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ABSTRACT In this work we introduce a methodology based on Genetic Algorithms for the automatic
induction of Bayesian Networks from a �le containing cases and variables related to the problem. The
methodology is applied to the problem of predicting survival of people after one, three and �ve years of
being diagnosed as having malignant skin melanoma. The accuracy of the obtained model, measured in
terms of the percentage of well-classi�ed subjects, is compared to that obtained by the called Naive-Bayes.
In both cases, the estimation of the model accuracy is obtained from the 10-fold cross-validation method.

1. Introduction

Expert systems, one of the most developed areas in the �eld of Arti�cial Intelligence,
are computer programs designed to help or replace humans beings in tasks in which the
human experience and human knowledge are scarce and unreliable. Although, there are
domains in which the tasks can be specifed by logic rules, other domains are characterized
by an uncertainty inherent in them. Probability was not taken into account, for some
time, as a reasoning method for expert systems trying to modelize uncertain domains,
because the speci�cations and computer cost it requires are too expensive. At the end of
the 80s, Lauritzen and Spiegelhalter [21] showed that these di�culties can be overcome
by exploiting the modular character of the graphical models associated with the called
probabilistic expert systems, that we call in this work Bayesian Networks.

Bayesian Networks (BNs) [13], [20], [22] constitute a probabilistic framework for reasoning
under uncertainty. From an informal perspective, BNs are directed acyclic graphs (DAGs),
where the nodes are random variables and the arcs specify the independence assumptions
that must be held between the random variables. BNs are based upon the concept of
conditional independence among variables. This concept makes possible a factorization
of the probability distribution of the n-dimensional random variable (X1; ::::;Xn) in the
following way:

P (x1; ::::; xn) =
nY

i=1

P (xijpa(xi))

where xi represents the value of the random variable Xi, and pa(xi) represents the value
of the random variables parents of Xi.

Thus, in order to specify the probability distribution of a BN, one must give prior proba-
bilities for all root nodes (nodes with no predecessors) and conditional probabilities for all
other nodes, given all possible combinations of their direct predecessors. These numbers
in conjunction with the DAG, specify the BN completely. Once the network is constructed
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it constitutes an e�cient device to perform probabilistic inference. This probabilistic rea-
soning inside the net can be carried out by exact methods, as well as by approximated
methods. Nevertheless, the problem of building such a network remains. The structure
and conditional probabilities necessary for characterising the network can be either pro-
vided externally by experts or obtained from an algorithm which automatically induces
them.

In this paper, a methodology for inducing automatically Bayesian Networks is introduced.
This methodology is based on Genetic Algorithms and tries to obtain from the �le of cases
the most probable structure of the Bayesian Network. The work is organized as follows,
in Section II some structure learning methods are reviewed, taking an special interest in
the method proposed by Cooper and Herskovits [5]. Section III introduces Genetic Algo-
rithms, while Section IV presents the structure learning methodology integrating both,
the metric proposed by Cooper and Herskovits and the adaptative searching process char-
acteristic of the Genetic Algorithms. In Section V we present the results obtained from
applying the previous methodology to a �le of cases, which contains information about 311
patients diagnosed as having malignant skin melanoma. The induced Bayesian network is
used for classifying patients according to their prognosis of survival after one, three and
�ve years of being diagnosed. These results are compared to those obtained by the called
Naive-Bayes paradigm. Section VI gathers the conclusions.

2. Structure Learning in Bayesian Networks

2.1 Introduction

During the last �ve years a good number of algorithms whose aim is to induce the structure
of the Bayesian Network that better represents the conditional independence relationships
underlying in the �le of cases have been developed. In our opinion, the main reason for
continuing the research in the structure learning problem is that modelizing the expert
knowledge has become an expensive, unreliable and time-consuming job.

The di�erent approaches to the structure learning mentioned here are related with mul-
tiple connected networks, and have been grouped according to the necessity or not of
imposing order on the variables. See Heckerman et al. [10] for a good review.

Assuming order among variables means that a variable Xi can have the variable Xj as
parent only if, in the established order among the variables, Xj precedes Xi. With this
restriction, the cardinality of the space that contains all the structures is given by 2(

n
2 ),

where n is the number of variables in the system. Some methods under this restriction are
those developed by Herskovits and Cooper [11], Cooper and Herskovits [5], and Bouckaert
[4].

