
QUANTUM COMPLEXITY THEORY∗

ETHAN BERNSTEIN† AND UMESH VAZIRANI‡

SIAM J. COMPUT. c© 1997 Society for Industrial and Applied Mathematics
Vol. 26, No. 5, pp. 1411–1473, October 1997 007

Abstract. In this paper we study quantum computation from a complexity theoretic viewpoint.
Our first result is the existence of an efficient universal quantum Turing machine in Deutsch’s model
of a quantum Turing machine (QTM) [Proc. Roy. Soc. London Ser. A, 400 (1985), pp. 97–117]. This
construction is substantially more complicated than the corresponding construction for classical
Turing machines (TMs); in fact, even simple primitives such as looping, branching, and composition
are not straightforward in the context of quantum Turing machines. We establish how these familiar
primitives can be implemented and introduce some new, purely quantum mechanical primitives,
such as changing the computational basis and carrying out an arbitrary unitary transformation of
polynomially bounded dimension.

We also consider the precision to which the transition amplitudes of a quantum Turing machine
need to be specified. We prove that O(log T) bits of precision suffice to support a T step computation.
This justifies the claim that the quantum Turing machine model should be regarded as a discrete
model of computation and not an analog one.

We give the first formal evidence that quantum Turing machines violate the modern (complexity
theoretic) formulation of the Church–Turing thesis. We show the existence of a problem, relative
to an oracle, that can be solved in polynomial time on a quantum Turing machine, but requires
superpolynomial time on a bounded-error probabilistic Turing machine, and thus not in the class
BPP. The class BQP of languages that are efficiently decidable (with small error-probability) on a
quantum Turing machine satisfies BPP ⊆ BQP ⊆ P]P. Therefore, there is no possibility of giving
a mathematical proof that quantum Turing machines are more powerful than classical probabilistic
Turing machines (in the unrelativized setting) unless there is a major breakthrough in complexity
theory.

Key words. quantum computation, quantum Turing machines, reversibility, quantum polyno-
mial time, Fourier sampling, universal quantum Turing machine

AMS subject classifications. 68Q05, 68Q15, 03D10, 03D15

PII. S0097539796300921

1. Introduction. Just as the theory of computability has its foundations in
the Church–Turing thesis, computational complexity theory rests upon a modern
strengthening of this thesis, which asserts that any “reasonable” model of compu-
tation can be efficiently simulated on a probabilistic Turing machine (an efficient
simulation is one whose running time is bounded by some polynomial in the running
time of the simulated machine). Here, we take reasonable to mean in principle phys-
ically realizable. Some models of computation, though interesting for other reasons,
do not meet this criterion. For example, it is clear that computers that operate on
arbitrary length words in unit time or that exactly compute with infinite precision
real numbers are not realizable. It has been argued that the TM (actually, the poly-
nomial time equivalent cellular automaton model) is the inevitable choice once we
assume that we can implement only finite precision computational primitives. Given
the widespread belief that NP 6⊆ BPP, this would seem to put a wide range of im-

∗Received by the editors March 21, 1996; accepted for publication (in revised form) December
2, 1996. A preliminary version of this paper appeared in Proc. 25th Annual ACM Symposium on
Theory of Computing, Association for Computing Machinery, New York, NY, 1993, pp. 11–20.

http://www.siam.org/journals/sicomp/26-5/30092.html
†Microsoft Corporation, One Microsoft Way, Redmond, WA 98052 (ethanb@microsoft.com). The

work of this author was supported by NSF grant CCR-9310214.
‡Computer Science Division, University of California, Berkeley, CA 94720 (vazirani@cs.

berkeley.edu). The work of this author was supported by NSF grant CCR-9310214.

1411

1412 ETHAN BERNSTEIN AND UMESH VAZIRANI

portant computational problems (the NP-hard problems) well beyond the capability
of computers.

However, the TM fails to capture all physically realizable computing devices for
a fundamental reason: the TM is based on a classical physics model of the universe,
whereas current physical theory asserts that the universe is quantum physical. Can we
get inherently new kinds of (discrete) computing devices based on quantum physics?
Early work on the computational possibilities of quantum physics [6] asked the oppo-
site question: does quantum mechanics’ insistence on unitary evolution restrict the
class of efficiently computable problems? They concluded that as far as determin-
istic computation is concerned, the only additional constraint imposed by quantum
mechanics is that the computation must be reversible, and therefore by Bennett’s [7]
work it follows that quantum computers are at least as powerful as classical computers.
The issue of the extra computational power of quantum mechanics over probabilistic
computers was first raised by Feynman [25] in 1982. In that paper, Feynman pointed
out a very curious problem: the natural simulation of a quantum physical system on
a probabilistic TM requires an exponential slowdown. Moreover, it is unclear how to
carry out the simulation more efficiently. In view of Feynman’s observation, we must
re-examine the foundations of computational complexity theory, and the complexity-
theoretic form of the Church–Turing thesis, and study the computational power of
computing devices based on quantum physics.

A precise model of a quantum physical computer—hereafter referred to as the
QTM—was formulated by Deutsch [20]. There are two ways of thinking about quan-
tum computers. One way that may appeal to computer scientists is to think of a
quantum TM as a quantum physical analogue of a probabilistic TM—it has an in-
finite tape and a transition function, and the actions of the machine are local and
completely specified by this transition function. Unlike probabilistic TMs, QTMs
allow branching with complex “probability amplitudes” but impose the further re-
quirement that the machine’s evolution be time reversible. This view is elaborated in
section 3.2. Another way is to view a quantum computer as effecting a transforma-
tion in a space of complex superpositions of configurations. Quantum physics requires
that this transformation be unitary. A quantum algorithm may then be regarded as
the decomposition of a unitary transformation into a product of unitary transforma-
tions, each of which makes only simple local changes. This view is elaborated on
in section 3.3. Both formulations play an important role in the study of quantum
computation.

One important concern is whether QTMs are really analog devices, since they
involve complex transition amplitudes. It is instructive to examine the analogous
question for probabilistic TMs. There, one might worry that probabilistic machines
are not discrete and therefore not “reasonable,” since they allow transition probabil-
ities to be real numbers. However, there is extensive work showing that probabilistic
computation can be carried out in a such a way that it is so insensitive to the transition
probabilities that they can be allowed to vary arbitrarily in a large range [34, 44, 47].
In this paper, we show in a similar sense that QTMs are discrete devices: the transi-
tion amplitudes need only be accurate to O(log T) bits of precision to support T steps
of computation. As Lipton [30] pointed out, it is crucial that the number of bits is
O(log T) and not O(T) (as it was in an early version of this paper), since k bits of
precision require pinning down the transition amplitude to one part in 2k. Since the
transition amplitude is some physical quantity such as the angle of a polarizer or the

QUANTUM COMPLEXITY THEORY 1413

length of a π pulse, we must not assume that we can specify it to better than one
part in some polynomial in T , and therefore the precision must be O(log T).

Another basic question one may ask is whether it is possible to define the notion of
a general purpose quantum computer. In the classical case, this question is answered
affirmatively by showing that there is an efficient universal TM. In this paper, we prove
that there is an efficient QTM. When given as input the specification of an arbitrary
QTM M , an input x to M , a time bound T , and an accuracy ε, the universal machine
produces a superposition whose Euclidean distance from the time T superposition of
M on x is at most ε. Moreover, the simulation time is bounded by a polynomial in
T , |x|, and 1

ε . Deutsch [20] gave a different construction of a universal QTM. The
simulation overhead in Deutsch’s construction is exponential in T (the issue Deutsch
was interested in was computability, not computational complexity). The structure
of the efficient universal QTM constructed in this paper is very simple. It is just
a deterministic TM with a single type of quantum operation—a quantum coin flip
(an operation that performs a rotation on a single bit). The existence of this simple
universal QTM has a bearing on the physical realizability of QTMs in general, since
it establishes that it is sufficient to physically realize a simple quantum operation
on a single bit (in addition to maintaining coherence and carrying out deterministic
operations, of course). Adleman, DeMarrais, and Huang [1] and Solovay and Yao [40]
have further clarified this point by showing that quantum coin flips with amplitudes
3
5 and 4

5 are sufficient for universal quantum computation.

Quantum computation is necessarily time reversible, since quantum physics re-
quires unitary evolution. This makes it quite complicated to correctly implement even
simple primitives such as looping, branching, and composition. These are described
in section 4.2. In addition, we also require programming primitives, such as changing
the computational basis, which are purely quantum mechanical. These are described
in section 5.1. Another important primitive is the ability to carry out any specified
unitary transformation of polynomial dimension to a specified degree of accuracy. In
section 6 we show how to build a QTM that implements this primitive. Finally, all
these pieces are put together in section 7 to construct the universal QTM.

We can still ask whether the QTM is the most general model for a computing
device based on quantum physics. One approach to arguing affirmatively is to consider
various other reasonable models and to show that the QTM can efficiently simulate
each of them. An earlier version of this work [11] left open the question of whether
standard variants of a QTM, such as machines with multiple tapes or with modified
tape access, are more powerful than the basic model. Yao [46] showed that these
models are polynomially equivalent to the basic model, as are quantum circuits (which
were introduced in [21]). The efficiency of Yao’s simulation has been improved in [10]
to show that the simulation overhead is a polynomial with degree independent of the
number of tapes. Arguably, the full computational power of quantum physics for
discrete systems is captured by the quantum analogue of a cellular automaton. It is
still an open question whether a quantum cellular automaton might be more powerful
than a QTM (there is also an issue about the correct definition of a quantum cellular
automaton). The difficulty has to do with decomposing a unitary transformation that
represents many overlapping sites of activity into a product of simple, local unitary
transformations. This problem has been solved in the special case of linearly bounded
quantum cellular automata [24, 45].

Finally, several researchers have explored the computational power of QTMs.
Early work by Deutsch and Jozsa [22] showed how to exploit some inherently quan-

1414 ETHAN BERNSTEIN AND UMESH VAZIRANI

tum mechanical features of QTMs. Their results, in conjunction with subsequent
results by Berthiaume and Brassard [12, 13], established the existence of oracles un-
der which there are computational problems that QTMs can solve in polynomial time
with certainty, whereas if we require a classical probabilistic TM to produce the cor-
rect answer with certainty, then it must take exponential time on some inputs. On
the other hand, these computational problems are in BPP—the class of problems
that can be solved in polynomial time by probabilistic TMs that are allowed to give
the wrong answer with small probability. Since BPP is widely considered the class
of efficiently computable problems, these results left open the question of whether
quantum computers are more powerful than classical computers.

In this paper, we give the first formal evidence that quantum Turing machines
violate the modern form of the Church–Turing thesis by showing that, relative to an
oracle, there is a problem that can be solved in polynomial time on a quantum Turing
machine, but cannot be solved in no(log n) time on a probabilistic Turing machine
with any fixed error probability < 1/2. A detailed discussion about the implications
of these oracle results is in the introduction of section 8.4. Simon [39] subsequently
strengthened our result in the time parameter by proving the existence of an oracle
relative to which a certain problem can be solved in polynomial time on a quantum
Turing machine, but cannot be solved in less than 2n/2 steps on a probabilistic Tur-
ing machine (Simon’s problem is in NP∩ co–NP and therefore does not address the
nondeterminism issue). More importantly, Simon’s paper also introduced an impor-
tant new technique which was one of the ingredients in a remarkable result proved
subsequently by Shor [37]. Shor gave polynomial time quantum algorithms for the
factoring and discrete log problems. These two problems have been well studied, and
their presumed intractability forms the basis of much of modern cryptography. These
results have injected a greater sense of urgency into the actual implementation of a
quantum computer. The class BQP of languages that are efficiently decidable (with
small error-probability) on a quantum Turing machine satisfies BPP ⊆ BQP ⊆ P]P.
This rules out the possibility of giving a mathematical proof that quantum Turing
machines are more powerful than classical probabilistic Turing machines (in the un-
relativized setting) unless there is a major breakthrough in complexity theory.

It is natural to ask whether QTMs can solve every problem in NP in polynomial
time. Bennett, Bernstein, Brassard, and Vazirani [9] give evidence showing the limi-
tations of QTMs. They show that relative to an oracle chosen uniformly at random,
with probability 1, the class NP cannot be solved on a QTM in time o(2n/2). They
also show that relative to a permutation oracle chosen uniformly at random, with
probability 1, the class NP ∩ co–NP cannot be solved on a QTM in time o(2n/3).
The former bound is tight since recent work of Grover [28] shows how to accept the
class NP relative to any oracle on a quantum computer in time O(2n/2).

Several designs have been proposed for realizing quantum computers [17, 23, 31].
A number of authors have argued that there are fundamental problems in building
quantum computers, most notably the effects of the decoherence of quantum super-
positions or the entanglement of the system with the environment [14, 18, 29, 35,
42]. Very recently, there has been a sequence of important results showing how to
implement quantum error-correcting codes and also how to use these codes to make
quantum algorithms (quite) robust against the effects of decoherence [16, 38].

Quantum computation touches upon the foundations of both computer science
and quantum physics. The nature of quantum physics was clarified by the Einstein–
Podolsky–Rosen paradox and Bell’s inequalities (discussed in [25]), which demonstrate

QUANTUM COMPLEXITY THEORY 1415

the difference between its statistical properties and those of any “classical” model. The
computational differences between quantum and classical physics are if anything more
striking and can be expected to offer new insights into the nature of quantum physics.
For example, one might naively argue that it is impossible to experimentally verify
the exponentially large size of the Hilbert space associated with a discrete quantum
system, since any observation leads to a collapse of its superposition. However, an
experiment demonstrating the exponential speedup offered by quantum computation
over classical computation would establish that something like the exponentially large
Hilbert space must exist. Finally, it is important, as Feynman pointed out [25], to clar-
ify the computational overhead required to simulate a quantum mechanical system.
The simple form of the universal QTM constructed here—the fact that it has only a
single nontrivial quantum operation defined on a single bit—suggests that even very
simple quantum mechanical systems are capable of universal quantum computation
and are therefore hard to simulate on classical computers.

This paper is organized as follows. Section 2 introduces some of the mathematical
machinery and notation we will use. In section 3 we introduce the QTM as a natural
extension of classical probabilistic TMs. We also show that QTMs need not be spec-
ified with an unreasonable amount of precision. In sections 4 and 5 we demonstrate
the basic constructions which will allow us to build up large, complicated QTMs in
subsequent sections. Many actions which are quite easy for classical machines, such
as completing a partially specified machine, running one machine after another, or
repeating the operation of a machine a given number of times, will require nontrivial
constructions for QTMs. In section 6, we show how to build a single QTM which can
carry out any unitary transformation which is provided as input. Then, in section 7,
we use this simulation of unitary transformations to build a universal quantum com-
puter. Finally, in section 8 we give our results, both positive and negative, on the
power of QTMs.

2. Preliminaries. Let C denote the field of complex numbers. For α ∈ C, we
denote by α∗ its complex conjugate.

Let V be a vector space over C. An inner product over V is a complex function
(·, ·) defined on V × V which satisfies the following.

1. ∀x ∈ V, (x, x) ≥ 0. Moreover (x, x) = 0 iff x = 0.
2. ∀x, y, z ∈ V, (αx+ βy, z) = α(x, z) + β(y, z).
3. ∀x, y ∈ V, (x, y) = (y, x)∗.

The inner product yields a norm given by ‖x‖ = (x, x)1/2. In addition to the
triangle inequality ‖x+ y‖ ≤ ‖x‖+‖y‖, the norm also satisfies the Schwarz inequality
‖(x, y)‖ ≤ ‖x‖‖y‖.

An inner-product space is a vector space V together with an inner product (·, ·).
An inner-product space H over C is a Hilbert space if it is complete under the

induced norm, where H is complete if every Cauchy sequence converges. For example,
if {xn} is a sequence with xn ∈ H such that limn,m→∞ ‖xn − xm‖ = 0, then there is
an x in H with limn→∞ ‖xn − x‖ = 0.

Given any inner-product space V , each vector x ∈ V defines a linear functional
x∗ : V → C, where x∗(y) = (x, y). The set of such linear functionals is also an
inner-product space and will be referred to as the vector dual of V and denoted V ∗.
In the case that V is a Hilbert space, V ∗ is called the dual of V and is the set of all
continuous linear functionals on V , and the dual space V ∗ is also a Hilbert space.

In Dirac’s notation, a vector from an inner-product space V is identified using
the “ket” notation | 〉, with some symbol(s) placed inside to distinguish that vector

1416 ETHAN BERNSTEIN AND UMESH VAZIRANI

from all others. We denote elements of the dual space using the “bra” notation 〈 |.
Thus the dual of |φ〉 is 〈φ|, and the inner product of vectors |ψ〉 and |φ〉, which is the
same as the result of applying functional 〈ψ| to the vector |φ〉, is denoted by 〈ψ|φ〉.

Let U be a linear operator on V . In Dirac’s notation, we denote the result of
applying U to |φ〉 as U |φ〉. U also acts as a linear operator on the dual space V ∗

mapping each linear functional 〈φ| of the dual space to the linear functional which
applies U followed by 〈φ|. We denote the result of applying U to 〈φ| by 〈φ|U .

For any inner-product space V , we can consider the usual vector space basis
or Hamel basis {|θi〉}i∈I . Every vector |φ〉 ∈ V can be expressed as a finite linear
combination of basis vectors. In the case that ‖θi‖ = 1 and (〈θi|, |θj〉) = 0 for i 6= j,
we refer to the basis as an orthonormal basis. With respect to an orthonormal basis,
we can write each vector |φ〉 ∈ V as |φ〉 =

∑
i∈I αi|θi〉, where αi = 〈θi|φ〉. Similarly

each dual vector 〈φ| ∈ V ∗ can be written as 〈φ| =
∑

i∈I βi〈θi|, where αi = 〈φ|θi〉.
Thus each element |φ〉 ∈ V can be thought of as a column vector of the αi’s, and
each element 〈φ| ∈ V can be thought of as a row vector of the βi’s. Similarly each
linear operator U may be represented by the set of matrix elements {〈θi|U |θj〉}i,j∈I ,
arranged in a “square” matrix with rows and columns both indexed by I. Then, the
“column” of U with index i is the vector U |θi〉, and the “row” of U with index i is
the dual vector 〈θi|U .

For a Hilbert space H, {|θi〉}i∈I is a Hilbert space basis for H if it is a maximal
set of orthonormal vectors in H. Every vector |φ〉 ∈ H can be expressed as the limit
of a sequence of vectors, each of which can be expressed as a finite linear combination
of basis vectors.

Given a linear operator U in an inner product space, if there is a linear operator
U∗ which satisfies 〈U∗φ|ψ〉 = 〈φ|Uψ〉 for all φ, ψ, then U∗ is called the adjoint or
Hermitian conjugate of U . If a linear operator in an inner product space has an
adjoint, it is unique. The adjoint of a linear operator in a Hilbert space or in a finite-
dimensional inner product space always exists. It is easy to see that if the adjoints of
U1 and U2 exist, then (U1 +U2)

∗ = U∗1 +U∗2 and (U1U2)
∗ = U∗2U

∗
1 . An operator U is

called Hermitian or self-adjoint if it is its own adjoint (U∗ = U). The linear operator
U is called unitary if its adjoint exists and satisfies U∗U = UU∗ = I.

If we represent linear operators as “square” matrices indexed over an orthonormal
basis, then U∗ is represented by the conjugate transpose of U . So, in Dirac’s notation
we have the convenient identity 〈φ|U∗|ψ〉 = (〈ψ|U |φ〉)∗.

Recall that if the inner-product space V is the tensor product of two inner-product
spaces V1, V2, then for each pair of vectors |φ1〉 ∈ V1, |φ2〉 ∈ V2 there is an associated
tensor product |φ1〉⊗|φ2〉 in V . In Dirac’s notation, we denote |φ1〉⊗|φ2〉 as |φ1〉|φ2〉.

The norm of U is defined as ‖U‖ = sup‖|x〉‖=1 ‖U |x〉‖. A linear operator is called
bounded if ‖U‖ is finite. We will freely use the following standard facts about bounded
linear operators:

if U∗ exists then ‖U∗‖ = ‖U‖,(2.1)

‖U1U2‖ ≤ ‖U1‖‖U2‖,(2.2)

‖U1‖ − ‖U2‖ ≤ ‖U1 + U2‖ ≤ ‖U1‖+ ‖U2‖.(2.3)

Notice that a unitary operator U must satisfy ‖U‖ = 1. We will often use the
following fact which tells us that if we approximate a series of unitary transformations
with other unitary transformations, the error increases only additively.

QUANTUM COMPLEXITY THEORY 1417

Fact 2.1. If U1, U
′
1, U2, U

′
2 are unitary transformations on an inner-product

space, then

‖U ′1U ′2 − U1U2‖ ≤ ‖U ′1 − U1‖+ ‖U ′2 − U2‖.

This fact follows from statements (2.3) and (2.2) above, since

‖U ′1U ′2 − U1U2‖ ≤ ‖U ′1U ′2 − U1U
′
2‖ + ‖U1U

′
2 − U1U2‖

≤ ‖U ′1 − U1‖‖U ′2‖ + ‖U1‖‖U ′2 − U2‖.

2.1. Miscellaneous notation. If d is a direction ∈ {L,R}, then d̄ is the oppo-
site of d.

Given two probability distributions P1 and P2 over the same domain I, the total
variation distance between P1 and P2 is equal to 1

2

∑
i∈I |P1(i)− P2(i)|.

We will refer to the cardinality of a set S as card(S) and the length of a string x
as |x|.

3. QTMs.

3.1. A physics-like view of randomized computation. Before we formally
define a QTM, we introduce the necessary terminology in the familiar setting of prob-
abilistic computation. As a bonus, we will be able to precisely locate the point of
departure in the definition of a QTM.

Quantum mechanics makes a distinction between a system’s evolution and its
measurement. In the absence of measurement, the time evolution of a probabilistic
TM can be described by a sequence of probability distributions. The distribution
at each step gives the likelihood of each possible configuration of the machine. We
can also think of the probabilistic TM as specifying an infinite-dimensional stochastic
matrix1 M whose rows and columns are indexed by configurations. Each column
of this matrix gives the distribution resulting from the corresponding configuration
after a single step of the machine. If we represent the probability distribution at
one time step by a vector |v〉, then the distribution at the next step is given by
the product M |v〉. In quantum physics terminology, we call the distribution at each
step a “linear superposition” of configurations, and we call the coefficient of each
configuration (its probability) its “amplitude.” The stochastic matrix is referred to
as the “time evolution operator.”

Three comments are in order. First, not every stochastic matrix has an associated
probabilistic TM. Stochastic matrices obtained from probabilistic TM are finitely
specified and map each configuration by making only local changes to it. Second, the
support of the superposition can be exponential in the running time of the machine.
Third, we need to constrain the entries allowed in the transition function of our
probabilistic TM. Otherwise, it is possible to smuggle hard-to-compute quantities into
the transition amplitudes, for instance by letting the ith bit indicate whether the ith
deterministic TM halts on a blank tape. A common restriction is to allow amplitudes
only from the set {0, 1

2 , 1}. More generally, we might allow any real number in the
interval [0, 1] which can be computed by some deterministic algorithm to within any
desired 2−n in time polynomial in n. It is easily shown that the first possibility is
computationally no more restrictive than the second.

1Recall that a matrix is stochastic if it has nonnegative real entries that sum to 1 in each column.

1418 ETHAN BERNSTEIN AND UMESH VAZIRANI

Returning to the evolution of the probabilistic TM, when we observe the machine
after some number of steps, we do not see the linear superposition (probability distri-
bution) but just a sample from it. If we “observe” the entire machine, then we see a
configuration sampled at random according to the superposition. The same holds if we
observe just a part of the machine. In this case, the superposition “collapses” to one
that corresponds to the probability distribution conditioned on the value observed.
By the linearity of the law of alternatives,2 the mere act of making observations at
times earlier than t does not change the probability for each outcome in an obser-
vation at time t. So, even though the unobserved superposition may have support
that grows exponentially with running time, we need only keep track of a constant
amount of information when simulating a probabilistic TM which is observed at each
step. The computational possibilities of quantum physics arise out of the fact that
observing a quantum system changes its later behavior.

3.2. Defining a QTM. Our model of randomized computation is already sur-
prisingly close to Deutsch’s model of a QTM. The major change that is required is
that in quantum physics, the amplitudes in a system’s linear superposition and the
matrix elements in a system’s time evolution operator are allowed to be complex num-
bers rather than just positive reals. When an observation is made, the probability
associated with each configuration is not the configuration’s amplitude in the super-
position, but rather the squared magnitude of its amplitude. So instead of always
having a linear superposition whose entries sum to 1, we will now always have a linear
superposition whose Euclidean length is 1. This means that QTMs must be defined
so that their time evolution preserves the Euclidean length of superpositions.

Making these changes to our model, we arrive at the following definitions.

