20. (We also run simulatiorfsawit 0.80 anda = 2.40. The results are similar.) For
each query, a node (that doesn’t have the requested objges ghosen randomly to start the query.

For the search method, we use the 32-walker random Walk watie &eeping, with checking at every fourth
step..

Each node can store at magijAllow objects (40 in our simulations). Every time a node wants @oesé new
object but its storage space is full, an object is randombseh to be tossed out (Random Deletion).

16

Replication Distribution: Path Replication
0.1

real result +
square root x

0.1

Replication Distribution: Random Replication

real result ~ +
square root x

replication ratio (normalized)
replication ratio (normalized)

0.001 -
1 10

object rank

0.001 -
1 10

object rank

100 100

Figure 6: Distribution of replication ratios under Pathliegtion and Random replication.

Owner Replication
56542.6
1

Path Replication
19155.5
2.95

Random Replicatior
14463.0
3.91

avg #msgs per node
factor of improvement

Table 7: Message traffic of different replication strategie

“Snapshots” are taken for every 2,000-query chunks. Tanvaftr enough “warming up” process, we run each
simulation for 10,000 seconds (which would generate ab0i@@® queries given our generating rate), and look at
the later part of the simulation.

For each replication strategy, we are interested in threstipns:

e what kind of replication ratio distribution does the stpteyenerate?
e what is the average number of messages per node in a systegrtlusistrategy?

¢ what is the distribution of number of hops in a system usirgstinategy?

Figure 6 shows log-log plots of the distribution of replicat ratios under path replication and random repli-
cation. We also plot the distribution that is the square wfathe query distribution. Confirming our thereotical
predictions, the results show clearly that both path replim and random replication generates replication ratios
that are quite close to square-root of query ratios. (Du@éas constraints we omit the graph for owner replication,
except to say that it matches proportional distributionyvaosely.)

Table 7 lists the average number of messages a node has wsgrdaring the simulation. The result shows
clearly the benefit of square-root distribution on reducsagrch traffic. Path replication and random replication
reduces the overall message traffic by a factor of three to fdance, proactive replication such as path or random
replication can improve the scalability of P2P systemsiSantly.

Much of the traffic reduction comes from reducing the numbéraps it takes to find an object. Figure 7 shows
the cumulative hop distribution for all queries under thee¢hreplication strategies. Path replication and random

replication clearly outperform the owner replication; xample, the percentage of queries that finish within four
hops are 71% for owner replication, 8691

The results also show that random replication improves uperpath replication. Thus, the topological effects
of replicating along the path do hurt performance somewhHance, if the implementation is not overly complex, a
P2P system should adopt random replication instead of patttation.

17

Dynamic simulation: Hop Distribution (5000s ~ 9000s)

100

80

60 F

queries finished (%)

40 | -

20 | y

Owner Replication —+—
Path Replication ---x---
Randlom Replicatilon B

0 I I I I I
1 2 4 8 16 32 64 128 256

#hops

Figure 7: Cumulative distribution of the number of hops urttie three replication strategies.

For P2P systems that do not want to store an object at nodelsaba not requested it, are there ways to reduce
the search traffic? We think the answer is yes. Such systemstithreplicate the information that an object is
stored at certain nodes following path or random replicgtso that future searches for the object can be shortened.
Each node can randomly delete a “hint” when it runs out of egachold them all. As demonstrated in the above
simulation, this simple step can improve the scalabilityhef system.

7 Related Work

As we mentioned in the Introduction, there are several giffekinds of P2P networks. The highly structured P2P
networks, such as CAN, Chord, Past, and Tapestry, all usgsprplacement algorithms to make searching efficient.
However these systems have not been widely deployed, amchbikty to operate with extremely unreliable nodes
has not yet been demonstrated. Moreover, they cannot démapuaitial-match queries(g, searching for all objects
whose titles contain two specific words).

There are also many loosely structured P2P networks. Fig8NéreeHaven [10], MojoNation [14] are a but
few examples of this rapidly growing list. Some of these eys, such as FreeHaven and MojoNation, focus on
the trust, reputation management and security issues int@€®er systems. Others, such as FreeNet, focus on
file storage aspects of the system. Most of these looselgtated P2P networks use either directories or placement

hints to improve the scalability of the search process. Hawneentralized directories don't scale well and placeimen
hints don't handle partial-match queries.

Unstructured P2P systems like Gnutella can handle par@éétimgueries, so the main question is whether their
guery performance can be made scalable, and that is whatwsegd on in this paper. We found that by adoptirkg a
random walk search method the performance of the searobrnrstof load upon the network, could be improved by
two orders of magnitude. Moreover, we found that the P2P atwhould not have a power-law degree distribution,
nor resemble a mesh; random graphs P2P networks produceemdts.

An interesting paper by Adamét al. [1] studies random-walk search strategies in power-lawogks, and finds

18

that by modifying walkers to seek out high degree nodes thebhgerformance can be greatly increased. However,
such strategies greatly reduce the scalability of the sealgorithm, which is our focus and not the subject of [1],
because then almost all queries are sent to the very higeeegrdes, making them bear the burden of almost the
entire query load of the network.

The random walk search style is used in Freenet as well. Thieeewalk is guided; each node uses hints to
help it choose which node to forward the query to. It also usdg one “walker”. In comparison, our focus is on
unstructured network, where hints are not available,

We found a wealth of information on Gnutella at web sites saglvww.openP2P.com and gnutella.wego.com.
We are also aware of a number of published research studitedanutella network. For example, the freeloader
phenomenon is examined in [2], and the topology and quetyitaliion are studied in [19, 13]. However, none of
these papers address the issue of better search algoritmeydioation algorithms.