If we do not assume ordering between the nodes the cardinality of the search space is
bigger, and it is given by the Robinson's formula [24]:

f(n) =
nX

i=1

(�1)i+1(ni )2
i(n�i)f(n � i); f(0) = 1; f(1) = 1:

Several authors have been working under these general assumptions. Among them, Bouck-
aert [3], Lam and Bacchus [14], and Provan and Singh [23].

2.2 The K2 algorithm
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As it will be seen in Section IV, the three proposed approaches - based on Genetic Al-
gorithms - use the CH metric proposed by Cooper and Herskovits [5] for evaluating the
goodnes of a Bayesian Network structure, as well as the K2 algorithm developed by the
previously mentioned authors. K2 is an algorithm that creates and evaluates a BN from a
database of cases once an ordering between the system variables is given. The CH metric
is used for the evaluation of the network that it constructs. K2 searches, given a database
D for the BN structure BS� with maximal P (BS;D), where P (BS ;D) is as described in
the following theorem proved in [5].

Theorem Let Z be a set of n discrete variables, where a variable xi in Z has ri possible
value assignments: (vi1; : : : ; viri). Let D be a database of cases of m cases, where each
case contains a value assignment for each variable in Z. Let BS denote a BN structure
containing just the variables in Z. Each variable xi in BS has a set of parents, which are
represented with a list of variables �i. Let wij denote the jth unique instantiation of �i
relative to D. Suppose there are qi such unique instantiations of �i. De�ne Nijk to be
the number of cases in D in which variable xi has the value vik and �i is instantiated as
wij. Let Nij =

Pri
k=1Nijk. If given a BN model, the cases occur independently, there are

not cases that have variables with missing values and the density function f(BP jBS) is
uniform, then it follows that

P (BS jD) = P (BS)
Qn

i=1 g(i; �i), where g(i; �i) =
Qqi

j=1
(ri�1)!

(Nij+ri�1)!
Qri

k=1Nijk!

The K2 algorithm assumes that an ordering on the variables is available and that, a priori,
all structures are equally likely. It searches, for every node, the set of parent nodes that
maximizes g(i; �i) - CH metric-. K2 is a greedy heuristic. It starts by assuming that a
node does not have parents, after which in every step it adds incrementally that parent
whose addition most increases the probability of the resulting structure. K2 stops adding
parents to the nodes when the addition of a single parent cannot increase the probability.
Obviously, this approach does not guarantee the selection of a structure with the highest
probability.

3. Genetic Algorithms

The computing complexity inherent in a great number of real problems of combinatorial
optimization has carried, as a consequence, the development of heuristic methods that
try to tackle these problems successfully. An heuristic is a procedure which will give a
good solution - not necessarily the optimal - to problems which can be catalogued as dif-
�cult, if you try to solve them obtaining the exact solution. Although there are heuristics
developed for especi�c problems, in the past years there have been an explosion in the
applications of what we could call metaheuristics, because its formulation is independent
of the problem to solve. Among the most studied metaheuristics we quote Simulated An-
nealing, Tabu Search and Genetic Algorithms.

Genetic Algorithms [9] are adaptive methods that can be used for solving problems of
search and optimization. They are based on the genetic process of living organisms.
Through generations the populations evolve in nature according to the principles of nat-
ural selection and survival of the �ttest postulated by Darwin [6]. Imitating this process,
the Genetic Algorithms are capable of creating solutions for real world problems.

Genetic Algorithms use a direct analogy with the natural behaviour. They work with
a population of individuals, each individual representing a feasible solution to a given
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begin AGA
Make initial population at random
WHILE NOT stop DO
BEGIN
Select parents from the population.
Produce children from the selected parents.
Mutate the individuals.
Extend the population by adding the children to it.
Reduce the extended population.
END

Output the best individual found.
end AGA

FIGURE 1. The pseudo-code of the Abstract Genetic Algorithm.

problem. To each individual we assign a value or score according to the goodness of that
solution. The better the adaptation of the individual to the problem, the more proba-
ble is that the individual will be selected for reproduction, crossing its genetic material
with another individual selected in the same way. This cross will produce new individual
- o�spring of the previous - which share some of the features of their parents. In this
way a new population of feasible solutions is produced, replacing the previous one and
veri�ng the interesting property of having greater proportion of good features than the
previous population. Thus, through generations good features are propagated through the
population. Favouring the cross of the �ttest individuals, the most promising areas of the
search space are being explored. If the Genetic Algorithms have been well designed, the
population will converge [7] to an optimal solution of the problem.