For completeness, let us recall the definition of a deterministic TM. There are
many standard variations to the definition of a deterministic TM, none of which
affect their computational power. In this paper we will make our choices consistent
with those in Deutsch’s paper [20]: we consider TMs with a two-way infinite tape and
a single tape head which must move left or right one square on each step. We also
give standard definitions for interpreting the input, output, and running time of a
deterministic TM. Note that although we usually restrict our discussion to TMs with
tape head movements {L,R}, we will sometimes consider generalized TMs with tape
head movements {L,N,R} (where N means no head movement).

Definition 3.1. A deterministic TM is defined by a triplet (Σ, Q, δ), where Σ is
a finite alphabet with an identified blank symbol #, Q is a finite set of states with an
identified initial state q0 and final state qf 6= q0, and δ, the deterministic transition
function, is a function

δ : Q × Σ → Σ × Q × {L,R}.

The TM has a two-way infinite tape of cells indexed by Z and a single read/write tape
head that moves along the tape.

A configuration or instantaneous description of the TM is a complete description
of the contents of the tape, the location of the tape head, and the state q ∈ Q of the
finite control. At any time only a finite number of tape cells may contain nonblank
symbols.

2The law of alternatives says exactly that the probability of an event A doesn’t change if we first
check to see whether event B has happened, P (A) = P (A|B)P (B) + P (A|B)P (B).

QUANTUM COMPLEXITY THEORY 1419

For any configuration c of TM M , the successor configuration c′ is defined by
applying the transition function to the current state q and currently scanned symbol
σ in the obvious way. We write c→M c′ to denote that c′ follows from c in one step.

By convention, we require that the initial configuration of M to satisfies the fol-
lowing conditions: the tape head is in cell 0, called the start cell, and the machine is in
state q0. An initial configuration has input x ∈ (Σ−#)∗ if x is written on the tape in
positions 0, 1, 2, . . . , and all other tape cells are blank. The TM halts on input x if it
eventually enters the final state qf . The number of steps a TM takes to halt on input
x is its running time on input x. If a TM halts then its output is the string in Σ∗

consisting of those tape contents from the leftmost nonblank symbol to the rightmost
nonblank symbol, or the empty string if the entire tape is blank. A TM which halts on
all inputs therefore computes a function from (Σ−#)∗ to Σ∗.

We now give a slightly modified version of the definition of a QTM provided
by Deutsch [20]. As in the case of probabilistic TM, we must limit the transition
amplitudes to efficiently computable numbers. Adleman, DeMarrais, and Huang [1]
and Solovay and Yao [40] have separately shown that further restricting QTMs to
rational amplitudes does not reduce their computational power. In fact, they have
shown that the set of amplitudes {0,± 3

5 ,± 4
5 , 1} are sufficient to construct a universal

QTM. We give a definition of the computation of a QTM with a particular string as
input, but we defer discussing what it means for a QTM to halt or give output until
section 3.5. Again, we will usually restrict our discussion to QTMs with tape head
movements {L,R} but will sometimes consider “generalized” QTMs with tape head
movements {L,N,R}. As we pointed out in the introduction, unlike in the case of
deterministic TMs, these choices do make a greater difference in the case of QTMs.
This point is also discussed later in the paper.

Definition 3.2. Call C̃ the set consisting of α ∈ C such that there is a deter-
ministic algorithm that computes the real and imaginary parts of α to within 2−n in
time polynomial in n.

A QTM M is defined by a triplet (Σ, Q, δ), where Σ is a finite alphabet with an
identified blank symbol #, Q is a finite set of states with an identified initial state q0
and final state qf 6= q0, and δ, the quantum transition function, is a function

δ : Q × Σ → C̃Σ × Q × {L,R}.

The QTM has a two-way infinite tape of cells indexed by Z and a single read/write
tape head that moves along the tape. We define configurations, initial configurations,
and final configurations exactly as for deterministic TMs.

Let S be the inner-product space of finite complex linear combinations of config-
urations of M with the Euclidean norm. We call each element φ ∈ S a superposition
of M . The QTM M defines a linear operator UM : S → S, called the time evolution
operator of M , as follows: if M starts in configuration c with current state p and
scanned symbol σ, then after one step M will be in superposition of configurations
ψ =

∑
i αici, where each nonzero αi corresponds to a transition δ(p, σ, τ, q, d), and ci

is the new configuration that results from applying this transition to c. Extending this
map to the entire space S through linearity gives the linear time evolution operator
UM .

Note that we defined S by giving an orthonormal basis for it: namely, the con-
figurations of M . In terms of this standard basis, each superposition ψ ∈ S may
be represented as a vector of complex numbers indexed by configurations. The time
evolution operator UM may be represented by the (countable dimensional) “square”

1420 ETHAN BERNSTEIN AND UMESH VAZIRANI

matrix with columns and rows indexed by configurations where the matrix element
from column c and row c′ gives the amplitude with which configuration c leads to
configuration c′ in a single step of M .

For convenience, we will overload notation and use the expression δ(p, σ, τ, q, d)
to denote the amplitude in δ(p, σ) of |τ〉|q〉|d〉.

The next definition provides an extremely important condition that QTMs must
satisfy to be consistent with quantum physics. We have introduced this condition in
the form stated below for expository purposes. As we shall see later (in section 3.3),
there are other equivalent formulations of this condition that are more familiar to
quantum physics.

Definition 3.3. We will say that M is well formed if its time evolution operator
UM preserves Euclidean length.

Wellformedness is a necessary condition for a QTM to be consistent with quantum
physics. As we shall see in the next subsection, wellformedness is equivalent to unitary
time evolution, which is a fundamental requirement of quantum physics.

Next, we define the rules for observing the QTM M . For those familiar with
quantum mechanics, we should state that the definition below restricts the measure-
ments to be in the computational basis of S. This is because the actual basis in which
the measurement is performed must be efficiently computable, and therefore we may,
without loss of generality, perform the rotation to that basis during the computation
itself.

Definition 3.4. When QTM M in superposition ψ =
∑

i αici is observed or

measured, configuration ci is seen with probability |α|2. Moreover, the superposition
of M is updated to ψ′ = ci.

We may also perform a partial measurement, say only on the first cell of the tape.
In this case, suppose that the first cell may contain the values 0 or 1, and suppose the
superposition was ψ =

∑
i α0ic0i +

∑
i α1ic1i, where the c0i are those configurations

that have a 0 in the first cell, and c1i are those configurations that have a 1 in the first
cell. Measuring the first cell results in Pr[0] =

∑
i |α0i|2. Moreover, if a 0 is observed,

the new superposition is given by 1√
Pr[0]

∑
i α0ic0i, i.e., the part of the superposition

consistent with the answer, with amplitudes scaled to give a unit vector.

Note that the wellformedness condition on a QTM simply says that the time
evolution operator of a QTM must satisfy the condition that in each successive su-
perposition, the sum of the probabilities of all possible configurations must be 1.

Notice that a QTM differs from a classical TM in that the “user” has decisions
beyond just choosing an input. A priori it is not clear whether multiple observations
might increase the power of QTMs This point is discussed in more detail in [10], and
there it is shown that one may assume without loss of generality that the QTM is only
observed once. Therefore in this paper we shall make simplifying assumptions about
the measurement of the final result of the QTM. The fact that these assumptions do
not result in any loss of generality follows from the results in [10].

In general, the “output” of a QTM is a sample from a probability distribution.
We can regard two QTMs as functionally equivalent, for practical purposes, if their
output distributions are sufficiently close to each other. A formal definition of what
it means for one QTM to simulate another is also given in [10]. As in the case of
classical TMs, the formal definition is quite unwieldy. In the actual constructions, it
will be easy to see in what sense they are simulations. Therefore we will not replicate
the formal definitions from [10] here. We give a more informal definition below.

QUANTUM COMPLEXITY THEORY 1421

Definition 3.5. We say that QTM M ′ simulates M with slowdown f with
accuracy ε if the following holds: let D be a distribution such that observing M on
input x after T steps produces a sample from D. Let D′ be a distribution such that
observing M ′ on input x after f(T) steps produces a sample from D′. Then we say
that M ′ simulates M with accuracy ε if |D − D′| ≤ ε.

We will sometimes find it convenient to measure the accuracy of a simulation by
calculating the Euclidean distance between the target superposition and the super-
position achieved by the simulation. The following shows that the variation distance
between the resulting distributions is at most four times this Euclidean distance.

Lemma 3.6. Let φ, ψ ∈ S such that ‖φ‖ = ‖ψ‖ = 1, and ‖φ− ψ‖ ≤ ε. Then the
total variation distance between the probability distributions resulting from measure-
ments of φ and ψ is at most 4ε.

Proof. Let φ =
∑

i αi|i〉 and ψ =
∑

i βi|i〉. Observing φ gives each |i〉 with

probability |αi|2, while observing ψ gives each |i〉 with probability |βi|2. Let π =

φ− ψ =
∑

i(αi − βi)|i〉. Then the latter probability |βi|2 can be expressed as

βiβ
∗
i = (αi + γi)(αi + γi)

∗ = |αi|2 + |γi|2 + αiγ
∗
i + γiα

∗
i .

Therefore, the total variation distance between these two distributions is at most∑
i

‖γi‖2 + |αiγ∗i |+ |γiα∗i | ≤
∑
i

|γi|2 + 〈γ||α〉+ 〈α||γ〉 ≤ ε2 + 2‖α‖‖γ‖ ≤ ε2 + 2ε.

Finally, note that since we have unit superpositions, we must have ε ≤ 2.

3.3. Quantum computing as a unitary transformation. In the preceding
sections, we introduced QTMs as extensions of the notion of probabilistic TMs. We
stated there that a QTM is well formed if it preserves the norm of the superpositions.
In this section, we explore a different, and extremely useful, alternative view of QTMs:
in terms of properties of the time evolution operator. We prove that a QTM is well
formed iff its time evolution is unitary. Indeed unitary time evolution is a fundamental
constraint imposed by quantum mechanics, and we chose to state the wellformedness
condition in the last section mainly for expository purposes.

Understanding unitary evolution from an intuitive point of view is quite impor-
tant to comprehending the computational possibilities of quantum mechanics. Let us
explore this in the setting of a quantum mechanical system that consists of n parts,
each of which can be in one of two states labeled |0〉 and |1〉 (these could be n parti-
cles, each with a spin state). If this were a classical system, then at any given instant
it would be in a single configuration which could be described by n bits. However, in
quantum physics, the system is allowed to be in a linear superposition of configura-
tions, and indeed the instantaneous state of the system is described by a unit vector
in the 2n-dimensional vector space, whose basis vectors correspond to all the 2n con-
figurations. Therefore, to describe the instantaneous state of the system, we must
specify 2n complex numbers. The implications of this are quite extraordinary: even
for a small system consisting of 200 particles, nature must keep track of 2200 complex
numbers just to “remember” its instantaneous state. Moreover, it must update these
numbers at each instant to evolve the system in time. This is an extravagant amount
of effort, since 2200 is larger than the standard estimates on the number of particles in
the visible universe. So if nature puts in such extravagant amounts of effort to evolve
even a tiny system at the level of quantum mechanics, it would make sense that we
should design our computers to take advantage of this.

1422 ETHAN BERNSTEIN AND UMESH VAZIRANI

However, unitary evolution and the rules for measurement in quantum mechanics
place significant constraints on how these features can be exploited for computational
purposes. One of the basic primitives that allows these features to be exploited
while respecting the unitarity constraints is the discrete fourier transform—this is
described in more detail in section 8.4. Here we consider some very simple cases:
one interesting phenomenon supported by unitary evolution is the interference of
computational paths. In a probabilistic computation the probability of moving from
one configuration to another is the sum of the probabilities of each possible path from
the former to the latter. The same is true of the probability amplitudes in quantum
computation but not necessarily of the probabilities of observations. Consider, for
example, applying the transformation

U =

(
1√
2

1√
2

1√
2

− 1√
2

)

twice in sequence to the same tape cell which at first contains the symbol 0. If we
observe the cell after the first application of U , we see either symbol with probability
1
2 . If we then observe after applying U a second time, the symbols are again equally
likely. However, since U2 is the identity, if we only observe at the end, we see a 0
with probability 1. So, even though there are two computational paths that lead from
the initial 0 to a final symbol 1, they interfere destructively cancelling each other
out. The two paths leading to a 0 interfere constructively so that even though both
have probability 1

4 , when we observe twice we have probability 1 of reaching 0 if we
observe only once. Such a boosting of probabilities, by an exponential factor, lies
at the heart of the QTM’s advantage over a probabilistic TM in solving the Fourier
sampling problem.

Another constraint inherent in computation using unitary transformations is re-
versibility. We show in section 4.2 that for any QTM M there is a corresponding
QTM MR, whose time evolution operator is the conjugate transpose of the time evo-
lution operator of M , and therefore undoes the actions of M . Sections 3.5 and 4.1
are devoted to defining the machinery to deal with this feature of QTMs.

We prove below in Appendix A that a QTM is well formed if its time evolution op-
erator is unitary. This establishes that our definition (which did not mention unitary
evolution for expository purposes) does satisfy the fundamental constraint imposed
by quantum mechanics—unitary evolution. Actually one could still ask why this is
consistent with quantum mechanics, since the space S of finite linear combinations of
configurations is not a Hilbert space since it is not complete. To see that this doesn’t
present a problem, notice that S is a dense subset of the Hilbert space H of all (not
just finite) linear combinations of configurations. Moreover, any unitary operator U
on S has a unique extension Û to H; and Û is unitary and its inverse is Û∗. The
proof is quite simple. Let Û and Û∗ be the continuous extensions of U and U∗ to
H. Let x, y ∈ H. Then there are sequences {xn}, {yn} ∈ S such that xn → x and
yn → y. Moreover, for all n, (Uxn, yn) = (xn, U

∗yn). Taking limits, we get that
(Ûx, y) = (x, Û∗y), as desired.

As an aside, we should briefly mention that another resolution of this issue is
achieved by following Feynman [26], who suggested that if we use a quantum me-
chanical system with Hamiltonian U +U∗, then the resulting system has a local, time
invariant Hamiltonian. It is easy to probabilistically recover the computation of the
original system from the computation of the new one.

QUANTUM COMPLEXITY THEORY 1423

It is interesting to note that the following theorem would not be true if we defined
QTMs using a one-way infinite tape. In that case, the trivial QTM which always moves
its tape head right would be well formed, but its time evolution would not be unitary
since its start configuration could not be reached from any other configuration.

Theorem A.5. A QTM is well formed iff its time evolution operator is unitary.

3.4. Precision required in a QTM. One important concern is whether QTMs
are really analog devices, since they involve complex transition amplitudes. The issue
here is how accurately these transition amplitudes must be specified to ensure that
the correctness of the computation is not compromised. In an earlier version of this
paper, we showed that TO(1) bits of precision are sufficient to correctly carry out T
steps of computation to within accuracy ε for any constant ε. Lipton [30] pointed
out that for the device to be regarded as a discrete device, we must require that its
transition amplitudes be specified to at most one part in TO(1) (as opposed to accurate
to within TO(1) bits of precision). This is because the transition amplitude represents
some physical quantity such as the angle of a polarizer or the length of a π pulse, and
we must not assume that we can specify it to better than one part in some polynomial
in T , and therefore the number of bits of precision must be O(log T). This is exactly
what we proved shortly after Lipton’s observation, and we present that proof in this
section.

The next theorem shows that because of the unitary time evolution errors in the
superposition made over a sequence of steps will, in the worst case, only add.

Theorem 3.7. Let U be the time evolution operator of a QTM M and T > 0. If
|φ0〉, |φ̃0〉, . . . , |φT 〉, |φ̃T 〉 are superpositions of U such that

‖|φi〉 − |φ̃i〉‖ ≤ ε,

|φi〉 = U |φ̃i−1〉,

then ‖|φ̃T 〉 − UT |φ0〉‖ ≤ Tε.
Proof. Let |ψi〉 = |φ̃i〉 − |φi〉. Then we have

|φ̃T 〉 = UT |φ0〉+ UT |ψ0〉+ UT−1|ψ1〉+ · · ·+ |ψT 〉

The theorem follows by the triangle inequality since U is unitary and ‖|ψi〉‖
≤ ε.

Definition 3.8. We say that QTMs M and M ′ are ε-close if they have the
same state set and alphabet and if the difference between each pair of corresponding
transition amplitudes has magnitude at most ε. Note that M and M ′ can be ε-close
even if one or both are not well formed.

The following theorem shows that two QTMs which are close in the above sense
give rise to time evolution operators which are close to each other, even if the QTMs
are not well formed. As a simple consequence, the time evolution operator of a QTM
is always bounded, even if the QTM is not well formed.

Theorem 3.9. If QTMs M and M ′ with alphabet Σ and state set Q are ε-close,
then the difference in their time evolutions has norm at most 2 card(Σ) card(Q)ε.
Moreover, this statement holds even if one or both of the machines are not well
formed.

Proof. Let QTMs M and M ′ with alphabet Σ and state set Q be given which are
ε-close. Let U be the time evolution of M , and let U ′ be the time evolution of M ′.

1424 ETHAN BERNSTEIN AND UMESH VAZIRANI

Now, consider any unit length superposition of configurations |φ〉 =
∑

j αj |cj〉.
Then we can express the difference in the machines’ operations on |φ〉 as follows:

U |φ〉 − U ′|φ〉 =
∑
j

 ∑
i∈P (j)

(λi,j − λ′i,j)αi

 |cj〉,
where P (j) is the set of i such that configuration ci can lead to cj in a single step of
M or M ′ and where λi,j and λ′i,j are the amplitudes with which ci leads to cj in M
and M ′.

Applying the triangle inequality and the fact that the square of the sum of n reals
is at most n times the sum of their squares, we have

‖U |φ〉 − U ′|φ〉‖2 =
∑

j

∣∣∣∑i∈P (j)(λi,j − λ′i,j)αi
∣∣∣2

≤ ∑
j 2 card(Σ) card(Q)

∑
i∈P (j)

∣∣(λi,j − λ′i,j)αi
∣∣2.

Then since M and M ′ are ε-close, we have∑
j 2 card(Σ) card(Q)

∑
i∈P (j)

∣∣(λi,j − λ′i,j)αi
∣∣2

= 2 card(Σ) card(Q)
∑

j

∑
i∈P (j)

∣∣λi,j − λ′i,j
∣∣2|αi|2

≤ 2 card(Σ) card(Q)ε2
∑

j

∑
i∈P (j) |αi|2.

Finally since for any configuration cj , there are at most 2 card(Σ) card(Q) con-
figurations that can lead to cj in a single step, we have

2 card(Σ) card(Q)ε2
∑

j

∑
i∈P (j) |αi|2 ≤ 4 card(Σ)

2
card(Q)

2
ε2
∑

i |αi|2
= 4 card(Σ)

2
card(Q)

2
ε2.

Therefore, for any unit length superposition |φ〉
‖(U − U ′)|φ〉‖ ≤ 2 card(Σ) card(Q)ε.

The following corollary shows that O(log T) bits of precision are sufficient in the
transition amplitudes to simulate T steps of a QTM to within accuracy ε for any
constant ε.

Corollary 3.10. Let M = (Σ, Q, δ) be a well-formed QTM, and let M ′ be a
QTM which is ε

24 card(Σ) card(Q)T -close to M , where ε > 0. Then M ′ simulates M

for time T with accuracy ε. Moreover, this statement holds even if M ′ is not well
formed.

Proof. Let b = 1
24 card(Σ) card(Q)T . Without loss of generality, we further assume

ε < 1
2 .
Consider running M and M ′ with the same initial superposition. Since M is well

formed, by Theorem A.5, its time evolution operator U is unitary. By Theorem 3.9
the time evolution operator of M ′, U ′ is within δ = ε

12T of U .
Applying U ′ can always be expressed as applying U and then adding a perturba-

tion of length at most δ times the length of the current superposition. So, the length
of the superposition of U ′ at time t is at most (1 + δ)t. Since δ ≤ 1

T , this length is
at most e. Therefore, appealing to Theorem 3.7 above, the difference between the
superpositions of M and M ′ at time T is a superposition of norm at most 3δT ≤ ε

4 .
Finally, Lemma 3.6 tells us that observing M ′ at time T gives a sample from a dis-
tribution which is within total variation distance ε of the distributions sampled from
by observing M at time T .

QUANTUM COMPLEXITY THEORY 1425

3.5. Input/output conventions for QTMs. Timing is crucial to the oper-
ation of a QTM, because computational paths can only interfere if they take the
same number of time steps. Equally important are the position of the tape head and
alignment of the tape contents. In this subsection, we introduce several input/output
conventions on QTMs and deterministic TMs which will help us maintain these rela-
tionships while manipulating and combining machines.

We would like to think of our QTMs as finishing their computation when they
reach the final state qf . However, it is unclear how we should regard a machine that
reaches a superposition in which some configurations are in state qf but others are
not. We try to avoid such difficulties by saying that a QTM halts on a particular
input if it reaches a superposition consisting entirely of configurations in state qf .

Definition 3.11. A final configuration of a QTM is any configuration in state
qf . If when QTM M is run with input x, at time T the superposition contains only
final configurations, and at any time less than T the superposition contains no final
configuration, then M halts with running time T on input x. The superposition of M
at time T is called the final superposition of M run on input x. A polynomial-time
QTM is a well-formed QTM, which on every input x halts in time polynomial in the
length of x.

We would like to define the output of a QTM which halts as the superposition of
the tape contents of the configurations in the machine’s final superposition. However,
we must be careful to note the position of the tape head and the alignment relative to
the start cell in each configuration since these details determine whether later paths
interfere. Recall that the output string of a final configuration of a TM is its tape
contents from the leftmost nonblank symbol to the rightmost nonblank symbol. This
means that giving an output string leaves unspecified the alignment of this string on
the tape and the location of the tape head to be identified. When describing the
input/output behavior of a QTM we will sometimes describe this additional infor-
mation. When we do not, the additional information will be clear from context. For
example, we will often build machines in which all final configurations have the output
string beginning in the start cell with the tape head scanning its first symbol.

Definition 3.12. A QTM is called well behaved if it halts on all input strings in
a final superposition where each configuration has the tape head in the same cell. If this
cell is always the start cell, we call the machine stationary. Similarly, a deterministic
TM is called stationary if it halts on all inputs with its tape head back in the start
cell.

To simplify our constructions, we will often build QTMs and then combine them
in simple ways, like running one after the other or iterating one a varying number
of times. To do so we must be able to add new transitions into the initial state q0
of a machine. However, since there may already be transitions into q0, the resulting
machine may not be reversible. But, we can certainly redirect the transitions out of
the final state qf of a reversible TM or a well-behaved QTM without affecting its
behavior. Note that for a well-formed QTM, if qf always leads back to q0, then there
can be no more transitions into q0. In that case, redirecting the transitions out of
qf will allow us to add new ones into q0 without violating reversibility. We will say
that a machine with this property is in normal form. Note that a well-behaved QTM
in normal form always halts before using any transition out of qf and therefore also
before using any transition into q0. This means that altering these transitions will not
alter the relevant part of the machine’s computation. For simplicity, we arbitrarily

1426 ETHAN BERNSTEIN AND UMESH VAZIRANI

define normal form QTMs to step right and leave the tape unchanged as they go from
state qf to q0.

Definition 3.13. A QTM or deterministic TM M = (Σ, Q, δ) is in normal form
if

∀σ ∈ Σ δ(qf , σ) = |σ〉|q0〉|R〉.

We will need to consider QTMs with the special property that any particular state
can be entered while the machine’s tape head steps in only one direction. Though
not all QTMs are “unidirectional,” we will show that any QTM can be efficiently
simulated by one that is. Unidirectionality will be a critical concept in reversing a
QTM, in completing a partially described QTM, and in building our universal QTM.
We further describe the advantages of unidirectional machines after Theorem 5.3 in
section 5.2.

Definition 3.14. A QTM M = (Σ, Q, δ) is called unidirectional if each state
can be entered from only one direction: in other words, if δ(p1, σ1, τ1, q, d1) and
δ(p2, σ2, τ2, q, d2) are both nonzero, then d1 = d2.

Finally, we will find it convenient to use the common tool of thinking of the tape
of a QTM or deterministic TM as consisting of several tracks.

Definition 3.15. A multitrack TM with k tracks is a TM whose alphabet Σ is
of the form Σ1 × Σ2 × · · · × Σk with a special blank symbol # in each Σi so that the
blank in Σ is (#, . . . ,#). We specify the input by specifying the string on each “track”
and optionally by specifying the alignment of the contents of the tracks. So, a TM
run on input x1;x2; . . . ;xk ∈ Πk

i=1(Σi−#)∗ is started in the (superposition consisting
only of the) initial configuration with the nonblank portion of the ith coordinate of
the tape containing the string xi starting in the start cell. More generally, on input
x1|y1;x2|y1; . . . ;xk|yk with xi, yi ∈ Σ∗i the nonblank portion of the ith track is xiyi
aligned so that the first symbol of each yi is in the start cell. Also, input x1;x2; . . . ;xk
with xl+1, . . . , xk = ε is abbreviated as x1;x2; . . . ;xl.