8 Conclusions and Future Work

This paper reports our simulation and modeling studies eérs¢ search algorithms and replication strategies for
decentralized, unstructured peer-to-peer networks.

From simulation studies, we have learned that scalablelsedgorithm designs for such networks should con-
sider three properties: adaptive termination, minimizingssage duplication, and small granularity of coverage.
The flooding algorithm being used In Gnutella does not sa#siy of the properties. We show that it generates a lot
of network traffic and does not scale well. The expanding @ipgroach improves the flooding algorithm by using an
adaptive termination mechanism. It can find data reasorgabbkly while reducing the network traffic substantially,
sometimes by an order of magnitude. The k-walker random wiltkchecking approach can find data more quickly
while reducing the traffic further by another order of magdd, because it reduces the granularity of coverage by
using a fixed number of random walkers.

Our study on replication strategies show that for a fixedayemnumber of replicas per node, square-root replica-
tion distribution is theoretically optimal in terms of mimizing the overall search traffic. Our simulations validhte
the theoretical analysis. We simulated owner, path andamnplications, with the k-walker random walk with
state keeping. Since path and random replications leadutaregoot replication distribution, their overall messag
traffic is about four times less than the owner replicatioprapch.

We have also learned from our simulation studies that umifprandom graphs are better for searching and data
replication. The high degree nodes in power-law randomtgeam the current gnutella network bear much higher
load than average and introduce more duplication overheadadrches. The results imply that it is better to form a
uniformly random network topology using graph-building@lithms in peer-to-peer systems.

This study is our first step towards understanding the ptaseof scalable search algorithms, replication strate-
gies, and network topologies for decentralized, unstnectpeer-to-peer networks. There are still many open issues
to study. It would be useful to model various search algorghwith certain network topologies and study them
analytically. The k-walker random walk with checking andtstkeeping has a lot of rooms to improve. There is
still a large gap between this algorithm and the optimal ¢gagerms of minimum number of hops and minimum
message traffic.

References

[1] L. A. Adamic, B. Humberman, R. Lukose, and A. Puniyania&# in power law networks. Im press, Phys.
Rev. E, Vol. 64pages 46135-46143, 2001.

[2] Eytan Adar and Bernardo Huberman. Free riding on gnatell In First Monday,
http://mww.firstmonday.dk/issues/issug®adar/index.htmlOctober 2000.

19

[3] V. Almeida, A. Bestavros, M. Crovella, and A. de Oliveir€haracterizing reference locality in the www. In
Proceedings of 1996 International Conference on paralled ®istributed Information Systems (PDIS '96)
1996.

[4] Anonymous. reference removed for double blind revieyviAugust 2001.
[5] Anonymous. reference removed for double blind revieyvia001.

[6] Clip2.com. The gnutella protocol specification v0.4htip://www9.limewire.com/developer/gnuteli@otocol 0.4.pdf
2000.

[7] Clip2.com. Gnutella: To the bandwidth barrier and begoin Preprint, http://www.clip2.com/gnutella.html
November 2000.

[8] Open Source Community. The free network project - remgrthe internet. Irhttp://freenet.sourceforge.net/
2001.

[9] Open Source Community. Gnutella. ittp://gnutella.wego.com2001.

[10] Roger Dingledine, Michael J. Freedman, and David Molrihe free haven project: Distributed anonymous

storage service. IRroceedings of the Workshop on Design Issues in AnonymityJaiwbservability (LNCS
2009) July 2001.

[11] Dan Gallagher and Ronni Wilkerson. Network performarstatistics for university of south carolina. In
http://eddie.csd.sc.eduDctober 2001.

[12] Napster Inc. The napster homepagehtip://www.napster.com2001.

[13] Mihajlo A. Jovanovic, Fred S. Annexstein, and KennethB&rman. Scalability issues in large peer-to-peer
networks - a case study of gnutella. Technical Report hipiv.ececs.uc.edu/ mjovanov/Research/paper.html,
University of Cincinnati, 2001.

[14] Jim McCoy. Mojo nation. Imttp://www.mojonation.net2001.
[15] D. Plonka. Uw-madison napster traffic measuremenhtip://net.doit.wisc.edu/data/Napstdviarch 2000.

[16] Sylvia Ratnasamy, Paul Francis, Mark Handley, RicKamb, and Scott Shenker. A scalable content-
addressable network. Froceedings of SIGCOMM’200August 2001.

[17] Jordan Ruitter. Why gnutella can't scale. no, really. InPreprint,
http://mww.darkridge.com/ jpr5/doc/gnutella.h{n2001.

[18] A. Rowstron and P. Druschel. Storage management arfdrgam past, a large-scale, persistent peer-to-peer
storage utility. InProceedings of SOSP’02001.

[19] Kunwadee Sripanidkulchai. The popularity of gnutejleeries and its implications on scalability. @Reilly’s
www.openp2p.coniebruary 2001.

[20] lon Stoica, Robert Morris, David Karger, Frans Kaash@and Hari Balakrishnan. Chord: A scalable peer-to-
peer lookup service for internet applications.Aroceedings of SIGCOMM’200August 2001.

[21] Megan Thomas and Ellen W. Zegura. Gt-itm: Georgia teoternetwork topology models. In
http://www.cc.gatech.edu/fac/Ellen.Zegura/graphmlhi997.

[22] Kelly Truelove. Gnutella: Alive, well, and changing sta In Preprint,
http://mww.openp2p.com/pub/a/p2p/2001/01/25/true@dd1.html January 2001.

20

[23] Ben Y. Zhao, John Kubiatowicz, and Anthony Joseph. $ageAn infrastructure for fault-tolerant wide-area
location and routing. Technical Report UCB/CSD-01-114hjvdrsity of California at Berkeley, Computer
Science Department, 2001.

21