Figure 1 summarizes the pseudocode for the so-called Abstract Genetic Algorithm. In it
the parent selection doesn't need to be made by asigning to each individual a value pro-
portional to its objetive function, as is usual in the so-called Simple Genetic Algorithm.
This selection can be carried out by any function that selects parents in a natural way.
It is worth notice that descendants are not necessarily the next generation of individuals,
but that this generation is made by the union of parents and descendents. That is why
we need the operations of extension and reduction in the cycle.

4. Genetic Algorithms in the Induction of Bayesian Networks

4.1 Searching in the space of networks structures

In this approach, each individual in the Genetic Algorithm will be a Bayesian Network
structure.

4.1.1 Notation and Representation

Denoting with D the set of BN structures for a �xed domain with n variables, and the
alphabet S being f0; 1g, a Bayesian Network structure can be represented by an n � n
connectivity matrix C, where its elements, cij, verify:

cij =

(
1 if j is a parent of i;
0 otherwise:

4.1.2 Assuming an ordering between the nodes

In this case, the connectivity matrices of the network structures are triangulated and
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therefore the genetic operators are closed operators with respect to the DAG conditions.
We represent an individual of the population by the string:

c21c31c41 : : : cn1; : : : c32c42 : : : cn2; : : : cn�2n�1; cn�2n; cn�1n:

With this representation in mind, we show how the crossover and mutation operators
work by using simple examples.

X1

X2 X3

X1

X2 X3

X1

X2 X3

X1

X2 X3

(a) (b)

FIGURE 2. With order assumption: Crossing over two BN structures.

Example 1. Consider a domain of 3 variables on which the two BN structures of Figure
2(a) are de�ned. Using the above described representation, the networks are represented
by the strings : 110 and 101. Suppose now that the two network structures are crossed
over and that the crossover point is chosen between the second and the third bit. This
gives the o�spring strings 111 and 100. Hence, the created o�spring structures are the
ones presented in Figure 2(b).

Example 2. Consider the DAG of Figure 3(a). It is represented by the string 100. Suppose

X1

X2 X3

X1

X2 X3

(a) (b)

FIGURE 3. With order assumption: Mutating a BN structure.

that the third bit is alterated by mutation. This gives the string 101, which corresponds
with the graph of Figure 3(b).

4.1.3 Without asuming an ordering between the nodes

If no ordering assumption on the variables is made, we represent an individual of the
population by the string:

c11c21 : : : cn1c12c22 : : : cn2 : : : c1nc2n : : : cnn:

As can be seen in the following examples, the genetic operators are not closed operators
with respect to the DAG conditions.

Example 3. Consider a domain of 3 variables on which the two BN structures of Figure
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4(a) are de�ned. Using the above described representation, the networks are represented
by the strings : 001001000 and 000000110. Suppose now that the two network structures
are crossed over and that the crossover point is chosen between the sixth and the seventh
bit. This gives the o�spring strings 001001110 and 000000000. Hence, the created o�spring
structures are the ones presented in Figure 4(b). We see that the �rst o�spring structure
is not a DAG.

X1

X2 X3

X1

X2 X3

X1

X2 X3

X1

X2 X3

(b)(a)

FIGURE 4. Without order assumption: The crossover operator is not a closed operator.

Example 4. Consider the DAG of Figure 5(a). It is represented by the string 010001000.
Suppose that the seventh bit is alterated by mutation. This gives the string 010001100,
which corresponds with the cyclic graph of Figure 5(b).

To assure the closeness of the genetic operators we introduce a repair operator, which
transforms the child structures that do not verify the DAG conditions into DAGs, by
randomly eliminating the edges that invalidate the DAG conditions.