4. Programming a QTM. In this section we explore the fundamentals of build-
ing up a QTM from several simpler QTMs. Implementing basic programming primi-
tives such as looping, branching, and reversing, a computation is straightforward for
deterministic TMs. However, these constructions are more difficult for QTMs because
one must be very careful to maintain reversibility. In fact, the same difficulties arise
when building reversible deterministic TMs. However, building up reversible TMs
out of simpler reversible TMs has never been necessary. This is because Bennett [7]
showed how to efficiently simulate any deterministic TM with one which is reversible.
So, one can build a reversible TM by first building the desired computation with a
nonreversible machine and then by using Bennett’s construction. None of the con-
structions in this section make any special use of the quantum nature of QTMs, and
in fact all techniques used are the same as those required to make the analogous
construction for reversible TMs.

We will show in this section that reversible TMs are a special case of QTMs. So,
as Deutsch [20] noted, Bennett’s result allows any desired deterministic computation
to be carried out on a QTM. However, Bennett’s result is not sufficient to allow us
to use deterministic computations when building up QTMs, because the different
computation paths of a QTM will only interfere properly provided that they take
exactly the same number of steps. We will therefore carry out a modified version of
Bennett’s construction to show that any deterministic computation can be carried out

QUANTUM COMPLEXITY THEORY 1427

by a reversible TM whose running time depends only on the length of its input. Then,
different computation paths of a QTM will take the same number of steps provided
that they carry out the same deterministic computation on inputs of the same length.

4.1. Reversible TMs.
Definition 4.1. A reversible TM is a deterministic TM for which each config-

uration has at most one predecessor.
Note that we have altered the definition of a reversible TM from the one used by

Bennett [7, 8], so that our reversible TMs are a special case of our QTMs. First, we
have restricted our reversible TM to move its head only left and right, instead of also
allowing it to stay still. Second, we insist that the transition function δ be a complete
function rather than a partial function. Finally, we consider only reversible TMs with
a single tape, though Bennett worked with multitape machines.

Theorem 4.2. Any reversible TM is also a well-formed QTM.
Proof. The transition function δ of a deterministic TM maps the current state and

symbol to an update triple. If we think of it as instead giving the unit superposition
with amplitude 1 for that triple and 0 elsewhere, then δ is also a quantum transition
function and we have a QTM. The time evolution matrix corresponding to this QTM
contains only the entries 1 and 0. Since Corollary B.2 proven below in Appendix B
tells us that each configuration of a reversible TM has exactly one predecessor, this
matrix must be a permutation matrix. If the TM is reversible then there must be at
most one 1 in each row. Therefore, any superposition of configurations

∑
i αi|ci〉 is

mapped by this time evolution matrix to some other superposition of configurations∑
i αi|c′i〉. So, the time evolution preserves length, and the QTM is well formed.

Previous work of Bennett shows that reversible machines can efficiently simulate
deterministic TMs. Of course, if a deterministic TM computes a function which is not
one-to-one, then no reversible machine can simulate it exactly. Bennett [7] showed
that a generalized reversible TM can do the next best thing, which is to take any input
x and compute x;M(x), where M(x) is the output of M on input x. He also showed
that if a deterministic TM computes a function which is one-to-one, then there is a
generalized reversible TM that computes the same function. For both constructions,
he used a multitape TM and also suggested how the simulation could be carried out
using only a single-tape machine. Morita, Shirasaki, and Gono [33] use Bennett’s ideas
and some further techniques to show that any deterministic TM can be simulated by
a generalized reversible TM with a two symbol alphabet.

We will give a slightly different simulation of a deterministic TM with a reversible
machine that preserves an important timing property.

First, we describe why timing is critical. In later sections, we will build QTMs
with interesting and complex interference patterns. However, two computational
paths can only interfere if they reach the same configuration at the same time. We
will often want paths to interfere which run much of the same computation but with
different inputs. We can only be sure they interfere if we know that these computa-
tions can be carried out in exactly the same running time. We therefore want to show
that any function computable in deterministic polynomial time can be computed by
a polynomial time reversible TM in such a way that the running time of the latter is
determined entirely by the length of its input. Then, provided that all computation
paths carry out the same deterministic algorithms on the inputs of the same length,
they will all take exactly the same number of steps.

We prove the following theorem in Appendix B on page 1465 using ideas from
the constructions of Bennett and Morita, Shirasaki, and Gono.

1428 ETHAN BERNSTEIN AND UMESH VAZIRANI

Theorem 4.3 (synchronization theorem). If f is a function mapping strings
to strings which can be computed in deterministic polynomial time and such that
the length of f(x) depends only on the length of x, then there is a polynomial time,
stationary, normal form reversible TM which given input x, produces output x; f(x),
and whose running time depends only on the length of x.

If f is a function from strings to strings such that both f and f−1 can be computed
in deterministic polynomial time and such that the length of f(x) depends only on the
length of x, then there is a polynomial time, stationary, normal form reversible TM
which given input x, produces output f(x), and whose running time depends only on
the length of x.

4.2. Programming primitives. We now show how to carry out several pro-
gramming primitives reversibly. The branching, reversal, and looping lemmas will be
used frequently in subsequent sections.

The proofs of the following two lemmas are straightforward and are omitted.
However, they will be quite useful as we build complicated machines, since they allow
us to build a series of simpler machines while ignoring the contents of tracks not
currently being used.

Lemma 4.4. Given any QTM (reversible TM) M = (Σ, Q, δ) and any set Σ′,
there is a QTM (reversible TM) M ′ = (Σ×Σ′, Q, δ′) such that M ′ behaves exactly as
M while leaving its second track unchanged.

Lemma 4.5. Given any QTM (reversible TM) M = (Σ1 × · · · × Σk, Q, δ) and
permutation π : [1, k] → [1, k], there is a QTM (reversible TM) M ′ = (Σπ(1) × · · · ×
Σπ(k), Q, δ

′) such that the M ′ behaves exactly as M except that its tracks are permuted
according to π.

The following two lemmas are also straightforward, but stating them separately
makes Lemma 4.8 below easy to prove. The first deals with swapping transitions of
states in a QTM. We can swap the outgoing transitions of states p1 and p2 for tran-
sition function δ by defining δ′(p1, σ) = δ(p2, σ), δ′(p2, σ) = δ(p1, σ), and δ′(p, σ) =
δ(p, σ) for p 6= p1, p2. Similarly, we can swap the incoming transitions of states q1 and
q2 by defining δ′(p, σ, τ, q1, d) = δ(p, σ, τ, q2, d), δ

′(p, σ, τ, q2, d) = δ(p, σ, τ, q1, d), and
δ′(p, σ, τ, q, d) = δ(p, σ, τ, q, d) for q 6= q1, q2.

Lemma 4.6. If M is a well-formed QTM (reversible TM), then swapping the
incoming or outgoing transitions between a pair of states in M gives another well-
formed QTM (reversible TM).

Lemma 4.7. Let M1 = (Σ, Q1, δ1) and M2 = (Σ, Q2, δ2) be two well-formed
QTMs (reversible TMs) with the same alphabet and disjoint state sets. Then the
union of the two machines, M = (Σ, Q1 ∪ Q2, δ1 ∪ δ2), with arbitrarily chosen start
state q0 ∈ Q1 ∪Q2, is also a well-formed QTM (reversible TM).

Using the two preceding lemmas, we can insert one machine in place of a state in
another. When we perform such an insertion, the computations of the two machines
might disturb each other. However, sometimes this can easily be seen not to be the
case. For example, in the insertion used by the dovetailing lemma below, we will insert
one machine for the final state of a well-behaved QTM, so that the computation of
the original machine has been completed before the inserted machine begins. In the
rest of the insertions we carry out, the two machines will operate on different tracks,
so the only possible disturbance involves the position of the tape head.

Lemma 4.8. If M1 and M2 are normal form QTMs (reversible TMs) with the
same alphabet and q is a state of M1, then there is a normal form QTM M which
acts as M1 except that each time it would enter state q, it instead runs machine M2.

QUANTUM COMPLEXITY THEORY 1429

Proof. Let M1 and M2 be as stated with initial and final states q1,0, q2,0, q1,f , q2,f ,
and with q a state of M1.

Then we can construct the desired machine M as follows. First, take the union
of M1 and M2 according to Lemma 4.7 on page 1428 and make the start state q1,0 if
q 6= q1,0 and q2,0 otherwise, and make the final state q1,f if q 6= q1,f and q2,f otherwise.
Then, according to Lemma 4.6, swap the incoming transitions of q and q2,0 and the
outgoing transitions of q and q2,f to get the well-formed machine M .

Since M1 is in normal form, the final state of M leads back to its initial state no
matter whether q is the initial state of M1, the final state of M1, or neither.

Next, we show how to take two machines and form a third by “dovetailing”
one onto the end of the other. Notice that when we dovetail QTMs, the second
QTM will be started with the final superposition of the first machine as its input
superposition. If the second machine has differing running times for various strings
in this superposition, then the dovetailed machine might not halt even though the
two original machines were well behaved. Therefore, a QTM built by dovetailing two
well-behaved QTMs may not itself be well behaved.

Lemma 4.9 (dovetailing lemma). If M1 and M2 are well-behaved, normal form
QTMs (reversible TMs) with the same alphabet, then there is a normal form QTM (re-
versible TM) M which carries out the computation of M1 followed by the computation
of M2.

Proof. Let M1 and M2 be well-behaved, normal form QTMs (reversible TMs)
with the same alphabet and with start states and final states q1,0, q2,0, q1,f , q2,f .

To construct M , we simply insert M2 for the final state of M1 using Lemma 4.8
on page 1428.

To complete the proof we need to show that M carries out the computation of
M1 followed by that of M2.

To see this, first recall that since M1 and M2 are in normal form, the only tran-
sitions into q1,0 and q2,0 are from q1,f and q2,f , respectively. This means that no
transitions in M1 have been changed except for those into or out of state q1,f . There-
fore, since M1 is well behaved and does not prematurely enter state q1,f , the machine
M , when started in state q1,0, will compute exactly as M1 until M1 would halt. At
that point M will instead reach a superposition with all configurations in state q2,0.
Then, since no transitions in M2 have been changed except for those into or out of
q2,f , M will proceed exactly as if M2 had been started in the superposition of outputs
computed by M1.

Now we show how to build a conditional branch around two existing QTMs or
reversible TMs. The branching machine will run one of the two machines on its first
track input, depending on its second track input. Since a TM can have only one final
state, we must rejoin the two branches at the end. We can join reversibly if we write
back out the bit that determined which machine was used. The construction will
simply build a reversible TM that accomplishes the desired branching and rejoining
and then insert the two machines for states in this branching machine.

Lemma 4.10 (branching lemma). If M1 and M2 are well-behaved, normal form
QTMs (reversible TMs) with the same alphabet, then there is a well-behaved, normal
form QTM (reversible TM) M such that if the second track is empty, M runs M1

on its first track and leaves its second track empty, and if the second track has a 1 in
the start cell (and all other cells blank), M runs M2 on its first track and leaves the
1 where its tape head ends up. In either case, M takes exactly four more time steps
than the appropriate Mi.

1430 ETHAN BERNSTEIN AND UMESH VAZIRANI

Proof. Let M1 and M2 be well-behaved, normal form QTMs (reversible TMs)
with the same alphabet.

Then we can construct the desired QTM as follows. We will show how to build
a stationary, normal form reversible TM BR which always takes four time steps
and leaves its input unchanged, always has a superposition consisting of a single
configuration, and has two states q1 and q2 with the following properties. If BR is
run with a 1 in the start cell and blanks elsewhere, then BR visits q1 once with a
blank tape and with its tape head in the start cell and doesn’t visit q2 at all. Similarly,
if BR is run with a blank tape, then BR visits q2 once with a blank tape and with its
tape head in the start cell and doesn’t visit q1 at all. Then if we extend M1 and M2

to have a second track with the alphabet of BR, extend BR to have a first track with
the common alphabet of M1 and M2, and insert M1 for state q1 and M2 for state q2
in BR, we will have the desired QTM M .

We complete the construction by exhibiting the reversible TM BR. The machine
enters state q′1 or q′2 depending on whether the start cell contains a 1 and steps left
and enters the corresponding q1 or q2 while stepping back right. Then it enters state
q3 while stepping left and state qf while stepping back right.

So, we let BR have alphabet {#, 1}, state set {q0, q1, q′1, q2, q′2, q3, qf}, and tran-
sition function defined by the following table

1
q0 #, q′2, L #, q′1, L
q′1 #, q1, R
q′2 #, q2, R
q1 1, q3, L
q2 #, q3, L
q3 #, qf , R
qf #, q0, R 1, q0, R

It can be verified that the transition function of BR is one-to-one and that it
can enter each state while moving in only one direction. Therefore, appealing to
Corollary B.3 on page 1466 it can be completed to give a reversible TM.

Finally, we show how to take a unidirectional QTM or reversible TM and build
its reverse. Two computational paths of a QTM will interfere only if they reach
configurations that do not differ in any way. This means that when building a QTM
we must be careful to erase any information that might differ along paths which we
want to interfere. We will therefore sometimes use this lemma when constructing a
QTM to allow us to completely erase an intermediate computation.

Since the time evolution of a well-formed QTM is unitary, we could reverse a QTM
by applying the unitary inverse of its time evolution. However, this transformation
is not the time evolution of a QTM since it acts on a configuration by changing
tape symbols to the left and right of the tape head. However, since each state in a
unidirectional QTM can be entered while moving in only one direction, we can reverse
the head movements one step ahead of the reversal of the tape and state. Then, the
reversal will have its tape head in the proper cell each time a symbol must be changed.

Definition 4.11. If QTMs M1 and M2 have the same alphabet, then we say that
M2 reverses the computation of M1 if identifying the final state of M1 with the initial
state of M2 and the initial state of M1 with the final state of M2 gives the following.
For any input x on which M1 halts, if cx and φx are the initial configuration and final
superposition of M1 on input x, then M2 halts on initial superposition φx with final
superposition consisting entirely of configuration cx.

QUANTUM COMPLEXITY THEORY 1431

Lemma 4.12 (reversal lemma). If M is a normal form, reversible TM or unidi-
rectional QTM, then there is a normal form, reversible TM or QTM M ′ that reverses
the computation of M while taking two extra time steps.

Proof. We will prove the lemma for normal form, unidirectional QTMs, but the
same argument proves the lemma for normal form reversible TMs.

Let M = (Σ, Q, δ) be a normal form, unidirectional QTM with initial and final
states q0 and qf , and for each q ∈ Q let dq be the direction which M must move
while entering state q. Then, we define a bijection π on the set of configurations of
M as follows. For configuration c in state q, let π(c) be the configuration derived
from c by moving the tape head one square in direction d̄q (the opposite of direction
dq). Since the set of superpositions of the form |c〉 give an orthonormal basis for the
space of superpositions of M , we can extend π to act as a linear operator on this
space of superpositions by defining π|c〉 = |πc〉. It is easy to see that π is a unitary
transformation on the space of superpositions on M .

Our new machine M ′ will have the same alphabet as M and state set given by Q
together with new initial and final states q′0 and q′f . The following three statements
suffice to prove that M ′ reverses the computation of M while taking two extra time
steps.

1. If c is a final configuration of M and c′ is the configuration c with state qf
replaced by state q′0, then a single step of M ′ takes superposition |c′〉 to superposition
π(|c〉).

2. If a single step of M takes superposition |φ1〉 to superposition |φ2〉, where
|φ2〉 has no support on a configuration in state q0, then a single step of M ′ takes
superposition π(|φ2〉) to superposition π(|φ1〉).

3. If c is an initial configuration of M and c′ is the configuration c with state
q0 replaced by state q′f , then a single step of M ′ takes superposition π(|c〉) to super-
position |c′〉.

To see this, let x be an input on which M halts, and let |φ1〉, . . . , |φn〉 be the
sequence of superpositions of M on input x, so that |φ1〉 = |cx〉 where cx is the initial
superposition ofM on x and |φn〉 has support only on final configurations ofM . Then,
since the time evolution operator of M is linear, statement 1 tells us that if we form
the initial configuration |φ′n〉 of M ′ by replacing each state qf in the |φn〉 with state
q′0, then M ′ takes |φ′n〉 to π(|φn〉) in a single step. Since M is in normal form, none
of |φ2〉, . . . , |φn〉 have support on any superposition in state q0. Therefore, statement
2 tells us that the next n steps of M ′ lead to superpositions π(|φn−1〉), . . . , π(|φ1〉).
Finally, statement 3 tells us that a single step of M ′ maps superposition π(|cx〉) to
superposition |c′x〉.

We define the transition function δ′ to give a well-formed M ′ satisfying these
three statements with the following transition rules.

1. δ′(q′0, σ) = |σ〉|qf 〉|d̄qf 〉.
2. For each q ∈ Q− q0 and each τ ∈ Σ,

δ′(q, τ) =
∑
p,σ

δ(p, σ, τ, q, dq)
∗|σ〉|p〉|d̄p〉.

3. δ′(q0, σ) = |σ〉|q′f 〉|dq0〉.
4. δ′(q′f , σ) = |σ〉|q′0〉|R〉.

The first and third rules can easily be seen to ensure statements 1 and 3. The
second rule can be seen to ensure statement 2 as follows: Since M is in normal
form, it maps a superposition |φ1〉 to a superposition |φ2〉 with no support on any

1432 ETHAN BERNSTEIN AND UMESH VAZIRANI

configuration in state q0 if and only if |φ1〉 has no support on any configurations in
state qf . Therefore, the time evolution ofM defines a unitary transformation from the
space S1 of superpositions of configurations in states from the set Q1 = Q− qf to the
space of superpositions S2 of configurations in states from the set Q2 = Q− q0. This
fact also tells us that the second rule above defines a linear transformation from space
S2 back to space S1. Moreover, if M takes configuration c1 with a state from Q1 with
amplitude α to configuration c2 with a state from Q2, then M ′ takes configuration
π(c2) to configuration π(c1) with amplitude α∗. Therefore, the time evolution of M ′

on space S2 is the composition of π and its inverse around the conjugate transpose
of the time evolution of M . Since this conjugate transpose must also be unitary, the
second rule above actually gives a unitary transformation from the space S2 to the
space S1 which satisfies statement 2 above.

Since M ′ is clearly in normal form, we complete the proof by showing that M ′

is well formed. To see this, just note that each of the four rules defines a unitary
transformation to one of a set of four mutually orthogonal subspaces of the spaces of
superpositions of M ′.

The synchronization theorem will allow us to take an existing QTM and put it
inside a loop so that the machine can be run any specified number of times.

Building a reversible machine that loops indefinitely is trivial. However, if we
want to loop some finite number of times, we need to carefully construct a reversible
entrance and exit. As with the branching lemma above, the construction will proceed
by building a reversible TM that accomplishes the desired looping and then inserting
the QTM for a particular state in this looping machine. However, there are several
difficulties. First, in this construction, as opposed to the branching construction, the
reversible TM leaves an intermediate computation written on its tape while the QTM
runs. This means that inserting a nonstationary QTM would destroy the proper
functioning of the reversible TM. Second, even if we insert a stationary QTM, the
second (and any subsequent) time the QTM is run, it may be started in superposition
on inputs of different lengths and hence may not halt. Therefore, there is no general
statement we are able to make about the behavior of the machine once the insertion
is carried out. Instead, we describe here the reversible looping TM constructed in
Appendix C on page 1470 and argue about specific QTMs resulting from this machine
when they are constructed.

Lemma 4.13 (looping lemma). There is a stationary, normal form, reversible
TM M and a constant c with the following properties. On input any positive integer
k written in binary, M runs for time O(k logc k) and halts with its tape unchanged.
Moreover, M has a special state q∗ such that on input k, M visits state q∗ exactly k
times, each time with its tape head back in the start cell.

5. Changing the basis of a QTM’s computation. In this section we intro-
duce a fundamentally quantum mechanical feature of quantum computation, namely
changing the computational basis during the evolution of a QTM. In particular, we
will find it useful to change to a new orthonormal basis for the transition function in
the middle of the computation—each state in the new state set is a linear combination
of states from the original machine.

This will allow us to simulate a general QTM with one that is unidirectional.
It will also allow us to prove that any partially defined quantum transition function
which preserves length can be extended to give a well-formed QTM.

We start by showing how to change the basis of the states of a QTM. Then we give
a set of conditions for a quantum transition function that is necessary and sufficient

QUANTUM COMPLEXITY THEORY 1433

for a QTM to be well formed. The last of these conditions, called separability, will
allow us to construct a basis of the states of a QTM which will allow us to prove the
unidirection and completion lemmas below.

5.1. The change of basis. If we take a well-formed QTM and choose a new
orthonormal basis for the space of superpositions of its states, then translating its
transition function into this new basis will give another well-formed QTM that evolves
just as the first under the change of basis. Note that in this construction the new
QTM has the same time evolution operator as the original machine. However, the
states of the new machine differ from those of the old. This change of basis will allow
us to prove Lemmas 5.5 and 5.7 below.

Lemma 5.1. Given a QTM M = (Σ, Q, δ) and a set of vectors B from C̃Q which
forms an orthonormal basis for CQ, there is a QTM M ′ = (Σ, B, δ′) which evolves
exactly as M under a change of basis from Q to B.

Proof. Let M = (Σ, Q, δ) be a QTM, and let B be an orthonormal basis for CQ.
Since B is an orthonormal basis, this establishes a unitary transformation from

the space of superpositions of states in Q to the space of superpositions of states in
B. Specifically, for each p ∈ Q we have the mapping

|p〉 →
∑
v∈B

〈p||v〉 |v〉.

Similarly, we have a unitary transformation from the space of superpositions of con-
figurations with states in Q to the space of configurations with states in B. In this
second transformation, a configuration with state p is mapped to the superposition
of configurations, where the corresponding configuration with state v appears with
amplitude 〈p||v〉.

Let us see what the time evolution of M should look like under this change of
basis. In M a configuration in state p reading a σ evolves in a single time step to the
superposition of configurations corresponding to the superposition δ(p, σ):

δ(p, σ) =
∑
τ,q,d

δ(p, σ, τ, q, d) |τ〉|q〉|d〉.

With the change of basis, the superposition on the right-hand side will instead be∑
τ,v,d

(∑
q

〈q|v〉 δ(p, σ, τ, q, d)
)
|τ〉|v〉|d〉.

Now, since the state symbol pair |v〉|σ〉 in M ′ corresponds to the superposition∑
p

〈v|p〉 |p〉|σ〉

in M , we should have in M ′

δ′(v, σ) =
∑
p

〈v|p〉
∑

τ,v′,d

(∑
q

〈q|v′〉 δ(p, σ, τ, q, d)
) |τ〉|v′〉|d〉.

Therefore, M ′ will behave exactly as M under the change of basis if we define δ′

by saying that for each v, σ ∈ B × Σ,

δ′(v, σ) =
∑
τ,v′,d

(∑
p,q

〈v|p〉 〈q|v′〉 δ(p, σ, τ, q, d)
)
|τ〉|v′〉|d〉.

1434 ETHAN BERNSTEIN AND UMESH VAZIRANI

Since the vectors in B are contained in C̃Q, each amplitude of δ′ is contained in C̃.
Finally, note that the time evolution of M ′ must preserve Euclidean length since

it is exactly the time evolution of the well-formed M under the change of basis.

5.2. Local conditions for QTM wellformedness. In our discussion of re-
versible TMs in Appendix B we find properties of a deterministic transition function
which are necessary and sufficient for it to be reversible. Similarly, our next theorem
gives three properties of a quantum transition function which together are necessary
and sufficient for it to be well formed. The first property ensures that the time evolu-
tion operator preserves length when applied to any particular configuration. Adding
the second ensures that the time evolution preserves the length of superpositions
of configurations with their tape head in the same cell. The third property, which
concerns “restricted” update superpositions, handles superpositions of configurations
with tape heads in differing locations. This third property will be of critical use in
the constructions of Lemmas 5.5 and 5.7 below.

Definition 5.2. We will also refer to the superposition of states∑
q∈Q

δ(p, σ, τ, q, d)|q〉

resulting from restricting δ(p, σ) to those pieces writing symbol τ and moving in di-
rection d as a direction d-going restricted superposition, denoted by δ(p, σ|τ, d).

Theorem 5.3. A QTM M = (Σ, Q, δ) is well formed iff the following conditions
hold:

unit length

∀ p, σ ∈ Q× Σ ‖δ(p, σ)‖ = 1,

orthogonality

∀ (p1, σ1) 6= (p2, σ2) ∈ Q× Σ δ(p1, σ1) · δ(p2, σ2) = 0,

separability

∀ (p1, σ1, τ1), (p2, σ2, τ2) ∈ Q× Σ× Σ δ(p1, σ1|τ1, L) · δ(p2, σ2|τ2, R) = 0.

Proof. Let U be the time evolution of a proposed QTM M = (Σ, Q, δ). We
know M is well formed iff U∗ exists and U∗U gives the identity or, equivalently,
iff the columns of U have unit length and are mutually orthogonal. Clearly, the first
condition specifies exactly that each column has unit length. In general, configurations
whose tapes differ in a cell not under either of their heads, or whose tape heads are not
either in the same cell or exactly two cells apart, cannot yield the same configuration
in a single step. Therefore, such pairs of columns are guaranteed to be orthogonal,
and we need only consider pairs of configurations for which this is not the case. The
second condition specifies the orthogonality of pairs of columns for configurations that
differ only in that one is in state p1 reading σ1 while the other is in state p2 reading
σ2.

Finally, we must consider pairs of configurations with their tape heads two cells
apart. Such pairs can only interfere in a single step if they differ at most in their
states and in the symbol written in these cells. The third condition specifies the
orthogonality of pairs of columns for configurations which are identical except that
the second has its tape head two cells to the left, is in state p2 instead of p1, has a σ2

QUANTUM COMPLEXITY THEORY 1435

instead of a τ2 in the cell under its tape head, and has a τ1 instead of a σ1 two cells
to the left.

Now consider again unidirectional QTMs, those in which each state can be entered
while moving in only one direction. When we considered this property for determinis-
tic TMs, it meant that when looking at a deterministic transition function δ, we could
ignore the direction update and think of δ as giving a bijection from the current state
and tape symbol to the new symbol and state. Here, if δ is a unidirectional quan-
tum transition function, then it certainly satisfies the separability condition since no
left-going and right-going restricted superpositions have a state in common. More-
over, update triples will always share the same direction if they share the same state.
Therefore, a unidirectional δ is well formed iff, ignoring the direction update, δ gives
a unitary transformation from superpositions of current state and tape symbol to
superpositions of new symbol and state.

5.3. Unidirection and completion lemmas. The separability condition of
Theorem 5.3 allows us to simulate any QTM with a unidirectional QTM by applying
a change of basis. The same change of basis will also allow us to complete any partially
specified quantum transition function which preserves length.

It is straightforward to simulate a deterministic TM with one which is unidirec-
tional. Simply split each state q into two states qr and ql, both of which are given the
same transitions that q had, and then edit the transition function so that transitions
moving right into q enter qr and transitions moving left into q enter ql. The resulting
machine is clearly not reversible since the transition function operates the same on
each pair of states qr, ql.

To simplify the unidirection construction, we first show how to interleave a series
of quantum transition functions.

Lemma 5.4. Given k state sets Q0, . . . , Qk−1, Qk = Q0 and k transition functions
each mapping from one state set to the next

δi : Qi × Σ → C̃Σ×Qi+1×{L,R}

such that each δi preserves length, there is a well-formed QTM M with state set⋃
i(Qi, i) which alternates stepping according to each of the k transition functions.

Proof. Suppose we have k state sets transition functions as stated above. Then
we let M be the QTM with the same alphabet, with state set given by the union of
the individual state sets

⋃
i(Qi, i), and with transition function according to the δi,

δ((p, i), σ) =
∑
τ,q,d

δi(p, σ, τ, q, d)|τ〉|q, i+ 1〉|d〉.

Clearly, the machine M alternates stepping according to δ0, . . . , δk−1. It is also easy
to see that the time evolution of M preserves length. If |φ〉 is a superposition of
configurations with squared length αi in the subspace with configurations with states
from Qi, then δ maps φ to a superposition with squared length αi in the subspace
with configurations with states from Qi+1.

Lemma 5.5 (unidirection lemma). Any QTM M is simulated, with slowdown by
a factor of 5, by a unidirectional QTM M ′. Furthermore, if M is well behaved and
in normal form, then so is M ′.

Proof. The key idea is that the separability condition of a well-formed QTM
allows a change of basis to a state set in which each state can be entered from only
one direction.

1436 ETHAN BERNSTEIN AND UMESH VAZIRANI

The separability condition says that

∀ (p1, σ1, τ1), (p2, σ2, τ2) ∈ Q× Σ× Σ,

δ(p1, σ1|τ1, L) · δ(p2, σ2|τ2, R) = 0.

This means that we can split CQ into mutually orthogonal subspaces CL and CR

such that span(CL,CR) = CQ and

∀ (p1, σ1, τ1) ∈ Q× Σ× Σ,

δ(p1, σ1|τ1, d) ∈ Cd.

Now, as shown in Lemma 5.1 above, under a change of basis from state set Q to
state set B the new transition function is defined by

δ′(v, σ, τ, v′, d) =
∑
p,q

〈v|p〉〈q|v′〉δ(p, σ, τ, q, d).

So, choose orthonormal bases BL and BR for the spaces CL and CR and let M ′ =
(Σ, BL ∪ BR, δ

′) be the QTM constructed according to Lemma 5.1 which evolves
exactly as M under a change of basis from state set Q to state set B = BL ∪ BR.
Then any state in M ′ can be entered in only one direction. To see this, first note that
since δ(p, σ|τ, d) ∈ Bd and v =

∑
q 〈v|q〉|q〉, the separability condition implies that for

v ∈ Bd, ∑
q

δ(p, σ, τ, q, d)〈v|q〉∗ = 0.

Therefore, for any v, σ, τ, v′ ∈ B × Σ× Σ×Bd,

δ′(v, σ, τ, v′, d) =
∑
p,q

〈v|p〉〈q|v′〉δ(p, σ, τ, q, d)

=
∑
p

〈v|p〉
∑
q

〈q|v′〉δ(p, σ, τ, q, d) = 0.

Therefore, any state in B can be entered while traveling in only one direction.
Unfortunately, this new QTM M ′ might not be able to simulate M . The problem

is that the start state and final state of M might correspond under the change of basis
isomorphism to superpositions of states in M ′, meaning that we would be unable to
define the necessary start and final states for M ′. To fix this problem, we use five
time steps to simulate each step of M and interleave the five transition functions using
Lemma 5.4 on page 1435.

1. Step right leaving the tape and state unchanged:

δ0(p, σ) = |σ〉|p〉|R〉.
2. Change basis from Q to B while stepping left:

δ1(p, σ) =
∑
b∈B

〈p|b〉|σ〉|b〉|L〉.

QUANTUM COMPLEXITY THEORY 1437

3. M ′ carries out a step of the computation of M . So, δ2 is just the quantum
transition function δ′ from QTM M ′ constructed above.

4. Change basis back from B to Q while stepping left:

δ3(b, σ) =
∑
p∈Q

〈b|p〉|σ〉|p〉|L〉.

5. Step right leaving the tape and state unchanged:

δ4(p, σ) = |σ〉|p〉|R〉.
If we construct QTMM ′ with state set (Q×{0, 1, 4}∪(B×{2, 3}) using Lemma 5.4

on page 1435 and let M ′ have start and final states (q0, 0) and (qf , 0), then M ′

simulates M with slowdown by a factor of 5.
Next, we must show that each of the five transition functions obeys the well-

formedness conditions and hence according to Lemma 5.4 that the interleaved machine
is well formed.

The transition function δ2 = δ′ certainly obeys the wellformedness conditions
since M ′ is a well formed QTM. Also, δ0 and δ4 obey the three wellformedness con-
ditions since they are deterministic and reversible. Finally, the transition functions
δ1 and δ3 satisfy the unit length and orthogonality conditions since they implement a
change of basis, and they obey the separability condition since they only move in one
direction.

Finally, we must show that if M is well-behaved and in normal form, then we can
make M ′ well behaved and in normal form.

So, suppose M is well behaved and in normal form. Then there is a T such that
at time T the superposition includes only configurations in state qf with the tape
head back in the start cell, and at any time less than T the superposition contains
no configuration in state qf . But this means that when M ′ is run on input x, the
superposition at time 5T includes only configurations in state (qf , 0) with the tape
head back in the start cell, and the superposition at any time less than 5T contains
no configuration in state (qf , 0). Therefore, M ′ is also well behaved.

Then for any input x there is a T such thatM enters a series of T−1 superpositions
of configurations all with states in Q − {q0, qf} and then enters a superposition of
configurations all in state qf with the tape head back in the start cell. Therefore, on
input x, M ′ enters a series of 5T − 1 superpositions of configurations all with states
in Q′ − {(qf , 0), (q0, 4)} and then enters a superposition of configurations all in state
(qf , 0) with the tape head back in the start cell. Therefore, M ′ is well behaved. Also,
swapping the outgoing transitions of (qf , 0) and (q0, 4), which puts M ′ in normal
form, will not change the computation of M ′ on any input x.

When we construct a QTM, we will often only be concerned with a subset of its
transitions. Luckily, any partially defined transition function that preserves length
can be extended to give a well-formed QTM.

Definition 5.6. A QTM M whose quantum transition function δ′ is only defined
for a subset S ⊆ Q×Σ is called a partial QTM. If the defined entries of δ′ satisfy the
three conditions of Theorem 5.3 on page 1434 then M is called a well-formed partial
QTM.

Lemma 5.7 (completion lemma). Suppose M is a well-formed partial QTM with
quantum transition function δ. Then there is a well-formed QTM M ′ with the same
state set and alphabet whose quantum transition function δ′ agrees with δ wherever
the latter is defined.

1438 ETHAN BERNSTEIN AND UMESH VAZIRANI

Proof. We noted above that a unidirectional quantum transition function is well
formed iff, ignoring the direction update, it gives a unitary transformation from su-
perpositions of current state and tape symbol to superpositions of new symbol and
state. So if our partial QTM is unidirectional, then we can easily fill in the undefined
entries of δ by extending the set of update superpositions of δ to an orthonormal basis
for the space of superpositions of new symbol and state.

For a general δ, we can use the technique of Lemma 5.1 on page 1433 to change
the basis of δ away from Q so that each state can be entered while moving in only
one direction, extend the transition function, and then rotate back to the basis Q.

We can formalize this as follows: let M = (Σ, Q, δ) be a well-formed partial QTM
with δ defined on the subset S ⊆ Q×Σ. Denote by S the complement of S in Q×Σ.

As in the proof of the unidirection lemma above, the separability condition al-
lows us to partition CQ into mutually orthogonal subspaces CL and CR such that
span(CL,CR) = CQ and

∀ (p1, σ1, τ1) ∈ S × Σ,

δ(p1, σ1|τ1, d) ∈ Cd.

Then, we choose orthonormal bases BL and BR for CL and CR and consider the
unitary transformation from superpositions of configurations with states in Q to the
space of configurations with states in B = BL ∪ BR, where any configuration with
state p is mapped to the superposition of configurations where the corresponding
configuration with state v appears with amplitude 〈p|v〉.

If we call δ′ the partial function δ followed by this unitary change of basis, then
we have

δ′(p, σ) =
∑
τ,v,d

(∑
q

〈q|v〉δ(p, σ, τ, q, d)
)
|τ〉|v〉|d〉.

Since δ preserves length and δ′ is δ followed by a unitary transformation, δ′ also
preserves length.

But now δ′ can enter any state in B while moving in only one direction. To
see this, first note that since δ(p, σ; τ, d) ∈ Bd and v =

∑
q 〈v|q〉|q〉, the separability

condition implies that for v ∈ Bd,∑
q

δ(p, σ, τ, q, d)〈v|q〉∗ = 0.

Therefore, for any p, σ, τ, v ∈ S × Σ×Bd,

δ′(p, σ, τ, v, d) =
∑
q

〈q|v〉δ(p, σ, τ, q,) = 0.

Therefore, any state in B can be entered while traveling in only one direction.
Then, since the direction is implied by the new state, we can think of δ′ as mapping

the current state and symbol to a superposition of new symbol and state. Since δ′

preserves length, the set δ′(S) is a set of orthonormal vectors, and we can expand this
set to an orthonormal basis of the space of superpositions of new symbol and state.
Adding the appropriate direction updates and assigning these new vectors arbitrarily
to δ′(S̄), we have a completely defined δ′ that preserves length. Therefore, assigning
δ(S̄) as δ′(S̄) followed by the inverse of the basis transformation gives a completion
for δ that preserves length.

QUANTUM COMPLEXITY THEORY 1439

6. An efficient QTM implementing any given unitary transformation.
Suppose that the tape head of a QTM is confined to a region consisting of k con-
tiguous tape cells (the tape is blank outside this region). Then the time evolution
of the QTM can be described by a d-dimensional unitary transformation, where
d = kcard(Q)card(Σ)

k
. In this section we show conversely that there is a QTM

that, given any d-dimensional unitary transformation as input, carries out that trans-
formation (on a region of its tape). To make this claim precise we must say how the
d-dimensional unitary transformation is specified. We assume that an approximation
to the unitary transformation is specified by a d × d complex matrix whose entries
are approximations to the entries of the actual unitary matrix corresponding to the
desired transformation. We show in Theorem 6.11 on page 1447 that there is a QTM
that, on input ε and a d-dimensional transformation which is within distance ε

2(10
√
d)d

of a unitary transformation, carries out a transformation which is an ε approximation
to the desired unitary transformation. Moreover, the running time of the QTM is
bounded by a polynomial in d and 1

ε .

In a single step, a QTM can map a single configuration into a superposition of a
bounded number of configurations. Therefore, in order to carry out an (approximation
to an) arbitrary unitary transformation on a QTM, we show how to approximate it by
a product of simple unitary transformations—each such simple transformation acts as
the identity in all but two dimensions. We then show that there is a particular simple
unitary transformation such that any given simple transformation can be expressed
as a product of permutation matrices and powers of this fixed simple matrix. Finally,
we put it all together and show how to design a single QTM that carries out an
arbitrary unitary transformation—this QTM is deterministic except for a single kind
of quantum coin flip.

The decomposition of an arbitrary unitary transformation into a product of sim-
ple unitary transformations is similar to work carried out by Deutsch [21]. Deutsch’s
work, although phrased in terms of quantum computation networks, can be viewed
as showing that a d-dimensional unitary transformation can be decomposed into a
product of transformations where each applies a particular unitary transformation
to three dimensions and acts as the identity elsewhere. We must consider here sev-
eral issues of efficiency not addressed by Deutsch. First, we are concerned that the
decomposition contains a number of transformations which is polynomial in the di-
mension of the unitary transformation and in the desired accuracy. Second, we desire
that the decomposition can itself be efficiently computed given the desired unitary
transformation as input. For more recent work on the efficient simulation of a unitary
transformation by a quantum computation network see [5] and the references therein.

6.1. Measuring errors in approximated transformations. In this section,
we will deal with operators (linear transformations) on finite-dimensional Hilbert
spaces. It is often convenient to fix an orthonormal basis for the Hilbert space and de-
scribe the operator by a finite matrix with respect to the chosen basis. Let e1, . . . , ed
be an orthonormal basis for Hilbert space H = Cd. Then we can represent an op-
erator U on H by a d × d complex matrix M , whose i, jth entry mi,j is (Uej , ei).
The ith row of the matrix M is given by ei

TM , and we will denote it by Mi. We
denote by Mi

∗ the conjugate transpose of Mi. The jth column of M is given by
Mej . U

∗, the adjoint of U , is represented by the d × d matrix M∗. M is unitary iff
MM∗ = M∗M = I. It follows that if M is unitary then the rows (and columns) of
M are orthonormal.

1440 ETHAN BERNSTEIN AND UMESH VAZIRANI

Recall that for a bounded linear operator U on a Hilbert space H, the norm of U
is defined as

|U | = sup
‖x‖=1

|Ux|.

If we represent U by the matrix M , then we can define the norm of the matrix M to
be same as the norm of U . Thus, since we’re working in a finite-dimensional space,

‖M‖ = max
‖v‖=1

‖Mv‖.

Fact 6.1. If U is unitary, then ‖U‖ = ‖U∗‖ = 1.

Proof. ∀x ∈ H, ‖Ux‖2 = (Ux,Ux) = (x, U∗Ux) = (x, x) = ‖x‖2. Therefore,
‖U‖ = 1, and similar reasoning shows ‖U∗‖ = 1.

We will find it useful to keep track of how far our approximations are from being
unitary. We will use the following simple measure of a transformation’s distance from
being unitary.

Definition 6.2. A bounded linear operator U is called ε-close to unitary if there
is a unitary operator Ũ such that ‖U − Ũ‖ ≤ ε. If we represent U by the matrix M ,
then we can equivalently say that M is ε-close to unitary if there is a unitary matrix
M̃ such that ‖M − M̃‖ ≤ ε.

Notice that, appealing to statement (2.3) in section 2 if U is ε-close to unitary,
then 1− ε ≤ ‖U‖ ≤ 1 + ε. However, the converse is not true. For example the linear
transformation (1

0
0
0) has norm 1, but is 1 away from unitary.

Next, we show that if M is close to unitary, then the rows of M are close to unit
length and will be close to orthogonal.

Lemma 6.3. If a d-dimensional complex matrix M is ε-close to unitary, then

1− ε ≤ ‖Mi‖ ≤ 1 + ε,(6.1)

∀i 6= j, ‖MiMj
∗‖ ≤ 2ε+ 3ε2.(6.2)

Proof. Let M̃ be the unitary matrix such that ‖M − M̃‖ ≤ ε. Let N = M − M̃ .
Then we know that for each i, ‖M̃i‖ = 1 and ‖Ni‖ ≤ ε.

So, for any i, we have Mi = Ni + M̃i. Therefore, 1− ε ≤ ‖Mi‖ ≤ 1 + ε.
Next, since M̃ is unitary, it follows that for i 6= j, M̃iM̃

∗
j = 0. Therefore,

(Mi −Ni)(M
∗
j −N∗

j) = 0. Expanding this as a sum of four terms, we get

MiM
∗
j = MiN

∗
j +NiM

∗
j −NiN

∗
j .

Since ‖M‖ ≤ 1 + ε and ‖N‖ ≤ ε, the Schwarz inequality tells us that ‖MiN
∗
j ‖ ≤

(1 + ε)ε, ‖NiM
∗
j ‖ ≤ ε(1 + ε), and ‖NiN

∗
j ‖ ≤ ε2. Using the triangle inequality we

conclude that ‖MiM
∗
j ‖ ≤ 2(1 + ε)ε+ ε2. Therefore, ‖MiMj

∗‖ ≤ 2ε+ 3ε2.
We will also use the following standard fact that a matrix with small entries must

have small norm.
Lemma 6.4. If M is a d-dimensional square complex matrix such that |mi,j | ≤ ε

for all i, j, then ‖M‖ ≤ dε.
Proof. If each entry of M has magnitude at most ε, then clearly each row Mi

of M must have norm at most
√
dε. So, if v is a d-dimensional column vector with

|v| = 1, we must have

‖Mv‖2 =
∑
i

‖Miv‖2 ≤
∑
i

dε2 = d2ε2,

where the inequality follows from the Schwarz inequality. Therefore, ‖M‖ ≤ dε.

QUANTUM COMPLEXITY THEORY 1441

6.2. Decomposing a unitary transformation. We now describe a class of
exceedingly simple unitary transformations which we will be able to carry out using
a single QTM. These “near-trivial” transformations either apply a phase shift in one
dimension or apply a rotation between two dimensions, while acting as the identity
otherwise.

Definition 6.5. A d × d unitary matrix M is near trivial if it satisfies one of
the following two conditions.

1. M is the identity except that one of its diagonal entries is eiθ for some θ ∈
[0, 2π]. For example, ∃j mj,j = eiθ ∀k 6= j mk,k = 1, and ∀k 6= l mk,l = 0.

2. M is the identity except that the submatrix in one pair of distinct dimensions
j and k is the rotation by some angle θ ∈ [0, 2π] : (cos θ

sin θ
− sin θ
cos θ). So, as a transforma-

tion M is near trivial if there exists θ and i 6= j such that Mei = (cos θ)ei +(sin θ)ej,
Mej = −(sin θ)ei + (cos θ)ej, and ∀k 6= i, j Mek = ek.

We call a transformation which satisfies statement 1 a near-trivial phase shift,
and we call a transformation which satisfies Statement 2 a near-trivial rotation.

We will write a near-trivial matrix M in the following way. If M is a phase
shift of eiθ in dimension j, then we will write down [j, j, θ] and if M is a rotation
of angle θ between dimensions j and k we will write down [j, k, θ]. This convention
guarantees that the matrix that we are specifying is a near-trivial matrix and therefore
a unitary matrix, even if for precision reasons we write down an approximation to
the matrix that we really wish to specify. This feature will substantially simplify our
error analyses.

Before we show how to use near-trivial transformations to carry out an arbitrary
unitary transformation, we first show how to use them to map any particular vector
to a desired target direction.

Lemma 6.6. There is a deterministic algorithm which on input a vector v ∈ Cd

and a bound ε > 0 computes near-trivial matrices U1, . . . , U2d−1 such that

‖U1 · · ·U2d−1v − ‖v‖e1‖ ≤ ε,

where e1 is the unit vector in the first coordinate direction. The running time of the
algorithm is bounded by a polynomial in d, log 1

ε and the length of the input.

Proof. First, we use d phase shifts to map v into the space IRd. We therefore want

to apply the phase shift
v∗i
‖vi‖ to each dimension i with vi 6= 0. So, we let Pi be the near-

trivial matrix which applies to dimension i the phase shift by angle φi, where φi = 0 if

vi = 0 and otherwise φi = 2π− cos−1 Re(vi)
‖vi‖ or cos−1 Re(vi)

‖vi‖ depending whether Im(vi)

is positive or negative. Then P1 · · ·Pdv is the vector with ith coordinate ‖vi‖.
Next, we use d−1 rotations to move all of the weight of the vector into dimension

1. So, we let Ri be the near-trivial matrix which applies the rotation by angle θi to
dimensions i and i+ 1, where

θi = cos−1 ‖vi‖√∑d
j=i ‖vj‖2

if the sum in the denominator is not 0 and θi = 0 otherwise. Then

R1 · · ·Rd−1P1 · · ·Pdv = ‖v‖e1.
Now, instead of producing these values φi, θi exactly, we can compute, in time

polynomial in d and log 1
ε and the length of the input, values φ′i and θ′i which are

1442 ETHAN BERNSTEIN AND UMESH VAZIRANI

within δ = ε
(2d−1)‖v‖ of the desired values. Call P ′i and R′i the near-trivial matrices

corresponding to Pi and Ri but using these approximations. Then, since the distance
between points at angle θ and θ′ on the unit circle in the real plane is at most |θ − θ′|,

‖Ri −R′i‖ ≤ δ.

Thinking of the same inequality on the unit circle in the complex plane, we have

‖Pi − P ′i‖ ≤ δ.

Finally, since each matrix Pi, P
′
i , Ri, R

′
i is unitary, Fact 2.1 on page 1417 gives us

‖R′1 · · ·R′d−1P
′
1 · · ·P ′d − R1 · · ·Rd−1P1 · · ·Pd‖ ≤ (2d− 1)δ

and therefore

‖R′1 · · ·R′d−1P
′
1 · · ·P ′dv − ‖v‖e1‖ ≤ (2d− 1)δ‖v‖ = ε.

We now show how the ability to map a particular vector to a desired target
direction allows us to approximate an arbitrary unitary transformation.

Theorem 6.7. There is a deterministic algorithm running in time polynomial
in d and log 1/ε and the length of the input which when given as input U, ε where
ε > 0 and U is a d × d complex matrix which is ε

2(10
√
d)d

-close to unitary, com-

putes d-dimensional near-trivial matrices U1, . . . , Un, with n polynomial in d such
that ‖U − Un · · ·U1‖ ≤ ε.

Proof. First we introduce notation to simplify the proof. Let U be a d×d complex
matrix. Then we say U is k-simple if its first k rows and columns are the same as
those of the d-dimensional identity. Notice that the product of two d × d k-simple
matrices is also k-simple.

If U were d-simple, we would have U = I and the desired computation would be
trivial. In general, the U which our algorithm must approximate will not even be 1-
simple. So, our algorithm will proceed through d phases such that during the ith phase
the remaining problem is reduced to approximating a matrix which is i+ 1-simple.

Suppose we start to approximate a k-simple U with a series of near-trivial matrices
with the product V . Then to approximate U we would still need to produce a series
of near-trivial matrices whose product W satisfies W ≈ UV ∗. To reduce the problem
we must therefore compute near-trivial matrices whose product V is such that UV ∗

is close to being k + 1-simple. We can accomplish this by using the algorithm of
Lemma 6.6 above.

So, let U be given which is k-simple and is δ-close to unitary, and let Z be the
lower right d− k × d− k submatrix of Z. We invoke the procedure of Lemma 6.6 on
inputs ZT

1 (the vector corresponding to the first row of Z) and δ. The output is a
sequence of d − k-dimensional near trivial matrices V1, . . . , V2d−2k−1 such that their
product V = V1 × · · · × V2d−2k−1 has the property that ‖V ZT

1 − ‖Z1‖e1‖ ≤ δ.
Now suppose that we extend V and the Vi back to d-dimensional, k-simple ma-

trices, and we let W = UV ∗. Then clearly V is unitary and V and W are k-simple.
In fact, since V is unitary and U is δ-close to unitary, W is also δ-close to unitary.
Moreover, W is close to being k + 1-simple as desired. We will show below that the
k + 1st row of W satisfies ‖Wk+1 − eTk+1‖ ≤ 2δ and that the entries of the k + 1st
column of W satisfy ‖wj,k+1‖ ≤ 6δ for j 6= k + 1.

QUANTUM COMPLEXITY THEORY 1443

So, let X be the d× d, k + 1-simple matrix such that

x1,1 = 1, xj,1 = 0 for j 6= 1, x1,j = 0 for j 6= 1, xj,l = wj,l for j, l > l + 1.