4.2 Searching for the best ordering

X1

X2 X3

X1

X2 X3

(a) (b)

FIGURE 5. Without order assumption: The mutation operator is not a closed operator.

The individuals of the population are orderings whose �tness is computed by applying
the formula of [5] to the structure that is induced by applying the K2 algorithm to it.
Now, the cardinality of the search space is n!.

In this case, the problem of the structure learning can be modelled as a problem that re-
sembles the intensively studied Traveling Salesman Problem (TSP). While the TSP prob-
lem is assumed to be symmetrical, in this approach to the structure learning of Bayesian
Networks the problem is not a symmetrical one, and we search for acyclic orderings. See
Larra~naga et al. [17] for an empirical evaluation of this approach.

4.3 Experiments

The two approaches in which the search has been done in the space of networks structures
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have been evaluated empirically with a simulation of the ALARM network. For details
see Larra~naga et al. [15], [16]. For these experiments we use a database containing 3000
cases which was the result of a simulation of the ALARM network [2]. This database has
become a benchmark for evaluating the performance of newly proposed algorithms. The
cardinality of the search spaces assuming an ordering between the variables or wihout
assuming it, are respectively 3.061e200 and 3.008e237.

In �gure 6 we can see that the Hamming distance between the ALARM network structure
and the induced structure is one - the arc from node 12 to node 32 has been deleted -.

4.4 Genetic Algorithms in others combinatorial problems related with the
Bayesian Network paradigm

Genetic Algorithms have been used as optimizers in several combinatorial problems that
arise from the Bayesian Networks context. Thus, for example, Larra~naga et al. [18], obtain
good decompositions of the moral graph associated with the propagation algorithm pro-
posed by Lauritzen and Spiegelhalter [21]. Larra~naga et al. [19] also treat the problem of
the fusion of Bayesian Networks coming from di�erent authors, seeking for the consensual
BN. Finally, Rojas-Guzm�an and Kramer [25], and Gelsema [8] also treat the problem of
determining the most probable global state of the system using GAs.

5 Predicting survival in malignant skin melanoma

5.1 The malignant skin melanoma

In spite of the advances achieved in last years in the treatment of cancer, the prognosis
of patients having developed skin melanoma has changed very little. The incidence of the
disease has grown without stopping in the last decade. Annual incidence has increased
from 4% to 8%, and the progressive reduction of the ozone layer, if not stopped, will
expand it even more.

Experimental data and the results of epidemiological studies suggest two main risk factors:
sun exposure along with phenotype characteristics of the individual. Thus, for example,
the continuous sun exposure represents an odds ratio of 9, while the acute intermitent
exposition has got associated an odds ratio of 5.7.

Malignant skin melanoma is a rather uncommon tumour in our enviroment. It entails be-
tween the 8% and the 10% of the total malignant tumours that a�ect the skin. According
to the Cancer Register of the Basque Country [12], in 1990 the rate of incidence was 2.2
for every 100000 people for males and 3 for every 100.000 for females.

The database contains 311 cases - diagnosed at the Oncological Institute of Gipuzkoa in
the period between the �rst of January, 1988, and the 31 of December, 1995 - and for each
case we have information about eight variables. The �ve predictor variables are: sex (2
categories), age (5 categories), stage (4 categories), thickness (4 categories) and number
of positive nodes (2 categories). The variable to predict has two categories taking into
account if the person survives or not one, three or �ve years after being diagnosed as
malign skin melanoma.

5.2 The Models

Two models have been taken into account. First, we have induced a BN structure using
GAs, as explained in Section IV. In order to get it, we have searched in the space of
all structures without imposing any order restriction among the variables. Therefore we
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FIGURE 6. (a) The ALARM network structure. (b) The Bayesian Network structure learnt by the Genetic
Algorithm when assuming an ordering between the variables, from a database containing a simulation of the
ALARM network with 3000 cases.
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have tried to �nd, given a �le with cases, the a posteriori most probable structure. The
second model used is the called Naive-Bayes. This model assumes independence among
predictor variables. In both models the estimations of the rate of well-classi�ed individu-
als have been obtained using 10-fold cross-validation[26]. The propagation of the evidence
has been done using the software HUGIN [1]

Model I. The a posteriori most probable structure. CH-GA. Figures 7, 8 and 9 show the

FIGURE 7. The a posteriori most probably structure for the one year case.