It follows from our bounds on the norm of the first row of W and on the entries of
the first column of W that ‖W −X‖ ≤ 2δ + 6

√
dδ. Since W is δ-close to unitary, we

can then conclude that X is 3δ + 6
√
dδ-close to unitary.

Unfortunately, we cannot compute the entries of W = UV ∗ exactly. Instead,
appealing to Lemma 6.4 on page 1440, we compute them to within δ

d to obtain a matrix

Ŵ such that ‖Ŵ −W‖ ≤ δ. Let’s use the entries of Ŵ to define matrix X̂ analogous to
X. Using the triangle inequality, it is easy to see that ‖W − X̂‖ ≤ 3δ+6

√
dδ and X̂ is

4δ+6
√
dδ-close to unitary. If we are willing to incur an error of ‖W − X̂‖ ≤ 3δ+6

√
dδ,

then we are left with the problem of approximating the k + 1-simple X̂ by a product
of near-trivial matrices. Therefore, we have reduced the problem of approximating
the k-simple matrix U by near-trivial matrices to the problem of approximating the
k + 1-simple matrix X̂ by near-trivial matrices while incurring two sources of error:

1. an error of ‖W − X̂‖ ≤ 3δ+ 6
√
dδ, since we are approximating X̂ instead of

W ;
2. the new matrix X̂ is only 4δ + 6

√
dδ-close to unitary.

Let δ′ = 10
√
dδ. Clearly δ′ is an upper bound on both sources of error cited above.

Therefore, the total error in the approximation is just
∑d

j=1(10
√
d)jδ ≤ 2(10

√
d)dδ.

The last inequality follows since 10
√
d ≥ 2, and therefore the sum can be bounded by

a geometric series. Therefore, the total error in the approximation is bounded by ε,
since by assumption U is δ-close to unitary for δ = ε

2(10
√
d)d

.

It is easy to see that this algorithm runs in time polynomial in d and log 1
ε . Our

algorithm consists of d iterations of first calling the algorithm from Lemma 6.6 on
page 1441 to compute V and then computing the matrix X̂. Since the each iteration

takes time polynomial in d and log (10
√
d)d

ε , these d calls take a total time polynomial
in d and log 1

ε .
Finally, we show as required that the k+1st row of W satisfies ‖Wk+1 − eTk+1‖ ≤

2δ and that the entries of the k+1st column of W satisfy ‖wj,k+1‖ ≤ 6δ for j 6= k+1.
To see this, first recall that the lower dimension V satisfies ‖V ZT

1 − ‖Z1‖e1‖ ≤ δ,
where Z1 is the first row of the lower right k×k submatrix of U . Therefore, the higher
dimension V satisfies ‖V UT

k+1 − ‖Uk+1‖ek+1‖ ≤ δ. Then, since 1−δ ≤ ‖Uk+1‖ ≤ 1+δ,

it follows that ‖V UT
k+1 − ek+1‖ ≤ 2δ. Therefore, the k + 1st row of W satisfies

‖Wk+1 − eTk+1‖ ≤ 2δ.
Next, we will show that this implies that the entries of the k + 1st column of W

satisfy ‖wj,k+1‖ ≤ 6δ for j 6= k + 1. To see this, first notice that since V is unitary
and U is delta close to unitary, W is also δ-close to unitary. This means that by
statement (6.2) of Lemma 6.3 on page 1440,

∣∣Wk+1W
∗
j

∣∣ ≤ 2δ + 3δ2. Now let us use

the condition ‖Wk+1 − eTk+1‖ ≤ 2δ. This implies that |wk+1,k+1| ≥ 1 − 2δ. Also, let

us denote by Ŵj the d−1-dimensional row vector arrived at by dropping wj,k+1 from

Wj . Then the condition that Wk+1 is close to eTk+1 also implies that ‖ ˆWk+1‖ ≤ 2δ.

Also, the fact that W is δ-close to unitary implies that ‖Ŵj‖ ≤ 1 + δ. Putting

all this together, we have 2δ + 3δ2 ≥ |Wk+1W
∗
j | = |wk+1,k+1w

∗
j,k+1 + ˆWk+1Ŵj

∗| ≥
|wk+1,k+1w

∗
j,k+1|−| ˆWk+1Ŵj

∗|. Therefore, |wk+1,k+1w
∗
j,k+1| ≤ 2δ+3δ2+| ˆWk+1Ŵj

∗| ≤
2δ + 3δ2 + 2δ(1 + δ) ≤ 4δ + 5δ2. Therefore, |wj,k+1| ≤ 4δ+5δ2

1−2δ . Finally, since we may

assume that δ ≤ 1
10 , we have |wj,k+1| ≤ 6δ.

1444 ETHAN BERNSTEIN AND UMESH VAZIRANI

6.3. Carrying out near-trivial transformations. In this section, we show
how to construct a single QTM that can carry out, at least approximately, any spec-
ified near-trivial transformation. Since a near-trivial transformation can apply an
arbitrary rotation, either between two dimensions or in the phase of a single dimen-
sion, we must first show how a fixed rotation can be used to efficiently approximate
an arbitrary rotation. Note that a single copy of this fixed rotation gives the only
“nonclassical” amplitudes (those other than 0, 1) in the transition function of the uni-
versal QTM constructed below. See Adleman, DeMarrais, and Huang [1] and Solovay
and Yao [40] for the constructions of universal QTMs whose amplitudes are restricted
to a small set of rationals.

Lemma 6.8. Let R = 2π
∑∞

i=1 2−2i . Then there is a deterministic algorithm
taking time polynomial in log 1

ε and the length of the input which on input θ, ε with
θ ∈ [0, 2π] and ε > 0 produces integer output k bounded by a polynomial in 1

ε such
that

|kR− θ| mod 2π ≤ ε.

Proof. First, we describe a procedure for computing such a k.
Start by calculating n, a power of 2, such that ε > 2π

2n−1 . Next, approximate θ
2π

as a fraction with denominator 2n. In other words, find an integer m ∈ [1, 2n] such
that ∣∣∣∣ θ2π − m

2n

∣∣∣∣ ≤ 1

2n
.

Then we can let k = m2n because

m2nRmod 2π =

(
2πm

∞∑
i=1

2n−2i

)
mod 2π

=

2πm

∞∑
i=log n+1

2n−2i

mod 2π

=

2πm

2n
+ 2πm

∞∑
i=log n+2

2n−2i

mod 2π

and since

m

∞∑
i=log n+2

2n−2i ≤ m2n−4n+1

≤ 2n−3n+1

≤ 2−2n+1

we have

|m2nR− θ| mod 2π ≤
∣∣∣∣m2nR− 2πm

2n

∣∣∣∣mod 2π +

∣∣∣∣2πm2n
− θ

∣∣∣∣
≤ 2π

22n−1
+

2π

2n

<
2π

2n−1

< ε.

QUANTUM COMPLEXITY THEORY 1445

At this point it should be clear that a single QTM can carry out any sequence of
near-trivial transformations to any desired accuracy ε. We formalize this notion below
by showing that there is a QTM that accepts as input the descriptions of a sequence
of near-trivial transformations and an error bound ε and applies an ε approximation
of the product of these transformations on any given superposition. The formalization
is quite tedious, and the reader is encouraged to skip the rest of the subsection if the
above statement is convincing.

Below, we give a formal definition of what it means for a QTM to carry out a
transformation.

Definition 6.9. Let Σ∪# be the alphabet of the first track of QTM M . Let V be
the complex vector space of superpositions of k length strings over Σ. Let U be a linear
transformation on V, and let xU be a string that encodes U (perhaps approximately).
We say that xU causes M to carry out the k cell transformation U with accuracy ε
in time T if for every |φ〉 ∈ V, on input |φ〉|xU 〉|ε〉, M halts in exactly T steps with
its tape head back in the start cell and with final superposition (U ′|φ〉)|x〉, where U ′ is
a unitary transformation on V such that ‖U − U ′‖ ≤ ε. Moreover, for a family A of
transformations, we say that M carries out these transformations in polynomial time
if T is bounded by a polynomial in 1

ε and the length of the input.

In the case that A contains transformations that are not unitary, we say that M
carries out the set of transformations A with closeness factor c if for any ε > 0 and
any U ∈ A which is cε-close to unitary, there is a unitary transformation U ′ with
‖U ′ − U‖ ≤ ε such that |xU 〉|ε〉 causes M to carry out the transformation U ′ in time
which is polynomial in 1

ε and the length of its input.

Recall that a near-trivial transformation written as x, y, θ calls for a rotation
between dimensions x and y of angle θ if x 6= y and a phase shift of eiθ to dimension
x otherwise. So, we want to build a stationary, normal form QTM that takes as input
w;x, y, θ; ε and transforms w according to the near-trivial transformation described
by x, y, θ with accuracy ε. We also need this QTM’s running time to depend only on
the length of w but not its value. If this is the case then the machine will also halt
on an initial superposition of the form |φ〉|x, y, θ〉|ε〉 where |φ〉 is a superposition of
equal-length strings w.

Lemma 6.10. There is a stationary, normal form QTM M with first track alpha-
bet {#, 0, 1} that carries out the set of near-trivial transformations on its first track
in polynomial time.

Proof. Using the encoding x, y, θ for near-trivial transformations described above
in section 6.2, we will show how to construct QTMs M1 and M2 with first track
alphabet {#, 0, 1} such that M1 carries out the set of near-trivial rotations on its
first track in polynomial time, and M2 carries out the set of near-trivial phase shifts
on its first track in polynomial time. Using the branching lemma (page 1429) on
these two machines, we can construct a QTM that behaves correctly provided there
is an extra track containing a 1 when x = y and we have a phase shift to perform,
and containing a 0 when x 6= y and we have a rotation to perform. We can then
construct the desired QTM M by dovetailing before and after with machines that
compute and erase this extra bit based on x, y. The synchronization theorem lets us
construct two such stationary, normal form QTMs whose running times depend only
on the lengths of x and y. Therefore, this additional computation will not disturb the
synchronization of the computation.

Next, we show how to construct the QTM M1 to carry out near-trivial rotations.

1446 ETHAN BERNSTEIN AND UMESH VAZIRANI

It is easy to construct a QTM which on input b applies a rotation by angle θ
between |0〉 and |1〉, while leaving b alone if b = #. But Lemma 6.8 above tells
us that we can achieve any rotation by applying the single rotation R at most a
polynomial number of times. Therefore, the following five-step process will allow us
to apply a near-trivial rotation. We must be careful that when we apply the rotation,
the two computational paths with b ∈ {0, 1} differ only in b since otherwise they will
not interfere.

1. Calculate k such that k Rmod 2π ∈ [θ − ε, θ + ε].
2. Transform w, x, y into b, x, y, z, where b = 0 if w = x, b = 1 if w = y and

w 6= x, and b = # otherwise and where z = w if b = # and z is the empty string
otherwise.

3. Run the rotation applying machine k times on the first bit of z.
4. Reverse step 2 transforming #, x, y, w with w 6= x, y into w, x, y, transforming

0, x, y into x, x, y, and transforming 1, x, y with x 6= y into y, x, y.
5. Reverse step 1 erasing k.

We build the desired QTM M by constructing a QTM for each of these five steps
and then dovetailing them together.

First, notice that the length of the desired output of steps 1, 2, 4, and 5 can
be computed just from the length of the input. Therefore, using Lemma 6.8 from
page 1444 and the synchronization theorem from page 1428, we can build polynomial
time, stationary, normal form QTMs for steps 1, 2, 4, and 5 which run in time that
depend on the lengths of w, x, y but not their particular values.

To complete the construction we must build a machine for the rotation with these
same properties. The stationary, normal form QTM R with alphabet {#, 0, 1}, state
set {q0, q1, qf}, and transition function defined by

0 1
q0 |#〉|q1〉|L〉 cosR|0〉|q1〉|L〉 − sinR|0〉|q1〉|L〉

+ sinR|1〉|q1〉|L〉 + cosR|1〉|q1〉|L〉
q1 |#〉|qf 〉|R〉
qf |#〉|q0〉|R〉 |0〉|q0〉|R〉 |1〉|q0〉|R〉

runs for constant time and applies rotation R between start cell contents |0〉 and |1〉
while leaving other inputs unchanged. InsertingR for the special state in the reversible
TM from the looping lemma, we can construct a normal form QTM which applies
rotation kR between inputs |0, k〉 and |1, k〉 while leaving input |#w, k〉 unchanged.
Since the machine we loop on is stationary and takes constant time regardless of its
input, the resulting looping machine is stationary and takes time depending only on
k.

Finally, with appropriate use of Lemmas 4.4 and 4.5 on page 1428 we can dovetail
these five stationary, normal form QTMs to achieve a stationary, normal form QTM
M that implements the desired computation. Since, the phase application machine
run in time which is independent of w, x, and y, and the other four run in time
which depends only on the length of w, x, and y, the running time of M depends
on the length of w, x, and y but not on their particular values. Therefore, it halts
with the proper output not only if run on an input with a single string w but also if
run on an initial superposition with different strings w and with the same near-trivial
transformation and ε.

The QTM M2 to carry out near-trivial phase shifts is the same as M1 except
that we replace the transition function of the simple QTM which applies a phase shift

QUANTUM COMPLEXITY THEORY 1447

rotation by angle R as follows giving a stationary QTM which applies phase shift eiR

if b is a 0 and phase shift 1 otherwise.

0 1
q0 |#〉|q1〉|L〉 eiR|0〉|q1〉|L〉 |1〉|q1〉|L〉
q1 |#〉|qf 〉|R〉
qf |#〉|q0〉|R〉 |0〉|q0〉|R〉 |1〉|q0〉|R〉

The proof that this gives the desired M2 is identical to the proof for M1 and is
omitted.

6.4. Carrying out a unitary transformation on a QTM. Now that we
can approximate a unitary transformation by a product of near-trivial transforma-
tions, and we have a QTM to carry out the latter, we can build a QTM to apply an
approximation of a given unitary transformation.

Theorem 6.11 (unitary transformation theorem). There is a stationary, normal
form QTM M with first track alphabet {#, 0, 1} that carries out the set of all trans-
formations on its first track in polynomial time with required closeness factor 1

2(10
√
d)d

for transformations of dimension d.
Proof. Given an ε > 0 and a transformation U of dimension d = 2k, which is
ε

2(10
√
d)d

-close to unitary, we can carry out U to within ε on the first k cells of the

first track using the following steps.
1. Calculate and write on clean tracks ε

2n and a list of near-trivial U1, . . . , Un
such that ‖U − Un · · ·U1‖ ≤ ε

2 and such that n is polynomial in 2k.
2. Apply the list of transformations U1, . . . , Un, each to within ε

2n .
3. Erase U1, . . . , Un and ε

2n .
We can construct a QTM to accomplish these steps as follows. First, using The-

orem 6.7 on page 1442 and the synchronization theorem on page 1428, we can build
polynomial time, stationary, normal form QTMs for steps 1 and 3 that run in time,
which depend only on U and ε. Finally, we can build a stationary, normal form QTM
to accomplish step 2 in time, which is polynomial in 2k, and 1

ε as follows. We have
a stationary, normal form QTM constructed in Lemma 6.10 on page 1445 to apply
any specified near-trivial transformation to within a given bound ε. We dovetail this
with a machine, constructed using the synchronization theorem on page 1428, that
rotates U1 around to the end of the list of transformations. Since the resulting QTM
is stationary and takes time that depends only on ε and the Ui, we can insert it for
the special state in the machine of the looping lemma to give the desired QTM for
step 2.

With the appropriate use of Lemmas 4.4 and 4.5 on page 1428, dovetailing the
QTMs for these three steps gives the desired M ′. Since the running times of the three
QTMs are independent of the contents of the first track, so is the running time of M ′.
Finally, notice that when we run M ′ we apply to the first k cells of the first track, we
apply a unitary transformation U ′ with

‖U ′ − U‖ ≤ ‖U ′ − Un · · ·U1‖+ ‖Un · · ·U1 − U‖ ≤ n
ε

2n
+
ε

2
≤ ε

as desired.

7. Constructing a universal QTM. A universal QTM must inevitably de-
compose one step of the simulated machine using many simple steps. A step of the

1448 ETHAN BERNSTEIN AND UMESH VAZIRANI

simulated QTM is a mapping from the computational basis to a new orthonormal ba-
sis. A single step of the universal QTM can only map some of the computational basis
vectors to their desired destinations. In general this partial transformation will not be
unitary, because the destination vectors will not be orthogonal to the computational
bases which have not yet been operated on. The key construction that enables us to
achieve a unitary decomposition is the unidirection lemma. Applying this lemma, we
get a QTM whose mapping of the computational basis has the following property:
there is a decomposition of the space into subspaces of constant dimension such that
each subspace gets mapped onto another.

More specifically, we saw in the previous section that we can construct a QTM
that carries out to a close approximation any specified unitary transformation. On
the other hand, we have also noted that the transition function of a unidirectional
QTM specifies a unitary transformation from superpositions of current state and tape
symbol to superpositions of new symbol and state. This means a unidirectional QTM
can be simulated by repeatedly applying this fixed-dimensional unitary transformation
followed by the reversible deterministic transformation that moves the simulated tape
head according to the new state. So, our universal machine will first convert its
input to a unidirectional QTM using the construction of the unidirection lemma and
then simulate this new QTM by repeatedly applying this unitary transformation and
reversible deterministic transformation.

Since we wish to construct a single machine that can simulate every QTM, we
must build it in such a way that every QTM can be provided as input. Much of the
definition of a QTM is easily encoded: we can write down the size of the alphabet
Σ, with the first symbol assumed to be the blank symbol, and we can write down
the size of the state set Q, with the first state assumed to be the start state. To
complete the specification, we need to describe the transition function δ by giving the
2 card(Σ)

2
card(Q)

2
amplitudes of the form δ(i1, i2, i3, i4, d). If we had restricted the

definition of a QTM to include only machines with rational transition amplitudes, then
we could write down each amplitude explicitly as the ratio of two integers. However,
we have instead restricted the definition of a QTM to include only those machines
with amplitudes in C̃, which means that for each amplitude there is a deterministic
algorithm which computes the amplitude’s real and imaginary parts to within 2−n in
time polynomial in n. We will therefore specify δ by giving a deterministic algorithm
that computes each transition amplitude to within 2−n in time polynomial in n.

Since the universal QTM that we will construct returns its tape head to the start
cell after simulating each step of the desired machine, it will incur a slowdown which
is (at least) linear in T . We conjecture that with more care a universal QTM can be
constructed whose slowdown is only polylogarithmic in T .

Theorem 7.1. There is a normal form QTM M such that for any well-formed
QTM M , any ε > 0, and any T , M can simulate M with accuracy ε for T steps with
slowdown polynomial in T and 1

ε .

Proof. As described above, our approach will be first to use the construction
of the unidirection lemma to build a unidirectional QTM M ′, which simulates M
with slowdown by a factor of 5, and then to simulate M ′. We will first describe the
simulation of M ′ and then return to describe the easily computable preprocessing
that needs to be carried out.

So, suppose M = (Σ, Q, δ) is a unidirectional QTM that we wish to simulate on
our universal QTM.

QUANTUM COMPLEXITY THEORY 1449

We start by reviewing the standard technique of representing the configuration of
a target TM on the tape of a universal TM. We will use one track of the tape of our
universal QTM to simulate the current configuration of M . Since the alphabet and
state set of M could have any fixed size, we will use a series of log card(Q× Σ) cells
of our tape, referred to as a “supercell,” to simulate each cell of M . Each supercell
holds a pair of integers p, σ, where σ ∈ [1, card(Σ)] represents the contents of the
corresponding cell of M , and p ∈ [0, card(Q)] represents the state of M if its tape
head is scanning the corresponding cell and p = 0 otherwise. Since the tape head
of M can only move distance T away from the start cell in time T , we only need
supercells for the 2T + 1 cells at the center of M ’s tape (and we place markers to
denote the ends).

Now we know that if we ignore the update direction, then δ gives a unitary
transformation U of dimension d = card(Q× Σ) from superpositions of current state
and tape symbol to superpositions of new state and symbol. So, we can properly
update the superposition on the simulation tracks if we first apply U to the current
state and symbol of M and then move the new state specification left or right one
supercell according to the direction in which that state of M can be entered.

We will therefore build a QTM STEP that carries out one step of the simulation
as follows. In addition to the simulation track, this machine is provided as input a
desired accuracy γ, a specification of U (which is guaranteed to be γ

2(10
√
d)d

-close to

the unitary), and a string s ∈ {0, 1}card(Q), which gives the direction in which each
state of M can be entered. The machine STEP operates as follows.

1. Transfer the current state and symbol p;σ to empty workspace near the start
cell, leaving a special marker in their places.

2. Apply U to p;σ to within γ, transforming p;σ into a superposition of new
state and symbol q; τ .

3. Reverse step 1, transferring q, τ back to the marked, empty supercell (and
emptying the workspace).

4. Transfer the state specification q one supercell to the right or left depending
whether the qth bit of s is a 0 or 1.

Using the synchronization theorem on page 1428, we can construct stationary,
normal form QTMs for steps 1, 3, and 4 that take time which is polynomial in T and
(for a fixed M) depend only on T . Step 2 can be carried out in time polynomial in
card(Σ), card(Q), and γ with the unitary transformation applying QTM constructed
in the unitary transformation theorem. With appropriate use of Lemmas 4.4 and 4.5
on page 1428, dovetailing these four normal form QTMs gives us the desired normal
form QTM STEP .

Since each of the four QTMs takes time that depends (for a fixed M) only on
T and ε, so does STEP . Therefore, if we insert STEP for the special state in the
reversible TM constructed in the looping lemma and provide additional input T , the
resulting QTM STEP ′ will halt after time polynomial in T and 1

ε after simulating T
steps of M with accuracy Tε.

Finally, we construct the desired universal QTMM by dovetailing STEP ′ after a
QTM which carries out the necessary preprocessing. In general, the universal machine
must simulate QTMs that are not unidirectional. So, the preprocessing for desired
QTM M , desired input x, and desired simulation accuracy ε consists of first carrying
out the construction of the unidirection lemma to build a unidirectional QTM M ′

1450 ETHAN BERNSTEIN AND UMESH VAZIRANI

which simulates M with slowdown by a factor of 5.3 The following inputs are then
computed for STEP ′:

1. the proper 2T + 1 supercell representation of the initial configuration of M ′

with input x,
2. the d-dimensional transformation U for M ′ with each entry written to accu-

racy ε
40T (10

√
d)d+2

,

3. the string of directions s for M ′,
4. the desired number of simulation steps 5T and the desired accuracy γ = ε

40T .
It can be verified that each of these inputs toM can be computed in deterministic

time which is polynomial in T , 1
ε , and the length of the input. If the transformation U

is computed to the specified accuracy, the transformation actually provided to STEP
will be within ε

40T (10
√
d)d

of the desired unitary U and therefore will be ε

40T (10
√
d
d
)
-

close to unitary as required for the operation of STEP . So, each time STEP runs
with accuracy ε

40T , it will have applied a unitary transformation which is within ε
20T of

U . Therefore, after 5T runs of STEP , we will have applied a unitary transformation
which is within ε

4 of the 5T step transformation of M ′. This means that observing
the simulation track of M after it has been completed will give a sample from a
distribution which is within total variation distance ε of the distribution sampled by
observing M on input x at time T .

8. The computational power of QTMs. In this section, we explore the com-
putational power of QTMs from a complexity theoretic point of view. It is natural to
define quantum analogues of classical complexity classes [13]. In classical complexity
theory, BPP is regarded as the class of all languages that is efficiently computable on
a classical computer. The quantum analogue of BPP—BQP (bounded-error quan-
tum polynomial time)—should similarly be regarded as the class of all languages that
is efficiently computable on a QTM.

8.1. Accepting languages with QTMs.
Definition 8.1. Let M be a stationary, normal form, multitrack QTM M whose

last track has alphabet {#, 0, 1}. If we run M with string x on the first track and the
empty string elsewhere, wait until M halts,4 and then observe the last track of the
start cell, we will see a 1 with some probability p. We will say that M accepts x with
probability p and rejects x with probability 1− p.

Consider any language L ⊆ (Σ−#)∗.
We say that QTM M exactly accepts the L if M accepts every string x ∈ L with

probability 1 and rejects every string x ∈ (Σ−#)∗ − L with probability 1.
We define the class EQP (exact or error-free quantum polynomial time) as the

set of languages which are exactly accepted by some polynomial time QTM. More
generally, we define the class EQTime (T (n)) as the set of languages which are exactly
accepted by some QTM whose running time on any input of length n is bounded by
T (n).

A QTM accepts the language L ⊆ (Σ−#)∗ with probability p if M accepts with
probability at least p every string x ∈ L and rejects with probability at least p every
string x ∈ (Σ −#)∗ − L. We define the class BQP as the set of languages that are

3Note that the transition function of M ′ is again specified with a deterministic algorithm, which
depends on the algorithm for the transition function of M .

4This can be accomplished by performing a measurement to check whether the machine is in the
final state qf . Making this partial measurement does not have any other effect on the computation
of the QTM.