FIGURE 8. The a posteriori most probably structure for the thee year case.

structures of the Bayesian Networks induced by the Genetic Algorithm. They correspond
to the predictions of survival after one, three and �ve years of being diagnosed. In table 1,
estimations of the probability of succes in classi�cation obtained by each of the previous
models can be seen.

Model II. Naive - Bayes classi�er. N-B. In spite of the strong assumptions of indepen-
dence upon which the model is built, Naive - Bayes classi�er has proved itself competitive
against other more re�ned classi�ers. It is assumed that all variables are conditionally
independent given the value of the variable to predict. Therefore, the model ignores the
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FIGURE 9. The a posteriori most probably structure for the �ve year case.

FIGURE 10. The Naive-Bayes classi�er.
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correlations among variables which can prejudice its predictive capacity. In Figure 10 it
can be seen the structure of the Bayesian Network corresponding to the Naive-Bayes.
This structure is common to the three classi�cation problems. Table 1 shows that the
estimations obtained by two of the Naive-Bayes models are inferior to those obtained by
the previous approach.

Survival of Malignant Skin Melanoma

1 year 3 years 5 years
CH-GA 93.06 81.95 69.57
N-B 91.43 79.02 71.43

TABLE 1. Accuracy of the diferents approaches for the prediction of survival one-year, thee-years and �ve-years

after be diagnosed.

6. Conclusions and futher research

A method of induction of Bayesian Networks has been introduced. This method is based
on intelligent search made by Genetic Algortihms. The method uses the CH metric and
tries to �nd the a posteriori most probable Bayesian Network structure given the �le of
cases.

The Bayesian Network structures induced by this method have been empirically compared
to the Naive-Bayes structures in one classi�cation problem consisting on the prediction of
survival of individuals after one, three or �ve years of being diagnosed as having malignant
skin melanoma. Although in the inductive method does not exist an especial treatment for
the variable to classify, the estimations of the 10-fold croosvalidation for the probability of
survival are better in two of the three examples than those obtained by the Naive-Bayes
paradigm.

In the future, we plan to combine the previous two techniques for �nding the a posteriori
most probable structure that contains, at least, the Naive-Bayes. Besides, it would be
interesting to develop a method of intelligent search based on Genetic Algorithms, Simu-
lated Annealing or Tabu Search that take into account the purpose the induced Bayesian
Network will be use for - in our case supervised classi�cation -.

0.1 References

[1] Andersen, S.K., Olesen, K.G., Jensen, F.V. and Jensen, F. (1989): "HUGIN - a shell for building Bayesian
belief universes for expert systems". In Eleventh International Joint Conference on Arti�cial Intelligence,
vol. I, pp. 1128-1133.

[2] Beinlinch, I.A., Suermondt, H.J., R.M. Chavez R. M. and Cooper G.F. (1989): \The ALARM monitoring
system: A case study with two probabilistic inference techniques for belief networks". In Proceedings of the
Second European Conference on Arti�cial Intelligence in Medicine, pp. 247-256.

[3] Bouckaert, R.R. (1992): \Optimizing causal orderings for generating DAGs from data". In Uncertainty in
Arti�cial Intelligence. Proceedings of the Eighth Conference, pp. 9-16.

[4] Bouckaert, R.R. (1994): \Properties of Bayesian belief networks learning algorithms". In Uncertainty in
Arti�cial Intelligence. Tenth Annual Conference, pp. 102-109.

[5] Cooper, G.F., and Herskovits, E.A. (1992): \A Bayesian method for the induction of probabilistic networks
from data". Machine Learning, vol. 9, no. 4, pp. 309-347.



12

[6] Darwin, C. (1859): "On the Origin of the Species by Means of Natural Selection". Murray, London.

[7] Eiben, A.E., Aarts, E.H.L., and van Hee, K.M. (1990): \Global convergence of genetic algorithms: An
in�nite Markov chain analysis". Computing Science Notes, Eindhoven University of Technology.

[8] Gelsema, E.S. (1995): "Abductive reasoning in Bayesian belief networks using a genetic algorithm". In
Preliminary Papers of the Fifth International Workshop on Arti�cial Intelligence and Statistics, pp. 245-
251.

[9] Goldberg, D.E. (1989): "Genetic Algorithms in Search, Optimization and Machine Learning". Addison-
Wesley, Reading, MA.

[10] Heckerman, D., Geiger, D. and Chickering, D.M. (1994): \Learning Bayesian networks: The combination of
knowledge and statistical data". Technical Report MSR-TR-94-09, Microsoft.

[11] Herskovits, E. and Cooper, G.F. (1990): \Kutat�o: An entropy-driven system for construction of probabilistic
expert systems from databases". Report KSL-90-22, Knowledge Systems Laboratory, Medical Computer
Science, Stanford University.

[12] Izarzugaza, M.I. (1994): "Informe del registro de C�ancer de Euskadi 1990". Osasunkaria, pp. 8-11.

[13] Jensen, F. V. (1996): "Introduction to Bayesian networks". University College of London.

[14] Lam, W. and Bacchus, F. (1994): "Learning Bayesian belief networks. An approach based on the MDL
principle". Computational Intelligence, vol. 10, no. 4.

[15] Larra~naga, P., Poza, M., Yurramendi, Y., Murga, R., and Kuijpers, C. (1996): "Structure Learning of
Bayesian Networks by Genetic Algorithms: A Performance Analysis of Control Parameters". IEEE Trans-
actions on Pattern Analysis and Machine Intelligence. In press.

[16] Larra~naga, P., Murga, R., Poza, M., and Kuijpers, C. (1996): "Structure Learning of Bayesian Networks by
Hybrid Genetic Algorithms". In Learning from Data: AI and Statistics V, Lecture Notes in Statistics 112.
D. Fisher, H.-J. Lenz (eds.), New York, NY: Spriger-Verlag, pp. 165-174.

[17] Larra~naga, P., Kuijpers, C., Murga, R., and Yurramendi, Y. (1996): "Learning Bayesian Network Struc-
tures by searching for the best ordering with genetic algorithms". IEEE Transactions on System, Man and
Cybernetics. Vol. 26, 4, pp. 487-493.

[18] Larra~naga, P., Kuijpers, C., Poza, M., and Murga, R. (1996) "Decomposing Bayesian Networks by Genetic
Algorithms". Statistics and Computing. In press.

[19] Larra~naga, P., Kuijpers, C., Murga, R., Yurramendi, Y., Gra~na, M., Lozano, J.A., Albizuri, X., D'Anjou,
A., Torrealdea, F.J. (1996): "Genetic Algorithms applied to Bayesian Networks". In A. Gammerman (ed.)
Computational Learning and Probabilistic Reasoning. John Wiley, pp. 211-234.

[20] Lauritzen, S.L. (1996): "Graphical Models". Oxford University Press.

[21] Lauritzen, S.L., and Spiegelhalter, D.J. (1988): \Local computations with probabilities on graphical struc-
tures and their application on expert systems". Journal Royal of Statistical Society B, vol. 50, no. 2, pp.
157-224.

[22] Pearl, J. (1988): "Probabilistic Reasoning in Intelligent Systems: Networks of Plausible Inference". Morgan
Kaufmann, San Mateo.

[23] Provan, G.M., and Singh, M. (1995): "Learning Bayesian Networks Using Feature Selection". In Learning
from Data: AI and Statistics V, Lecture Notes in Statistics 112. D. Fisher, H.-J. Lenz (eds.), New York,
NY: Spriger-Verlag, pp. 291-300.

[24] Robinson, R. W. (1977): \Counting unlabeled acyclic digraphs". In C. H. C. Little (ed.) Lectures Notes in
Mathematics 622: Combinatorial Mathematics V, Springer-Verlag, New York, pp. 28-43.

[25] Rojas-Guzm�an, C., and Kramer, M.A. (1993): "GALGO: A Genetic ALGOrithm decision support tool for
complex uncertain systems modeled with Bayesian belief networks". In Uncertainty in Arti�cial Intelligence.
Proceedings of the Ninth Conference, pp. 368-375.

[26] Stone, M. (1974): "Cross-validation choice and assessment of statistical procedures". Journal Royal of Sta-
tistical Society, vol 36, pp. 111-147.