QUANTUM COMPLEXITY THEORY 1451

accepted with probability 2
3 by some polynomial time QTM. More generally, we define

the class BQTime (T (n)) as the set of languages that are accepted with probability 2
3

by some QTM whose running time on any input of length n is bounded by T (n).

The limitation of considering only stationary, normal form QTMs in these defini-
tions is easily seen to not limit the computational power by appealing to the stationary,
normal form universal QTM constructed in Theorem 7.1 on page 1448.

8.2. Upper and lower bounds on the power of QTMs. Clearly EQP ⊆
BQP. Since reversible TMs are a special case of QTMs, Bennett’s results imply that
P ⊆ EQP and BPP ⊆ BQP. We include these two simple proofs for completeness.

Theorem 8.2. P ⊆ EQP.

Proof. Let L be a language in P. Then there is some polynomial time determinis-
tic algorithm that on input x produces output 1 if x ∈ L and 0 otherwise. Appealing
to the synchronization theorem on page 1428, there is therefore a stationary, normal
form QTM running in polynomial time which on input x produces output x; 1 if x ∈ L
and x; 0 otherwise. This is an EQP machine accepting L.

Theorem 8.3. BPP ⊆ BQP.

Proof. Let L be a language in BPP. Then there must be a polynomial p(n) and
a polynomial time deterministic TM M with 0, 1 output which satisfy the following.
For any string x of length n, if we call Sx the set of 2p(n) bits computed by M on
the inputs x; y with y ∈ {0, 1}p(n), then the proportion of 1’s in Sx is at least 2

3 when
x ∈ L and at most 1

3 otherwise. We can use a QTM to decide whether a string x is
in the language L by first breaking into a superposition split equally among all |x〉|y〉
and then running this deterministic algorithm.

First, we dovetail a stationary, normal form QTM that takes input x to output
x; 0p(n) with a stationary, normal form QTM constructed as in Theorem 8.8 below
which applies a Fourier transform to the contents of its second track. This gives
us a stationary, normal form QTM which on input x produces the superposition∑

y∈{0,1}p(n)
1

2p(n)/2 |x〉|y〉. Dovetailing this with a synchronized, normal form version
of M built according to the synchronization theorem on page 1428 gives a polynomial
time QTM which on input x produces a final superposition∑

y∈{0,1}p(n)

1

2p(n)/2
|x〉|y〉|M(x; y)〉.

Since the proportion of 1’s in Sx is at least 2
3 if x ∈ L and at most 1

3 otherwise,
observing the bit on the third track will give the proper classification for string x
with probability at least 2

3 . Therefore, this is a BQP machine accepting the language
L.

Clearly BQP is in exponential time. The next result gives the first nontrivial
upper bound on BQP.

Theorem 8.4. BQP ⊆ PSPACE .

Proof. Let M = (Σ, Q, δ) be a BQP machine with running time p(n).

According to Theorem 3.9 on page 1423, any QTM M ′ which is

ε

24 card(Σ) card(Q)p(n)
-close

to M will simulate M for p(n) steps with accuracy ε. If we simulate M with accuracy
1
12 , then the success probability will still be at least 7

12 . Therefore, we need only work

1452 ETHAN BERNSTEIN AND UMESH VAZIRANI

with the QTM M ′ where each transition amplitude from M is computed to its first
log (288 card(Σ) card(Q)p(n)) bits.

Now the amplitude of any particular configuration at time T is the sum of the
amplitudes of each possible computational path of M ′ of length T from the start
configuration to the desired configuration. The amplitude of each such path can
be computed exactly in polynomial time. So, if we maintain a stack of at most p(n)
intermediate configurations we can carry out a depth-first search of the computational
tree to calculate the amplitude of any particular configuration using only polynomial
space (but exponential time).

Finally, we can determine whether a string x of length n is accepted by M by
computing the sum of squared magnitudes at time p(n) of all configurations that M ′

can reach that have a 1 in the start cell and comparing this sum to 7
12 . Clearly the

only reachable “accepting” configurations of M ′ are those with a 1 in the start cell
and blanks in all but the 2p(n) cells within distance p(n) of the start cell. So, using
only polynomial space, we can step through all of these configurations computing a
running sum of the their squared magnitudes.

Following Valiant’s suggestion [43], the upper bound can be further improved to
P]P. This proof can be simplified by using a theorem from [9] that shows how any
BQP machine can be turned into a “clean” version M that on input x produces a
final superposition with almost all of its weight on x;M(x) where M(x) is a 1 if M
accepts x and a 0 otherwise. This means we need only estimate the amplitude of this
one configuration in the final superposition of M .

Now, the amplitude of a single configuration can be broken down into not only
the sum of the amplitudes of all of the computational paths that reach it but also into
the sum of positive real contributions, the sum of negative real contributions, the sum
of positive imaginary contributions, and the sum of negative imaginary contributions.
We will show that each of these four pieces can be computed using a]P machine.

Recall that]P is the set of functions f mapping strings to integers for which there
exists a polynomial p(n) and a language L ∈ P such that for any string x, the value
f(x) is the number of strings y of length p(|x|) for which xy is contained in L.

Theorem 8.5. If the language L is contained in the class BQTime (T (n)) with
T (n) > n, with T (n) time constructible, then for any ε > 0 there is a QTM M ′ which
accepts L with probability 1 − ε and has the following property. When run on input
x of length n, M ′ runs for time bounded by cT (n), where c is a polynomial in log 1

ε
and produces a final superposition in which |x〉|L(x)〉, with L(x) = 1 if x ∈ L and 0
otherwise, has squared magnitude at least 1− ε.

Theorem 8.6. BQP ⊆ P]P.

Proof. Let M = (Σ, Q, δ) be a BQP machine with observation time p(n). Ap-
pealing to Theorem 8.5 above, we can conclude without loss of generality that M is
a “clean BQP machine.” For example, on any input x at time p(|x|), the squared
magnitude of the final configuration with output x;M(x) is at least 2

3 .

Now as above, we will appeal to Theorem 3.9 on page 1423 which tells us that
if we work with the QTM M ′, where each amplitude of M is computed to its first
b = log (288 card(Σ) card(Q)p(n)) bits, and we run M ′ on input x, then the squared
magnitude at time p(|x|) of the final configuration with output x;M(x) will be at
least 7

12 .

We will carry out the proof by showing how to use an oracle for the class]P
to efficiently compute with error magnitude less than 1

36 the amplitude of the final
configuration x; 1 of M ′ at time T . Since the true amplitude has magnitude at most

QUANTUM COMPLEXITY THEORY 1453

1, the squared magnitude of this approximated amplitude must be within 1
12 of the

squared magnitude of the true amplitude. To see this, just note that if α is the true
amplitude and ‖α′ − α‖ < 1

36 , then∣∣∣‖α‖2 − ‖α′‖2∣∣∣ ≤ ‖α′ − α‖2 + 2‖α‖‖α′ − α‖ ≤ 1

36

(
2 +

1

36

)
<

1

12
.

Since the success probability of M ′ is at least 7
12 , comparing the squared magnitude

of this approximated amplitude to 1
2 lets us correctly classify the string x.

We will now show how to approximate the amplitude described above. First,
notice that the amplitude of a configuration at time T is the sum of the amplitudes
of each computational path of length T from the start configuration to the desired
configuration. The amplitude of any particular path is the product of the amplitudes
in the transition function ofM ′ used in each step along the path. Since each amplitude
consists of a real part and an imaginary part, we can think of this product as consisting
of the sum of 2T terms each of which is either purely real or purely imaginary. So, the
amplitude of the desired configuration at time T is the sum of these 2T terms over
each path. We will break this sum into four pieces, the sum of the positive real terms,
the sum of the negative real terms, the sum of the positive imaginary terms, and
the sum of the negative imaginary terms, and we will compute each to within error
magnitude less than 1

144 with the aid of a]P algorithm. Taking the difference of the
first two and the last two will then give us the amplitude of the desired configuration
to within an error of magnitude at most 1

36 as desired.
We can compute the sum of the positive real contributions for all paths as follows.

Suppose for some fixed constant c which is polynomial in T we are given the following
three inputs, all of length polynomial in T : a specification of a T step computational
path p of M ′, a specification t of one of the 2T terms, and an integer w between 0
and 2cT . Then it is easy to see that we could decide in deterministic time polynomial
in T whether p is really a path from the start configuration of M on x to the desired
final configuration, whether the term t is real and positive, and whether the tth term
of the amplitude for path p is greater than w/2cT . If we fix a path p and term t
satisfying these constraints, then the number of w for which this algorithm accepts,
divided by 2cT , is within 1/2cT of the value of the tth for path p. So, if we fix only a
path p satisfying these constraints, then the number of t, w for which the algorithm
accepts, divided by 2cT , is within 1/2(c−1)T of the sum of the positive real terms for
path p. Therefore, the number of p, t, w for which the algorithm accepts, divided by
2cT , is within N/2(c−1)T of the sum of all of the positive real terms of all of the T step
paths of M ′ from the start configuration to the desired configuration. Since there are
at most 2card(Σ)card(Q) possible successors for any configuration in a legal path of

M , choosing c > 1 + log 144
T + 2card(Σ)card(Q) log T

T gives N/2(c−1)T < 1
144 as desired.

Similar reasoning gives P]P algorithms for approximating each of the remaining three
sums of terms.

8.3. Oracle QTMs. In this subsection and the next, we will assume without
loss of generality that the TM alphabet for each track is {0, 1,#}. Initially all tracks
are blank except that the input track contains the actual input surrounded by blanks.
We will use Σ to denote {0, 1}.

In the classical setting, an oracle may be described informally as a device for eval-
uating some Boolean function f : Σ∗ → Σ, on arbitrary arguments, at unit cost per
evaluation. This allows us to formulate questions such as, “if f were efficiently com-
putable by a TM, which other functions (or languages) could be efficiently computed

1454 ETHAN BERNSTEIN AND UMESH VAZIRANI

by TMs?” In this section we define oracle QTMs so that the equivalent question can
be asked in the quantum setting.

An oracle QTM has a special query track on which the machine will place its
questions for the oracle. Oracle QTMs have two distinguished internal states: a
prequery state qq and a postquery state qa. A query is executed whenever the machine
enters the prequery state with a single (nonempty) block of nonblank cells on the query
track.5 Assume that the nonblank region on the query tape is in state |x · b〉 when
the prequery state is entered, where x ∈ Σ∗, b ∈ Σ, and “·” denotes concatenation.
Let f be the Boolean function computed by the oracle. The result of the oracle call
is that the state of the query tape becomes |x · b ⊕ f(x)〉, where “⊕” denotes the
exclusive-or (addition modulo 2), after which the machine’s internal control passes to
the postquery state. Except for the query tape and internal control, other parts of
the oracle QTM do not change during the query. If the target bit |b〉 was supplied in
initial state |0〉, then its final state will be |f(x)〉, just as in a classical oracle machine.
Conversely, if the target bit is already in state |f(x)〉, calling the oracle will reset it
to |0〉, a process known as “uncomputing,” which is essential for proper interference
to take place.

The power of quantum computers comes from their ability to follow a coherent
superposition of computation paths. Similarly, oracle QTMs derive great power from
the ability to perform superpositions of queries. For example, an oracle for Boolean
function f might be called when the query tape is in state |ψ, 0〉 =

∑
x αx|x, 0〉, where

αx are complex coefficients, corresponding to an arbitrary superposition of queries
with a constant |0〉 in the target bit. In this case, after the query, the query string
will be left in the entangled state

∑
x αx|x, f(x)〉.

That the above definition of oracle QTMs yields unitary evolutions is self-evident
if we restrict ourselves to machines that are well formed in other respects, in particular
evolving unitarily as they enter the prequery state and leave the postquery state.

Let us define BQTime (T (n))O as the sets of languages accepted with probability
at least 2

3 by some oracle QTM MO whose running time is bounded by T (n). This
bound on the running time applies to each individual input, not just on the average.
Notice that whether or not MO is a BQP-machine might depend upon the oracle O;
thus MO might be a BQP-machine while MO′

might not be one.
We have carefully defined oracle QTMs so that the same technique used to reverse

a QTM in the reversal lemma can also be used to reverse an oracle QTM.
Lemma 8.7. If M is a normal form, unidirectional oracle QTM, then there

is a normal form oracle QTM M ′ such that for any oracle O, M ′O reverses the
computation of MO while taking two extra time steps.

Proof. Let M = (Σ, Q, δ) be a normal form, unidirectional oracle QTM with
initial and final states q0 and qf and with query states qq 6= qf and qa. We construct
M ′ from M exactly as in the proof of the reversal lemma. We further give M ′ the
same query states qq, qa as M but with roles reversed. Since M is in normal form, and
qq 6= qf , we must have qa 6= q0. Recall that the transition function of M ′ is defined
so that for q 6= q0

δ′(q, τ) =
∑
p,σ

δ(p, σ, τ, q, dq)
∗|σ〉|p〉|d̂p〉.

5Since a QTM must be careful to avoid leaving around intermediate computations on its tape,
requiring that the query track contains only the query string, adds no further difficulty to the
construction of oracle QTMs.

QUANTUM COMPLEXITY THEORY 1455

Therefore, since state qq always leads to state qa in M , state qa always leads to state
qq in M ′. Therefore, M ′ is an oracle QTM.

Next, note that since the tape head position is irrelevant for the functioning of
the oracle, the operation of the oracle in M ′O reverses the operation of the oracle in
MO. Finally, the same argument used in the reversal lemma can be used again here
to prove that M ′O is well formed and that M ′O reverses the computation of MO while
taking two extra time steps.

The above definition of a quantum oracle for an arbitrary Boolean function will
suffice for the purposes of the present paper, but the ability of quantum computers
to perform general unitary transformations suggests a broader definition, which may
be useful in other contexts. For example, oracles that perform more general, non-
Boolean unitary operations have been considered in computational learning theory [15]
and have been used to obtain large separations [32] between quantum and classical
relativized complexity classes. See [9] for a discussion of more general definitions of
oracle quantum computing.

8.4. Fourier sampling and the power of QTMs. In this section we give ev-
idence that QTMs are more powerful than bounded-error probabilistic TMs. We de-
fine the recursive Fourier sampling problem which on input the program for a Boolean
function takes on value 0 or 1. We show that the recursive Fourier sampling problem
is in BQP. On the other hand, we prove that if the Boolean function is specified by
an oracle, then the recursive Fourier sampling problem is not in BQTime (no(log n)).
This result provided the first evidence that QTMs are more powerful than classical
probabilistic TMs with bounded error probability [11].

One could ask what the relevance of these oracle results is, in view of the non-
relativizing results on probabilistically checkable proofs [36, 3]. Moreover, Arora,
Impagliazzo, and Vazirani [2] make the case that the fact that the P versus NP
question relativizes does not imply that the question “cannot be resolved by current
techniques in complexity theory.” On the other hand, in our oracle results (and also
in the subsequent results of [39]), the key property of oracles that is exploited is their
black-box nature, and for the reasons sketched below, these results did indeed pro-
vide strong evidence that BQP 6= BPP (of course, the later results of [36] gave even
stronger evidence). This is because if one assumes that P 6= NP and the existence of
one-way functions (both these hypotheses are unproven but widely believed by com-
plexity theorists), it is also reasonable to assume that, in general, it is impossible to
(efficiently) figure out the function computed by a program by just looking at its text
(i.e., without explicitly running it on various inputs). Such a program would have
to be treated as a black box. Of course, such assumptions cannot be made if the

question at hand is whether P
?
= NP.

Fourier sampling. Consider the vector space of complex-valued functions f :
Zn

2 → C. There is a natural inner product on this space given by

(f, g) =
∑
x∈Zn

2

f(x)g(x)
∗
.

The standard orthonormal basis for the vector space is the set of delta functions
δy : Zn

2 → C, given by δy(y) = 1 and δy(x) = 0 for x 6= y. Expressing a function
in this basis is equivalent to specifying its values at each point in the domain. The
characters of the group Zn

2 yield a different orthonormal basis consisting of the parity
basis functions χs : Zn

2 → C, given by χs(x) = −1s·x
2n/2

, where s · x =
∑n

i=1 sixi. Given

1456 ETHAN BERNSTEIN AND UMESH VAZIRANI

any function f : Zn
2 → C, we may write it in the new parity basis as f =

∑
s f̂(s)χs,

where f̂ : Zn
2 → C is given by f̂(s) = (f, χs). The function f̂ is called the discrete

Fourier transform or Hadamard transform of f . Here the latter name refers to the
fact that the linear transformation that maps a function f to its Fourier transform f̂
is the Hadamard matrix Hn. Clearly this transformation is unitary, since it is just
effecting a change of basis from one orthonormal basis (the delta function basis) to

another (the parity function basis). It follows that
∑

x |f(x)|2 =
∑

s |f̂(s)|2.
Moreover, the discrete Fourier transform on Zn

2 can be written as the Kronecker
product of the transform on each of n copies of Z2—the transform in that case is
given by the matrix (

1√
2

1√
2

1√
2

− 1√
2

)
.

This fact can be used to write a simple and efficient QTM that affects the discrete
Fourier transformation in the following sense: suppose the QTM has tape alphabet
{0, 1,#} and the cells initially that have only n tape contain nonblank symbols.
Then we can express the initial superposition as

∑
x∈{0,1}n f(x)|x〉, where f(x) is the

amplitude of the configuration with x in the nonblank cells. Then there is a QTM that
affects the Fourier transformation by applying the above transform on each of the n
bits in the n nonblank cells. This takesO(n) steps and results in the final configuration∑

s∈{0,1}n f̂(s)|s〉 (Theorem 8.8 below). Notice that this Fourier transformation is
taking place over a vector space of dimension 2n. On the other hand, the result
of the Fourier transform f̂ resides in the amplitudes of the quantum superposition
and is thus not directly accessible. We can, however, perform a measurement on
the n nonblank tape cells to obtain a sample from the probability distribution P
such that P [s] = |f̂(s)|2. We shall refer to this operation as Fourier sampling. As

we shall see, this is a very powerful operation. The reason is that each value f̂(s)
depends upon all the (exponentially many values) of f , and it does not seem possible
to anticipate which values of s will have large probability (constructive interference)
without actually carrying out an exponential search.

Given a Boolean function g : Zn
2 → {1,−1}, we may define a function f : Zn

2 → C

of norm 1 by letting f(x) = g(x)
2n/2

. Following Deutsch and Jozsa [22], if g is a poly-
nomial time computable function, there is a QTM that produces the superposition∑

x∈{0,1}n g(x)|x〉 in time polynomial in n. Combining this with the Fourier sampling
operation above, we get a polynomial time QTM that samples from a certain dis-
tribution related to the given polynomial time computable function g (Theorem 8.9
below). We shall call this composite operation Fourier sampling with respect to g.

Theorem 8.8. There is a normal form QTM which when run on an initial
superposition of n-bit strings |φ〉 halts in time 2n + 4 with its tape head back in the
start cell and produces final superposition Hn|φ〉.

Proof. We can construct the desired machine using the alphabet {#, 0, 1} and the
set of states {q0, qa, qb, qc, qf}. The machine will operate as follows when started with
a string of length n as input. In state q0, the machine steps right and left and enters
state qb. In state qb, the machine steps right along the input string until it reaches
the # at the end and enters state qc stepping back left to the string’s last symbol.
During this rightward scan, the machine applies the transformation(

1√
2

1√
2

1√
2

− 1√
2

)

QUANTUM COMPLEXITY THEORY 1457

to the bit in each cell. In state qc, the machine steps left until it reaches the # to the
left of the start cell, at which point it steps back right and halts. The following gives
the quantum transition function of the desired machine.

0 1
q0 |0〉|qa〉|R〉 |1〉|qa〉|R〉
qa |#〉|qb〉|L〉
qb |#〉|qc〉|L〉 1√

2
|0〉|qb〉|R〉+ 1√

2
|1〉|qb〉|R〉 1√

2
|0〉|qb〉|R〉 − 1√

2
|1〉|qb〉|R〉

qc |#〉|qf 〉|L〉 |0〉|qc〉|L〉 |1〉|qc〉|L〉
qf |#〉|q0〉|R〉 |0〉|q0〉|R〉 |1〉|q0〉|R〉

It is can be easily verified that the completion lemma can be used to extend this ma-
chine to a well-formed QTM and that this machine has the desired behavior described
above.

Theorem 8.9. For every polynomial time computable function g : {0, 1}n →
{−1, 1}, there is a polynomial time, stationary QTM where observing the final superpo-

sition on input 0n gives each n-bit string s with probability |f̂(s)|2, where f(x) = g(x)
2n/2

.
Proof. We build a QTM to carry out the following steps.

1. Apply a Fourier transform to 0n to produce
∑

i∈{0,1}n
1

2n/2
|i〉.

2. Compute f to produce
∑

i∈{0,1}n
1

2n/2
|i〉|f(i)〉.

3. Apply a phase-applying machine to produce
∑

i∈{0,1}n
1

2n/2
f(i)|i〉|f(i)〉.

4. Apply the reverse of the machine in step 2 to produce
∑

i∈{0,1}n
1

2n/2
f(i)|i〉.

5. Apply another Fourier transform to produce
∑

i∈{0,1}n
1

2n/2
f̂(s)|s〉 as desired.

We have already constructed above the Fourier transform machine for steps 1 and
5. Since f can be computed in deterministic polynomial time, the synchronization
theorem on page 1428 lets us construct polynomial time QTMs for steps 2 and 4
which take input |i〉 to output |i〉|f(i)〉 and vice versa, with running time independent
of the particular value of i.

Finally, we can apply phase according to f(i) in step 3 by extending to two tracks
the stationary, normal form QTM with alphabet {#,−1, 1} defined by

−1 1
q0 |#〉|q1〉|R〉 −| − 1〉|q1〉|R〉 |1〉|q1〉|R〉
q1 |#〉|qf 〉|L〉 | − 1〉|qf 〉|L〉 |1〉|qf 〉|L〉
qf |#〉|q0〉|R〉 | − 1〉|q0〉|R〉 |1〉|q0〉|R〉

Dovetailing these five stationary, normal form QTMs gives the desired machine.
Remarkably, this quantum algorithm performs Fourier sampling with respect to f

while calling the algorithm for f only twice. To see more clearly why this is remarkable,
consider the special case of the sampling problem where the function f is one of the
(unnormalized) parity functions. Suppose f corresponds to the parity function χk;
i.e., f(i) = (−1)i·k, where i, k ∈ {0, 1}n. Then the result of Fourier sampling with
respect to f is always k. Let us call this promise problem the parity problem: on input
a program that computes f where f is an (unnormalized) parity function, determine
k. Notice that the QTM for Fourier sampling extracts n bits of information (the value
of k) using just two invocations of the subroutine for computing Boolean function f .
It is not hard to show that if f is specified by an oracle, then in a probabilistic setting,
extracting n bits of information must require at least n invocations of the Boolean
function. We now show how to amplify this advantage of quantum computers over

1458 ETHAN BERNSTEIN AND UMESH VAZIRANI

probabilistic computers by defining a recursive version of the parity problem: the
recursive Fourier sampling problem.

To ready this problem for recursion, we first need to turn the parity problem into
a problem with range {−1, 1}. This is easily done by adding a second function g and
requiring the answer g(k) rather than k itself.

Now, we will make the problem recursive. For each problem instance of size n,
we will replace the 2n values of f with 2n independent recursive subproblems of size
n
2 , and so on, stopping the recursion with function calls at the bottom. Since a QTM
needs only two calls to f to solve the parity problem, it will be able to solve an
instance of the recursive problem of size n recursively in time T (n), where

T (n) ≤ poly(n) + 4T
(n

2

)
=⇒ T (n) ≤ poly(n).

However, since a PTM needs n calls to f to solve the parity problem, the straight-
forward recursive solution to the recursive problem on a PTM will require time T (n),
where

T (n) ≥ nT
(n

2

)
=⇒ T (n) ≥ nlog n.

To allow us to prove a separation between quantum and classical machines, we will
replace the functions with an oracle. For any “legal” oracle O, any oracle satisfying
some special constraints to be described below, we will define the language RO. We
will show that there is a QTM which, given access to any legal oracle O, accepts RO

in time O(n logn) with success probability 1 but that there is a legal oracle O such
that RO is not contained in BPTime (no(log n))O.

Our language will consist of strings from {0, 1}∗ with length a power of 2. We
will call all such strings candidates. The decision whether a candidate x is contained
in the language will depend on a recursive tree. If candidate x has length n, then
it will have 2n/2 children in the tree, and in general a node at level l ≥ 0 (counting

from the bottom with leaves at level −1 for convenience) will have 22l children. So,
the root of the tree for a candidate x of length n is identified by the string x, its 2n/2

children are each identified by a string x$x1 where x1 ∈ {0, 1}n/2, and, in general, a
descendent in the tree at level l is identified by a string of the form x$x1$x2$. . . $xm
with |x| = n, |x1| = n

2 , . . . , |xm| = 2l+1. Notice that any string of this form for
some n a power of 2 and l ∈ [0, logn − 1] defines a node in some tree. So, we will
consider oracles O which map queries over the alphabet {0, 1, $} to answers {−1,+1},
and we will use each such oracle O to define a function VO that gives each node a
value {−1,+1}. The language RO will contain exactly those candidates x for which
VO(x) = 1.

We will define VO for leaves (level 0 nodes) based directly on the oracle O. So, if
x is a leaf, then we let VO(x) = O(x).

We will define VO for all other nodes by looking at the answer of O to a particular
query which is chosen depending on the values of VO for its children. Consider node x

at level l ≥ 0. We will insist that the oracle O be such that there is some kx ∈ {0, 1}2l
such that the children of x all have values determined by their parity with kx

∀y ∈ {0, 1}2l , VO(x$y) = (−1)y·kx ,

and we will then give VO(x) the value O(x$kx). We will say that the oracle O is legal
if this process allows us to successfully define VO for all nodes whose level is ≥ 0. Any

QUANTUM COMPLEXITY THEORY 1459

query of the form x$k with x a node at level l ≥ 0 and k ∈ {0, 1}2l , or of the form
x with x a leaf, is called a query at node x. A query which is located in the same
recursive tree as node x, but not in the subtree rooted at x, is called outside of x.
Notice that for any candidate x, the values of VO at nodes in the tree rooted at x and
the decision whether x is in RO all depend only on the answers of queries located at
nodes in the tree rooted at x.

Theorem 8.10. There is an oracle QTM M such that for every legal oracle O,
MO runs in polynomial time and accepts the language RO with probability 1.

Proof. We have built the language RO so that it can be accepted efficiently using
a recursive quantum algorithm. To avoid working through the details required to
implement a recursive algorithm reversibly, we will instead implement the algorithm
with a machine that writes down an iteration that “unwraps” the desired recursion.
Then the looping lemma will let us build a QTM to carry out this iteration.

First consider the recursive algorithm to compute VO for a node x. If x is a leaf,
then the value VO(x) can be found by querying the string x$. If x is a node at level
l ≥ 0, then calculate VO as follows.

1. Split into an equal superposition of the 22l children of x.
2. Recursively compute VO for these children in superposition.
3. Apply phase to each child given by that child’s value VO.
4. Reverse the computation of step 2 to erase the value VO.
5. Apply the Fourier transform converting the superposition of children of x

into a superposition consisting entirely of the single string kx.
6. Query x$kx to find the value VO for x.
7. Reverse steps 1–5 to erase kx (leaving only x and VO(x)).

Notice that the number of steps required in the iteration obeys the recursion
discussed above and hence is polynomial in the length of x. So, we can use the
synchronization theorem on page 1428 to construct a polynomial time QTM which,
for any particular x, writes a list of the steps which must be carried out. Therefore,
we complete the proof by constructing a polynomial time QTM to carry out any such
list of steps.

Since our algorithm requires us to recursively run both the algorithm and its
reverse, we need to see how to handle each step and its reverse. Before we start, we
will fill out the node x to a description of a leaf by adding strings of 0’s. Then, steps
1 and 5 at level l ≥ 0 just require applying the Fourier transform QTM to the 2l bit
string at level l in the current node description. Since the Fourier transform is its
own reverse, the same machine also reverses steps 1 and 5. Step 3 is handled by the
phase-applying machine already constructed above as part of the Fourier sampling
QTM in Theorem 8.9. Again, the transformation in step 3 is its own reverse, so the
same machine can be used to reverse step 3. Step 6 and its reverse can be handled by
a reversible TM that copies the relevant part of the current node description, queries
the oracle, and then returns the node description from the query tape. Notice that
each of these machines takes time which depends only on the length of its input.

Since we have stationary, normal form QTMs to handle each step at level l and
its reverse in time bounded by a polynomial in 2l, we can use the branching lemma
to construct a stationary, normal form QTM to carry out any specified step of the
computation. Dovetailing with a machine which rotates the first step in the list to the
end and inserting the resulting machine into the reversible TM of the looping lemma
gives the desired QTM.

1460 ETHAN BERNSTEIN AND UMESH VAZIRANI

Computing the function VO takes time Ω(nlog n) even for a probabilistic computer
that is allowed a bounded probability of error. We can see this with the following
intuition. First, consider asking some set of queries of a legal O that determine the
value of VO for a node x described by the string x1$. . . $xm at level l. There are two
ways that the asked queries might fix the value at x. The first is that the queries
outside of the subtree rooted at x might be enough to fix VO for x. If this happens,
we say that VO(x) is fixed by constraint. An example of this is that if we asked all of
the queries in the subtrees rooted at all of the siblings of x, then we have fixed VO
for all of the siblings, thereby fixing the string k such that VO(x1$. . . xmy) equals
(−1)y·k.

The only other way that the value of the node x might be fixed is the following.
If the queries fix the value of VO for some of the children of x then this will restrict
the possible values for the string kx such that VO(x$y) always equals (−1)y⊕kx and
such that VO(x) = O(x$kx). If the query x$kx for each possible kx has been asked
and all have the same answers, then this fixes the value VO at x. If the query x$kx
for the correct kx has been asked, then we call x a hit .

Now notice that fixing the values of a set of children of a level l node x restricts

the value of kx to a set of 22l−c possibilities, where c is the maximum size of a linearly
independent subset of the children whose values are fixed. This can be used to prove
that it takes n · n2 · · · 1 = nΩ(log n).

However, this intuition is not yet enough since we are interested in arguing against
a probabilistic TM rather than a deterministic TM. So, we will argue not just that it
takes nΩ(log n) queries to fix the value of a candidate of length n but that if fewer than
nΩ(log n) queries are fixed, then choosing a random legal oracle consistent with those
queries gives to a candidate of length n the value 1 with probability extremely close to
1
2 . This will give the desired result. To see this, call the set of queries actually asked
and the answers given to those queries a run of the probabilistic TM. We will have
shown that if we take any run on a candidate of length n with fewer than nΩ(log n)

queries, then the probability that a random legal oracle agreeing with the run assigns
to x the value 1 is extremely close to 1

2 . This means that a probabilistic TM whose

running time is no(log n/2) will fail with probability 1 to accept RO for a random legal
oracle O.

Definition 8.11. A run of size k is defined as a pair S, f where S is a set of k
query strings and f is map from S to {0, 1} such that there is at least one legal oracle
agreeing with f .

Let r be a run, let y be a node at level l ≥ 2, and let O be a legal oracle at and below
y which agrees with r. Then O determines the string ky for which VO(y) = O(y$ky).
If y$ky is a query in r, then we say O makes y a hit for r. Suppressing the dependency
on r in the notation, we define P (y) as the probability that y is a hit for r when we
choose a legal oracle at and below y uniformly at random from the set of all such
oracles at and below y which agree with r. Similarly, for x an ancestor of y, we define
Px(y) as the probability that y is a hit when a legal oracle is chosen at and below x
uniformly at random from the set of all oracles at and below x which agree with r.

Lemma 8.12. Px(y) ≤ 2P (y).

Proof. Let S be the set of legal oracles at and below y which agree with r. We
can write S as the disjoint union of Sh and Sn, where the former is the set of those
oracles in S that make y a hit for r. Further splitting Sh and Sn according to the
value VO(y), we can write S as the disjoint union of four sets Sh+, Sh−, Sn+, Sn−.

QUANTUM COMPLEXITY THEORY 1461

Using this notation, we have P (y) = card(Sh)
card(Sh)+card(Sn) . It is easy to see that, since the

oracles in Sn do not make y a hit for r, card(Sn+) = card(Sn−) = card(Sn)
2 .

Next consider the set T of all legal oracles defined at and below x, but outside
y, which agree with r. Each oracle O ∈ T determines by constraint the value VO(y)
but leaves the string ky completely undetermined. If we again write T as the disjoint
union of T+ and T− according to the constrained value VO(y), we notice that the set
of legal oracles at and below x is exactly (T+ × S+) ∪ (T− × S−). So, we have

Px(y) =
card(T+)card(Sh+) + card(T−)card(Sh−)

card(T+)card(S+) + card(T−)card(S−)

=
card(T+)card(Sh+) + card(T−)card(Sh−)

card(T+)card(Sh+) + card(T−)card(Sh−) + card(T)card(Sn)/2
.

Without loss of generality, let card(T+) ≥ card(T−). Then since n
n+c with c, n > 0

increases with n, we have

Px(y) ≤ card(T+)card(Sh)

card(T+)card(Sh) + card(T)card(Sn)/2

≤ card(T+)card(Sh)

card(T+)card(Sh) + card(T+)card(Sn)/2

=
2card(Sh)

2card(Sh) + card(Sn)
≤ 2P (y).

For a positive integer n, we define γ(n) = n(n2) · · · 1. Notice that γ(n) > n(log n)/2.

Theorem 8.13. Suppose r is a run, y is a node at level l ≥ 2 with q queries from
r at or below y, and x is an ancestor of y. Then Px(y) ≤ q

γ(n/4) where n = 2l.

Proof. We prove the theorem by induction on l.

So, fix a run r and a node y at level 2 with q queries from r at or below y. If
q = 0, y can never be a hit. So, certainly the probability that y is a hit is at most q
as desired.

Next, we perform the inductive step. So, assume the theorem holds true for any
r and y at level less than l with l ≥ 2. Then, fix a run r and a node y at level l with
q queries from r at or below y. Let n = 2l. We will show that P (y) ≤ q

2γ(n/4) , and

then the theorem will follow from Lemma 8.12. So, for the remainder of the proof,
all probabilities are taken over the choice of a legal oracle at and below y uniformly
at random from the set of all those legal oracles at and below y which agree with r.

Now, suppose that q′ of the q queries are actually at y. Clearly, if we condition
on there being no hits among the children of y, then ky will be chosen uniformly

among all n-bit strings, and hence the probability y is a hit would be q′

2n . If we
instead condition on there being exactly c hits among the 2n children of y, then the

probability that y is a hit must be at most q′

2n−c . Therefore, the probability y is a

hit is bounded above by the sum of q′

2n/2
and the probability that at least n

2 of the
children of y are hits.

Now consider any child z of y. Applying the inductive hypothesis with y and z
taking the roles of x and y, we know that if r has qz queries at and below z, then
Py(z) ≤ qz

γ(n/8) . Therefore the expected number of hits among the children of y is at

most (q−q′)
γ(n/8) . This means that the probability that at least n

2 of the children of y are

1462 ETHAN BERNSTEIN AND UMESH VAZIRANI

hits is at most

(q − q′)
γ(n/8)n/2

=
(q − q′)
2γ(n/4)

.

Therefore,

P (y) ≤ q − q′

2γ(n/4)
+

q′

2n/2
≤ q

2γ(n/4)

since 2γ(n4) < 2n/2 for n > 4.

Corollary 8.14. For any T (n) which is no(log n) relative to a random legal
oracle O, with probability 1, RO is not contained in BPTime (T (n)).

Proof. Fix T (n) which is no(log n).
We will show that for any probabilistic TMM , when we pick a random legal oracle

O, with probability 1, MO either fails to run in time cno(log n) or it fails to accept
RO with error probability bounded by 1

3 . Then since there are a countable number of
probabilistic TMs and the intersection of a countable number of probability 1 events
still has probability 1, we conclude that with probability 1, RO is not contained in
BPTime (no(log n)).

We prove the corollary by showing that, for large enough n, the probability that
MO runs in time greater than T (n) or has error greater than 1

3 on input 0n is at least
1
8 for every way of fixing the oracle answers for trees other than the tree rooted at 0n.
The probability is taken over the random choices of the oracle for the tree rooted at
0n.

Arbitrarily fix a legal behavior for O on all trees other than the one rooted at 0n.
Then consider picking a legal behavior for O for the tree rooted at 0n uniformly at
random and run MO on input 0n. We can classify runs of MO on input 0n based on
the run r that lists the queries the machines asks and the answers it receives. If we
take all probabilities over both the randomness in M and the choice of oracle O, then
the probability that MO correctly classifies 0n in time T (n) is∑

r

Pr[r]Pr[correct | r],

where Pr[r] is the probability of run r, where Pr[correct | r] is the probability the
answer is correct given run r, and where r ranges over all runs with at most T (n)
queries. Theorem 8.13 tells us that if we condition on any run r with fewer than
1
12γ(

n
4) queries, then the probability 0n is a hit is less than 1

12 . This means that
the probability the algorithm correctly classifies 0n, conditioned on any particular
run r with fewer than 1

12γ(
n
4) queries, is at most 7

12 . Therefore, for n large enough
that T (n) is less than 1

12γ(n), the probability MO correctly classifies 0n in time T (n)
is at most 7

12 . So, for sufficiently large n, when we choose O, then with probability
at least 1

8 M
O either fails to run in time T (n) or has success probability less than 2

3
on input 0n.

Appendix A. A QTM is well formed iff its time evolution is unitary.
First, we note that the time evolution operator of a QTM always exists. Note that
this is true even if the QTM is not well formed.

Lemma A.1. If M is a QTM with time evolution operator U , then U has an
adjoint operator U∗ in the inner-product space of superpositions of the machine M .

QUANTUM COMPLEXITY THEORY 1463

Proof. Let M be a QTM with time evolution operator U . Then the adjoint of U is
the operator U ′ and is the operator whose matrix element in any pair of dimensions i, j
is the complex conjugate of the matrix element of U in dimensions j, i. The operator
U ′ defined in this fashion still maps all superpositions to other superpositions (= finite
linear combinations of configurations), since any particular configuration of M can be
reached with nonzero weight from only a finite number of other configurations. It is
also easy to see that for any superpositions φ, ψ,

〈U ′φ|ψ〉 = 〈φ|Uψ〉
as desired.

We include the proofs of the following standard facts for completeness. We will
use them in the proof of the theorem below.

Fact A.2. If U is a linear operator on an inner-product space V and U∗ exists,
then U preserves norm iff U∗U = I.

Proof. For any x ∈ V , the square of the norm of Ux is (Ux,Ux) = (x, U∗Ux).
It clearly follows that if U∗U = I, then U preserves norm. For the converse, let
B = U∗U−I. Since U preserves norm, for every x ∈ V , (x, U∗Ux) = (x, x). Therefore,
for every x ∈ V , (x,Bx) = 0. It follows that B = 0 and therefore U∗U = I.

This further implies the following useful fact.
Fact A.3. Suppose U is an linear operator in an inner-product space V and U∗

exists. Then

∀x ∈ V ‖Ux‖ = ‖x‖ ↔ ∀x, y ∈ V (Ux,Uy) = (x, y).

Proof. Since ‖Ux‖ = ‖x‖ ↔ (Ux,Ux) = (x, x), one direction follows by substi-
tuting x = y. For the other direction, if U preserves norm then by Fact A.2, U∗U = I.
Therefore, (Ux,Uy) = (x, U∗Uy) = (x, y).

We need to establish one additional fact about norm-preserving operators before
we can prove our theorem.

Fact A.4. Let V be a countable inner-product space, and let {|i〉}i∈I be an
orthonormal basis for V . If U is a norm-preserving linear operator on V and U∗

exists, then ∀i ∈ I ‖U∗|i〉‖ ≤ 1. Moreover, if ∀i ∈ I ‖U∗|i〉‖ = 1 then U is unitary.
Proof. Since U preserves norm, ‖UU∗|i〉‖ = ‖U∗|i〉‖. But the projection of UU∗|i〉

on |i〉 has norm |〈i|UU∗|i〉| = ‖U∗|i〉‖2. Therefore ‖U∗|i〉‖ ≥ ‖U∗|i〉‖2, and therefore
‖U∗|i〉‖ ≤ 1.

Moreover, if ‖U∗|i〉‖ = 1, then, since U is norm preserving, ‖UU∗|i〉‖ = 1. On

the other hand, the projection of UU∗|i〉 on |i〉 has norm ‖U∗|i〉‖2 = 1. It follows that
for j 6= i, the projection of UU∗|i〉 on |j〉 must have norm 0. Thus |〈j|UU∗|i〉| = 0. It
follows that UU∗ = I.

If V is finite dimensional, then U∗U = I implies UU∗ = I, and therefore an opera-
tor is norm preserving if and only if it is unitary. However, ifH is infinite dimensional,
then U∗U = I does not imply UU∗ = I.6 Nevertheless, the time evolution operators
of QTMs have a special structure, and in fact these two conditions are equivalent for
the time evolution operator of a QTM.

Theorem A.5. A QTM is well formed iff its time evolution operator is unitary.
Proof. Let U be the norm preserving time evolution operator of a well-formed

QTM M = (Σ, Q, δ). Consider the standard orthonormal basis for the superpositions

6Consider, for example, the space of finite complex linear combinations of positive integers and
the linear operator which maps |i〉 to |i+ 1〉.

1464 ETHAN BERNSTEIN AND UMESH VAZIRANI

of M given by the set of vectors |c〉, where c ranges over all configurations of M (as
always, |c〉 is the superposition with amplitude 1 for configuration c and 0 elsewhere).
We may express the action of U with respect to this standard basis by a countable
dimensional matrix whose c, c′th entry uc,c′ = 〈c′|U |c〉. This matrix has some special
properties. First, each row and column of the matrix has only a finite number of
nonzero entries. Second, there are only finitely many different types of rows, where
two rows are of the same type if their entries are just permutations of each other. We
shall show that each row of the matrix has norm 1, and therefore by Fact A.4 above
U is unitary. To do so we will identify a set of n columns of the matrix (for arbitrarily
large n) and restrict attention to the finite matrix consisting of all the chosen rows and
all columns with nonzero entries in these rows. Let this matrix be the m× n matrix
B. By construction, B satisfies two properties: (1) it is almost square; m

n ≤ 1 + ε for
arbitrarily small ε. (2) There is a constant a such that each distinct row type of the
infinite matrix occurs at least m

a times among the rows of B.

Now the sum of the squared norms of the rows of B is equal to the sum of the
squared norms of the columns. The latter quantity is just n (since the columns of the
infinite matrix are orthonormal by Fact A.2 above). If we assume that some row of
the infinite matrix has norm 1− δ for δ > 0, then we can choose n sufficiently large
and ε sufficiently small so that the sum of the squared norms of the rows is at most
m(1 − 1

a) + m/a(1 − δ) ≤ m −mδ/a ≤ n + nε − nδ/a < n. This gives the required
contradiction, and therefore all rows of the infinite matrix have norm 1 and, therefore,
by Fact A.4 U is unitary.

To construct the finite matrix B let k > 2 and fix some contiguous set of k cells
on the tape. Consider the set of all configurations S such that the tape head is located
within these k cells and such that the tape is blank outside of these k cells. It is easy
to see that the number of such configurations n = k card(Σ)

k
card(Q). The columns

indexed by configurations in S are used to define the finite matrix B referred to above.
The nonzero entries in these columns are restricted to rows indexed by configurations
in S together with rows indexed by configurations where the tape head is in the cell
immediately to the left or right of the k special cells, and such that the tape is blank
outside of these k + 1 cells. The number of these additional configurations over and
above S is at most 2 card(Σ)

k+1
card(Q). Therefore, m = n(1 + 2/kcard(Σ)). For

any ε > 0, we can choose k large enough such that m ≤ n(1 + ε).

Recall that a row of the infinite matrix (corresponding to the operator U) is
indexed by configurations. We say that a configuration c is of type q, σ1, σ2, σ3 if
c is in state q ∈ Q and the three adjacent tape cells centered about the tape head
contain the three symbols σ1, σ2, σ3 ∈ Σ. The entries of a row indexed by c must be a
permutation of the entries of a row indexed by any configuration c′ of the same type
as c. This is because a transition of the QTM M depends only on the state of M and
the symbol under the tape head and since the tape head moves to an adjacent cell
during a transition. Moreover, any configuration d that yields configuration c with
nonzero amplitude as a result of a single step must have tape contents identical to
those of c in all but these three cells. It follows that there are only a finite number
of such configurations d, and the row indexed by c can have only a finite number of
nonzero entries. A similar argument shows that each column has only a finite number
of nonzero entries.

Now for given q, σ1, σ2, σ3 consider the rows of the finite matrix B indexed by
configurations of type q, σ1, σ2, σ3 and such that the tape head is located at one of
the k − 2 nonborder cells. Then |T | = (k − 2)card(Σ)

k−3
. Each row of B indexed

QUANTUM COMPLEXITY THEORY 1465

by a configuration c ∈ T has the property that if d is any configuration that yields c
with nonzero amplitude in a single step, then d ∈ S. Therefore, the row indexed by
c in the finite matrix B has the same nonzero entries as the row indexed by c in the
infinite matrix. Therefore, it makes sense to say that row c of B is of the same type
as row c of the infinite matrix. Finally, the rows of each type constitute a fraction at
least |T |/m of all rows of B. Substituting the bounds from above, we get that this

fraction is at least (k−2)card(Σ)k−3

k card(Σ)k card(Q)(1+2/kcard(Σ))
. Since k ≥ 4, this is at least 1

a for

constant a = 2card(Σ)
3
card(Q)(1 + 1/2card(Σ)). This establishes all the properties

of the matrix B used in the proof above.

Appendix B. Reversible TMs are as powerful as deterministic TM. In
this appendix, we prove the synchronization theorem of section 4.1.

We begin with a few simple facts about reversible TMs. We give necessary and
sufficient conditions for a deterministic TM to be reversible, and we show that, just
as for QTMs, a partially defined reversible TM can always be completed to give a
well-formed reversible TM. We also give, as an aside, an easy proof that reversible
TMs can efficiently simulate reversible, generalized TMs.

Theorem B.1. A TM or generalized TM M is reversible iff both of the following
two conditions hold.

1. Each state of M can be entered while moving in only one direction. In other
words, if δ(p1, σ1) = (τ1, q, d1) and δ(p2, σ2) = (τ2, q, d2) then d1 = d2.

2. The transition function δ is one-to-one when direction is ignored.

Proof. First we show that these two conditions imply reversibility.

Suppose M = (Σ, Q, δ) is a TM or generalized TM satisfying these two conditions.
Then, the following procedure lets us take any configuration of M and compute its
predecessor if it has one. First, since each state can be entered while moving in only
one direction, the state of the configuration tells us in which cell the tape head must
have been in the previous configuration. Looking at this cell, we can see what tape
symbol was written in the last step. Then, since δ is one-to-one we know the update
rule, if any, that was used on the previous step, allowing us to reconstruct the previous
configuration.

Next, we show that the first property is necessary for reversibility. So, for example,
consider a TM or generalized TM M = (Σ, Q, δ) such that δ(p1, σ1) = (τ1, q, L) and
δ(p2, σ2) = (τ2, q, R). Then, we can easily construct two configurations which lead
to the same next configuration: let c1 be any configuration where the machine is in
state p1 reading a σ1 and where the symbol two cells to the left of the tape head is a
τ2, and let c2 be identical to c1 except that the σ1 and τ2 are changed to τ1 and σ2,
the machine is in state p2, and the tape head is two cells further left. Therefore, M is
not reversible. Since similar arguments apply for each pair of distinct directions, the
first condition in the theorem must be necessary for reversibility.

Finally, we show that the second condition is also necessary for reversibility. Sup-
pose that M = (Σ, Q, δ) is a TM or generalized TM with δ(p1, σ1) = δ(p2, σ2). Then,
any pair of configurations which differ only in the state and symbol under the tape
head, where one has (p1, σ1) and the other (p2, σ2), lead to the same next configura-
tion, and again M is not reversible.

Corollary B.2. If M is a reversible TM, then every configuration of M has
exactly one predecessor.

Proof. Let M = (Σ, Q, δ) be a reversible TM. By the definition of reversibility,
each configuration of M has at most one predecessor.

1466 ETHAN BERNSTEIN AND UMESH VAZIRANI

So, let c be a configuration of M in state q. Theorem B.1 tells us that M can
enter state q while moving its tape head in only one direction dq. Since Theorem B.1
tells us that, ignoring direction, δ is one-to-one, taking the inverse of δ on the state q
and the symbol in direction d̄q tells us how to transform c into its predecessor.

Corollary B.3. If δ is a partial function from Q × Σ to Σ×Q×{L,R} satisfying
the two conditions of Theorem B.1, then δ can be extended to a total function that
still satisfies Theorem B.1.

Proof. Suppose δ is a partial function from Q×Σ to Σ×Q×{L,R} that satisfies
the properties of Theorem B.1. Then, for each q ∈ Q let dq be the one direction,
if any, in which q can be entered, and let dq be (arbitrarily) L otherwise. Then we
can fill in undefined values of δ with as yet unused triples of the form (τ, q, dq) so
as to maintain the conditions of Theorem B.1. Since the number of such triples is
card(Σ) card(Q), there will be exactly enough to fully define δ.

Theorem B.4. If M is a generalized reversible TM, then there is a reversible
TM M ′ that simulates M with slowdown at most 2.

Proof. The idea is to replace any transition that has the tape head stand still
with two transitions. The first updates the tape and moves to the right, remembering
which state it should enter. The second steps back to the left and enters the desired
state.

So, if M = (Σ, Q, δ) is a generalized reversible TM then we let M ′ be identical
to M except that for each state q with a transition of the form δ(p, σ) = (τ, q,N)
we add a new state q′ and we also add a new transition rule δ(q′, σ) = σ, q, L for
each σ ∈ Σ. Finally, we replace each transition δ(p, σ) = (τ, q,N) with the transition
δ(p, σ) = (τ, q′, R). Clearly M ′ simulates M with slowdown by a factor of at most 2.

To complete the proof, we need to show that M ′ is also reversible.

So, consider a configuration c of M ′. We need to show that c has at most
one predecessor. If c is in state q ∈ Q and M enters q moving left or right, then the
transitions into q in M ′ are identical to those in M and therefore since M is reversible,
c has at most one predecessor in M ′. Similarly, if c is in one of the new states q′

then the transitions into q′ in M ′ are exactly the same as those into q in M , except
that the tape head moves right instead of staying still. So, again the reversibility of
M implies that c has at most one predecessor. Finally, suppose c is in state q ∈ Q,
where M enters q while standing still. Then, Theorem B.1 tells us that all transitions
in M that enter q have direction N . Therefore, all of them have been removed, and
the only transitions entering q in M ′ are the new ones of the form δ(q′, σ) = σ, q, L.
Again, this means that c can have only one predecessor.

We will prove the synchronization theorem in the following way. Using ideas from
the constructions of Bennett [7] and Morita, Shirasaki, and Gono [33], we will show
that given any deterministic TMM there is a reversible multitrack TM which on input
x produces output x;M(x), and whose running time depends only on the sequence of
head movements of M on input x. Then, since any deterministic computation can be
simulated efficiently by an “oblivious” machine whose head movements depend only
on the length of its input, we will be able to construct the desired “synchronized”
reversible TM.

The idea of Bennett’s simulation is to run the target machine, keeping a history
to maintain reversibility. Then the output can be copied and the simulation run
backward so that the history is exactly erased while the input is recovered. Since the
target tape head moves back and forth, while the history steadily grows, Bennett uses
a multitape TM for the simulation.

QUANTUM COMPLEXITY THEORY 1467

The idea of Morita, Shirasaki, and Gono’s simulation is to use a simulation tape
with several tracks, some of which are used to simulate the tape of the desired machine
and some of which are used to keep the history. Provided that the machine can move
reversibly between the current head position of the target machine and the end of
the history, it can carry out Bennett’s simulation with a quadratic slowdown. Morita,
Shirasaki, and Gono work with TMs with one-way infinite tapes so that the simulating
machine can move between the simulation and the history by moving left to the end of
the tape and then searching back toward the right. In our simulation, we write down
history for every step the target machine takes, rather than just the nonreversible
steps. This means that the end of the history will always be further right than the
simulation, allowing us to work with two-way infinite tapes. Also, we use reversible
TMs that can only move their head in the directions {L,R} rather than the generalized
reversible TMs used by Bennett, Morita, Shirasaki, and Gono.

Definition B.5. A deterministic TM is oblivious if its running time and the
position of its tape head at each time step depend only on the length of its input.

In carrying out our single tape Bennett constructions we will find it useful to
first build simple reversible TMs to copy a string from one track to another and to
exchange the strings on two tracks. We will copy strings delimited by blanks in the
single tape Bennett construction but will copy strings with other delimiters in a later
section.

Lemma B.6. For any alphabet Σ, there is a normal form, reversible TM M
with alphabet Σ×Σ with the following property. When run on input x; y M runs for
2 max(|x|, |y|) + 4 steps, returns the tape head to the start cell, and outputs y;x.

Proof. We let M have alphabet Σ×Σ, state set {q0, q1, q2, q3, qf}, and transition
function defined by

(#,#) other (σ1, σ2)
q0 (#,#), q1, L (σ1, σ2), q1, L
q1 (#,#), q2, R
q2 (#,#), q3, L (σ2, σ1), q2, R
q3 (#,#), qf , R (σ1, σ2), q3, L
qf (#,#), q0, R (σ1, σ2), q0, R

Since each state in M can be entered in only one direction and its transition
function is one-to-one, M is reversible. Also, it can be verified that M performs the
desired computation in the stated number of steps.

Lemma B.7. For any alphabet Σ, there is a normal form, reversible TM M with
alphabet Σ × Σ with the following property. When run on input x, M outputs x;x,
and when run on input x;x it outputs x. In either case, M runs for 2|x| + 4 steps
and leaves the tape head back in the start cell.

Proof. We let M have alphabet Σ×Σ, state set {q0, q1, q2, q3, qf}, and transition
function defined by the following where each transition is duplicated for each nonblank
σ ∈ Σ:

(#,#) (σ,#) (σ, σ)
q0 (#,#), q1, L (σ,#), q1, L (σ, σ), q1, L
q1 (#,#), q2, R
q2 (#,#), q3, L (σ, σ), q2, R (σ,#), q2, R
q3 (#,#), qf , R (σ,#), q3, L (σ, σ), q3, L
qf (#,#), q0, R (σ,#), q0, R (σ, σ), q0, R

1468 ETHAN BERNSTEIN AND UMESH VAZIRANI

Since each state in M can be entered in only one direction and its transition
function is one-to-one, M can be extended to a reversible TM. Also, it can be verified
that M performs the desired computation in the stated number of steps.

Theorem B.8. Let M be an oblivious deterministic TM which on any input
x produces output M(x), with no embedded blanks, with its tape head back in the
start cell, and with M(x) beginning in the start cell. Then there is a reversible TM
M ′ which on input x produces output x;M(x) and on input x;M(x) produces output
x. In both cases, M ′ halts with its tape head back in the start cell and takes time
which depends only on the lengths of x and M(x) and which is bounded by a quadratic
polynomial in the running time of M on input x.

Proof. Let M = (Σ, Q, δ) be an oblivious deterministic TM as stated in the
theorem and let q0, qf be the initial and final states of M .

The simulation will run in three stages.
1. M ′ will simulate M maintaining a history to make the simulation reversible.
2. M ′ will copy its first track, as shown in Lemma B.7.
3. M ′ runs the reverse of the simulation of M erasing the history while restoring

the input.
We will construct a normal form reversible TM for each of the three stages and

then dovetail them together.
Each of our machines will be a four-track TM with the same alphabet. The first

track, with alphabet Σ1 = Σ, will be used to simulate the tape of M . The second
track, with alphabet Σ2 = {#, 1}, will be used to store a single 1 locating the tape
head of M . The third track, with alphabet Σ3 = {#, $} ∪ (Q × Σ), will be used to
write down a list of the transitions taken by M , starting with the marker $. This $
will help us find the start cell when we enter and leave the copying phase. The fourth
track, with alphabet Σ4 = Σ, will be used to write the output of M .

In describing the first machine, we will give a partial list of transitions obeying
the conditions of Theorem B.1 and then appeal to Corollary B.3. Our machines will
usually only be reading and writing one track at a time. So, for convenience we will
list a transition with one or more occurrences of the symbols of the form vi and v′i to
stand for all possible transitions with vi replaced by a symbol from the appropriate
Σi other than the special marker $, and with v′i replaced by a symbol from Σi other
than $ and #.

The first phase of the simulation will be handled by the machine M1 with state
set given by the union of sets Q, Q×Q×Σ× [1, 4], Q× [5, 7], and {qa, qb}. Its start
state will be qa and the final state qf .

The transitions of M1 are defined as follows. First, we mark the position of the
tape head of M in the start cell, mark the start of the history in cell 1, and enter
state q0.

qa, (v1,#,#, v4) → (v1, 1,#, v4), qb, R,
qb, (v1,#,#, v4) → (v1,#, $, v4), q0, R.

Then, for each pair p, σ with p 6= qf and with transition δ(p, σ) = (τ, q, d) in M
we include transitions to go from state p to state q updating the simulated tape of
M while adding (p, σ) to the end of the history. We first carry out the update of
the simulated tape, remembering the transition taken, and then move to the end of
the history to deposit the information on the transition. If we are in the middle of
the history, we reach the end of the history by walking right until we hit a blank.
However, if we are to the left of the history, then we must first walk right over blanks
until we reach the start of the history.

QUANTUM COMPLEXITY THEORY 1469

p, (σ, 1, v3, v4) → (τ,#, v3, v4), (q, p, σ, 1), d
(q, p, σ, 1), (v1,#, $, v4) → (v1, 1, $, v4), (q, p, σ, 3), R
(q, p, σ, 1), (v1,#, v

′
3, v4) → (v1, 1, v

′
3, v4), (q, p, σ, 3), R

(q, p, σ, 1), (v1,#,#, v4) → (v1, 1,#, v4), (q, p, σ, 2), R
(q, p, σ, 2), (v1,#,#, v4) → (v1,#,#, v4), (q, p, σ, 2), R
(q, p, σ, 2), (v1,#, $, v4) → (v1,#, $, v4), (q, p, σ, 3), R
(q, p, σ, 3), (v1,#, v

′
3, v4) → (v1,#, v

′
3, v4), (q, p, σ, 3), R

(q, p, σ, 3), (v1,#,#, v4) → (v1,#, (p, σ), v4), (q, 4), R

When the machine reaches state (q, 4) it is standing on the first blank after the
end of the history. So, for each state q ∈ Q, we include transitions to move from the
end of the history back left to the head position of M . We enter our walk-left state
(q, 5) while writing a # on the history tape. So, to maintain reversibility, we must
enter a second left-walking state (q, 6) to look for the tape head marker past the left
end of the history. When we reach the tape head position, we step left and right
entering state q.

(q, 4), (v1,#,#, v4) → (v1,#,#, v4), (q, 5), L
(q, 5), (v1,#, v

′
3, v4) → (v1,#, v

′
3, v4), (q, 5), L

(q, 5), (v1,#, $, v4) → (v1,#, $, v4), (q, 6), L
(q, 5), (v1, 1, v

′
3, v4) → (v1, 1, v

′
3, v4), (q, 7), L

(q, 5), (v1, 1, $, v4) → (v1, 1, $, v4), (q, 7), L
(q, 6), (v1,#,#, v4) → (v1,#,#, v4), (q, 6), L
(q, 6), (v1, 1,#, v4) → (v1, 1,#, v4), (q, 7), L
(q, 7), (v1, v2, v3, v4) → (v1, v2, v3, v4), q, R

Finally, we put M1 in normal form by including the transition

qf , σ → σ, qa, R

for each σ in the simulation alphabet.
It can be verified that each state can be entered in only one direction using the

above transitions, and relying on the fact that M is in normal form, and we don’t
simulate its transitions from qf back to q0, it can also be verified that the partial
transition function described is one-to-one. Therefore, Corollary B.3 says that we can
extend these transitions to give a reversible TM M1. Notice also that the operation of
M1 is independent of the contents of the fourth track and that it leaves these contents
unaltered.

For the second and third machines, we simply use the copying machine con-
structed in Lemma B.7 above, and the reverse of M1 constructed using Lemma 4.12
on page 1431. Since M1 operated independently of the fourth track, so will its rever-
sal. Therefore, dovetailing these three TMs gives a reversible TM M ′, which on input
x produces output x; ε; ε;M(x) with its tape head back in the start cell, and on input
x; ε; ε;M(x) produces output x.

Notice that the time required by M1 to simulate a step of M is bounded by a
polynomial in the running time of M and depends only on the current head position
of M , the direction M moves in the step, and how many steps have already been
carried out. Therefore, the running time of the first phase of M ′ depends only on
the series of head movements of M . In fact, since M is oblivious, this running time

1470 ETHAN BERNSTEIN AND UMESH VAZIRANI

depends only the length of x. The same is true of the third phase of M ′, since the
reversal of M1 takes exactly two extra time steps. Finally, the running time of the
copying machine depends only on the length of M(x). Therefore, the running time
of M ′ on input x depends only on the lengths of x and M(x) and is bounded by a
quadratic polynomial in the running time of M on x.

Theorem B.9. Let M1 be an oblivious deterministic TM which on any input
x produces output M1(x), with no embedded blanks, with its tape head back in the
start cell, with M1(x) beginning in the start cell, and such that the length of M1(x)
depends only on the length of x. Let M2 be an oblivious deterministic TM with the
same alphabet as M1 which on any input M1(x) produces output x, with its tape head
back in the start cell, and with x beginning in the start cell. Then there is a reversible
TM M ′ which on input x produces output M1(x). Moreover, M ′ on input x halts with
its tape head back in the start cell, and takes time which depends only on the length
of x and which is bounded by a polynomial in the running time of M1 on input x and
the running time of M2 on M1(x).

Proof. Let M1 and M2 be as stated in the theorem with the common alphabet Σ.
Then the idea to construct the desired M ′ is first to run M1 to compute x;M(x),

then to run an exchange routine to produce M(x);x and finally to run M2 to erase the
string x, where each of the three phases starts and ends with the tape head in the start
cell. Using the construction in Theorem B.8, we build normal form, reversible TMs
to accomplish the first and third phases in times which depend only on the lengths of
x and M1(x) and are bounded by a polynomial in the running times of M1 on input
x and M2 on input M1(x). In Lemma B.6 on page 1467 we have already constructed
a reversible TM that performs the exchange in time depending only on the lengths of
the two strings. Dovetailing these three machines gives the desired M .

Since any function computable in deterministic polynomial time can be com-
puted in polynomial time by an oblivious generalized deterministic TM, Theorems B.8
and B.9 together with Theorem 4.2 give us the following.

Theorem 4.3 (synchronization theorem). If f is a function mapping strings
to strings which can be computed in deterministic polynomial time and such that
the length of f(x) depends only on the length of x, then there is a polynomial time,
stationary, normal form QTM which given input x, produces output x; f(x), and whose
running time depends only on the length of x.

If f is a function from strings to strings such that both f and f−1 can be computed
in deterministic polynomial time and such that the length of f(x) depends only on the
length of x, then there is a polynomial time, stationary, normal form QTM, which,
given input x, produces output f(x), and whose running time depends only on the
length of x.

Appendix C. A reversible looping TM. We prove here the looping lemma
from section 4.2.

Lemma 4.13 (looping lemma). There is a stationary, normal form, reversible
TM M and a constant c with the following properties. On input any positive integer
k written in binary, M runs for time O(k logc k) and halts with its tape unchanged.
Moreover, M has a special state q∗ such that on input k, M visits state q∗ exactly k
times, each time with its tape head back in the start cell.

Proof. As mentioned above in section 4.2, the difficulty is to construct a loop
with a reversible entrance and exit. We accomplish this as follows. Using the syn-
chronization theorem, we can build three-track stationary, normal form, reversible
TM M1 = (Σ, Q, δ) running in time polynomial in log k that on input b;x; k where

QUANTUM COMPLEXITY THEORY 1471

b ∈ {0, 1} outputs b′;x + 1; k where b′ is the opposite of b if x = 0 or k − 1 (but not
both) and b′ = b otherwise. Calling the initial and final states of this machine q0, qf ,
we construct a reversible M2 that loops on machine M1 as follows. We will give M2

new initial and final states qa, qz and ensure that it has the following three properties.

1. Started in state qa with a 0 on the first track, M2 steps left and back right,
changing the 0 to a 1, and entering state q0.

2. When in state qf with a 0 on the first track, M2 steps left and back right
into state q0.

3. When in state qf with a 1 on the first track, M2 steps left and back right,
changing the 1 to a 0, and halts.

So, on input 0; 0; k M2 will step left and right into state q0, changing the tape
contents to 1; 0; k. Then machine M1 will run for the first time changing 1; 0;k to
0; 1; k and halting in state qf . Whenever M2 is in state qf with a 0 on the first track,
it reenters q0 to run M2 again. So, machine M2 will run k − 1 more times until it
finally produces 1; k; k. At that point, M2 changes the tape contents to 0; k; k and
halts. So on input 0; 0; k, M2 visits state qf exactly k times, each time with its tape
head back in the start cell. This means we can construct the desired M by identifying
qf as q∗ and dovetailing M2 before and after with reversible TMs, constructed using
the synchronization theorem, to transform k to 0; 0; k and 0; k; k back to k.

We complete the proof by constructing a normal form, reversible M2 that satisfies
the three properties above. We giveM2 the same alphabet asM1 and additional states
qa, qb, qy, qz. The transition function for M2 is the same as that of M1 for states in
Q− qf and otherwise depends only on the first track (leaving the others unchanged)
and is given by the following table

0 1
qa (1, qb, L)
qb (#, q0, R)
qf (0, qb, L) (0, qy, L)
qy (#, qz, R)
qz (#, qa, R) (0, qa, R) (1, qa, R)

It is easy to see that M2 is normal form and satisfies the three properties stated above.
Moreover, since M1 is reversible and obeys the two conditions of Theorem B.1, it
can be verified that the transition function of M2 also obeys the two conditions of
Theorem B.1. Therefore, according to Theorem B.3, the transition function of M2

can be completed giving a reversible TM.

Acknowledgements. This paper has greatly benefited from the careful reading
and many useful comments of Richard Jozsa and Bob Solovay. We wish to thank
them as well as Gilles Brassard, Charles Bennett, Noam Nisan, and Dan Simon.

1472 ETHAN BERNSTEIN AND UMESH VAZIRANI

REFERENCES

[1] L. Adleman, J. DeMarrais, and M. Huang, Quantum computability, SIAM J. Comput., 26
(1997), pp. 1524–1540.

[2] S. Arora, R. Impagliazzo, and U. Vazirani, On the Role of the Cook-Levin Theorem in
Complexity Theory, manuscript, 1993.

[3] S. Arora, C. Lund, R. Motwani, M. Sudan, and M. Szegedy, Proof verification and in-
tractability of approximation problems, in Proc. 33rd Annual IEEE Symposium on Foun-
dations of Computer Science, IEEE Press, Piscataway, NJ, 1992, pp. 14–23.

[4] L. Babai and S. Moran, Arthur–Merlin games: A randomized proof system, and a hierarchy
of complexity classes, J. Comput. System Sci., 36 (1988), pp. 254–276.

[5] A. Barenco, C. Bennett, R. Cleve, D. DiVincenzo, N. Margolus, P. Shor, T. Sleator,

J. Smolin, and H. Weinfurter, Elementary gates for quantum computation, Phys. Rev.
A, 52 (1995), pp. 3457–3467.

[6] P. Benioff, Quantum Hamiltonian models of Turing machines, J. Statist. Phys., 29 (1982),
pp. 515–546.

[7] C. H. Bennett, Logical reversibility of computation, IBM J. Res. Develop., 17 (1973), pp. 525–
532.

[8] C. H. Bennett, Time/space tradeoffs for reversible computation, SIAM J. Comput., 18 (1989),
pp. 766–776.

[9] C. H. Bennett, E. Bernstein, G. Brassard, and U. Vazirani, Strengths and weaknesses of
quantum computing, SIAM J. Comput., 26 (1997), pp. 1510–1523.

[10] E. Bernstein, Quantum Complexity Theory, Ph.D. dissertation, Univ. of California, Berkeley,
May, 1997.

[11] E. Bernstein and U. Vazirani, Quantum complexity theory, in Proc. 25th Annual ACM
Symposium on Theory of Computing, ACM, New York, 1993, pp. 11–20.

[12] A. Berthiaume and G. Brassard, The quantum challenge to structural complexity theory, in
Proc. 7th IEEE Conference on Structure in Complexity Theory, 1992, pp. 132–137.

[13] A. Berthiaume and G. Brassard, Oracle quantum computing, J. Modern Optics, 41 (1994),
pp. 2521–2535.

[14] A. Berthiaume, D. Deutsch, and R. Jozsa, The stabilisation of quantum computation, in
Proc. Workshop on Physics and Computation, Dallas, TX, IEEE Computer Society Press,
Los Alamitos, CA, 1994, p. 60.

[15] N. Bshouty and J. Jackson, Learning DNF over uniform distribution using a quantum ex-
ample oracle, in Proc. 8th Annual ACM Conference on Computational Learning Theory,
ACM, New York, 1995, pp. 118–127.

[16] A. R. Calderbank and P. Shor, Good quantum error correcting codes exist, Phys. Rev. A,
54 (1996), pp. 1098–1106.

[17] Cirac and Zoller, Quantum computation using trapped cold ions, Phys. Rev. Lett., 74 (1995),
pp. 4091–4094.

[18] I. Chuang, R. LaFlamme, P. Shor, and W. Zurek, Quantum computers, factoring and
decoherence, Science, Dec. 8, 1995, pp. 1633–1635.

[19] C. Cohen-Tannoudji, B. Diu, and F. LaLoe, Quantum Mechanics, Longman Scientific &
Technical, Essex, 1977, pp. 108–181.

[20] D. Deutsch, Quantum theory, the Church–Turing principle and the universal quantum com-
puter, in Proc. Roy. Soc. London Ser. A, 400 (1985), pp. 97–117.

[21] D. Deutsch, Quantum computational networks, in Proc. Roy. Soc. London Ser. A, 425 (1989),
pp. 73–90.

[22] D. Deutsch and R. Jozsa, Rapid solution of problems by quantum computation, in Proc. Roy.
Soc. London Ser. A, 439 (1992), pp. 553–558.

[23] D. DiVincenzo, Two-bit gates are universal for quantum computation, Phys. Rev. A, 51 (1995),
pp. 1015–1022.

[24] C. Dürr, M. Santha, and Thanh, A decision procedure for unitary linear quantum cellular
automata, in Proc. 37th IEEE Symposium on the Foundations of Computer Science, IEEE
Press, Piscataway, NJ, 1996, pp. 38–45.

[25] R. Feynman, Simulating physics with computers, Internat. J. Theoret. Phys., 21 (1982),
pp. 467–488.

[26] R. Feynman, Quantum mechanical computers, Found. Phys., 16 (1986), pp. 507–531; Optics
News, February 1985.

[27] E. Fredkin and T. Toffoli, Conservative Logic, Internat. J. Theoret. Phys., 21 (1982), p. 219.
[28] L. Grover, A fast quantum mechanical algorithm for database search, in Proc. 28th Annual

ACM Symposium on Theory of Computing, ACM, New York, 1996, pp. 212–219.

QUANTUM COMPLEXITY THEORY 1473

[29] R. Landauer, Is quantum mechanics useful?, Phil. Trans. R. Soc. A, 353 (1995), pp. 367–376.
[30] R. Lipton, Personal communication, 1994.
[31] S. Lloyd, A potentially realizable quantum computer, Science, 261 (1993), pp. 1569–1571.
[32] J. Machta, Phase Information in Quantum Oracle Computing, Physics Department, Univer-

sity of Massachusetts, Amherst, MA, manuscript, 1996.
[33] K. Morita, A. Shirasaki, and Y. Gono, A 1-tape 2-symbol reversible Turing machine, IEEE

Trans. IEICE, E72 (1989), pp. 223–228.
[34] J. von Neumann, Various Techniques Used in Connection with Random Digits, Notes by G.

E. Forsythe, National Bureau of Standards, Applied Math Series, 12 (1951), pp. 36–38.
Reprinted in von Neumann’s Collected Works, Vol. 5, A. H. Taub, ed., Pergamon Press,
Elmsford, NY, 1963, pp. 768–770.

[35] G. Palma, K. Suominen, and A. Ekert, Quantum Computers and Dissipation, Proc. Roy.
Soc. London Ser. A, 452 (1996), pp. 567–584.

[36] A. Shamir, IP=PSPACE, in Proc. 22nd ACM Symposium on the Theory of Computing, ACM,
New York, 1990, pp. 11–15.

[37] P. Shor, Algorithms for quantum computation: Discrete log and factoring, in Proc. 35th
Annual IEEE Symposium on Foundations of Computer Science, IEEE Press, Piscataway,
NJ, 1994, pp. 124–134.

[38] P. Shor, Fault-tolerant quantum computation, in Proc. 37th Annual IEEE Symposium on the
Foundations of Computer Science, IEEE Press, Piscataway, NJ, 1996, pp. 56–65.

[39] D. Simon, On the power of quantum computation, in Proc. 35th Annual IEEE Symposium on
Foundations of Computer Science, IEEE Press, Piscataway, NJ, 1994, pp. 116–123; SIAM
J. Comput., 26 (1997), pp. 1474–1483.

[40] R. Solovay and A. Yao, manuscript, 1996.
[41] T. Toffoli, Bicontinuous extensions of invertible combinatorial functions, Math. Systems

Theory, 14 (1981), pp. 13–23.
[42] W. Unruh, Maintaining coherence in quantum computers, Phys. Rev. A, 51 (1995), p. 992.
[43] L. Valiant, Personal communication, 1992.
[44] U. Vazirani and V. Vazirani, Random polynomial time is equal to semi-random polynomial

time, in Proc. 26th Annual IEEE Symposium on Foundations of Computer Science, 1985,
pp. 417–428.

[45] J. Watrous, On one dimensional quantum cellular automata, in Proc. 36th Annual IEEE Sym-
posium on Foundations of Computer Science, IEEE Press, Piscataway, NJ, 1995, pp. 528–
537.

[46] A. Yao, Quantum circuit complexity, in Proc. 34th Annual IEEE Symposium on Foundations
of Computer Science, IEEE Press, Piscataway, NJ, 1993, pp. 352–361.

[47] D. Zuckerman, Weak Random Sources, Ph.D. dissertation, Univ. of California, Berkeley, 1990.

