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IntroductionLipid bilayers have been studied for so many years by so many researchers that it maybe surprising to those not working directly in the �eld just how uncertain are structuralquantities for the fully hydrated, uid (L� or liquid crystalline) phase. Some of these quan-tities include various thicknesses (see Fig. 1), such as; the hydrophobic thickness, relevantto hydrophobic matching of proteins; the steric thickness, relevant to determination of inter-bilayer interactions (see McIntosh, next review); the head-head separation measured fromelectron density pro�les; and the Luzzati thickness (Fig. 2c), relevant to determination ofwater content in multilamellar vesicles. The most central structural quantity is the averagearea/molecule A along the surface of the bilayer, to which thickness is related through volu-metric considerations. Fig. 1 shows the range of values of A that have been reported for thebenchmark lipid DPPC. This is an enormous range, especially since the interesting numberis the di�erence between the biologically relevant uid phase area AF and the area AG ofthe 'dead' gel phase. The uncertainty in AF � AG in Fig. 1 for this most studied lipid is atthe 100% level. This degree of uncertainty makes it di�cult to compare bilayers of di�erentlipids and it provides little guide to, or test of, quantitative theory or simulations. Modernstructural e�orts are directed to reducing this uncertainty and to providing, in collaborationwith simulations, a quantitative basis for understanding biophysical interactions in bilayersand membranes.It is sometimes supposed that bilayer structure determination by di�raction means doingcrystallography. While lipid crystallography has been pursued and has been illuminating,it is important to recognize that fully hydrated lipid bilayers are not even close to being ina crystalline state. The contrast is strongest for bilayers that are in the L� phase becausethe hydrocarbon chains are conformationally disordered in contrast to the all-trans chainsin lipid crystals. (Even for the conformationally ordered gel and subgel bilayer phases, thereare substantial di�erences compared to the crystal structures.) For fully hydrated uidphase lipid bilayers it makes no sense to contemplate an atomic level structure because ofthe uctuations. The absence of such structures in this �eld should not be blamed on poor2



di�raction technique or inadequate sample preparation. Such structures simply do not existin the biologically relevant state.The appropriate description for the positions of atoms in the lipid molecule is that ofbroad statistical distribution functions. Fig. 2a shows simulations for distribution functionsfor several of the component groups of DPPC along the direction of the bilayer normal[9]. Of course, these distributions do not even have to be Gaussians. Although Gaussiansare a convenient form to use in data analysis, simulations show systematic di�erences fromGaussians [10,11]. Future analyses of di�raction data might bene�t by using functional formssuggested by simulations, even though one might not trust precise numerical values whichare subject to inaccuracies in the potentials used [5]. Experimental component distributionshave been obtained as Gaussian approximations for samples that have been subjected tovarying degrees of dehydration [3,12]. Even so, analysis is challenging. A noteworthy papershows how the analysis of joint x-ray and neutron di�raction data can be improved by usingvolumetric constraints [11]. More typical x-ray data yield electron density pro�les as shownin Fig. 2b; these indicate the location of the electron dense phosphate group. Fig. 2ccombines lateral and transverse structure in a volumetric picture.Gravimetric methodsA method for obtaining A without obtaining electron density pro�les is the gravimetricx-ray method (GX), frequently called the Luzzati method [17]. The key formula,AD = 2(VL + nWVW ); (1)shows how A can be obtained from the highly accurate lipid volume VL and lamellar repeatD, once the number of water molecules per lipid nW is known. The problem with applyingthis formula using the GXmethod is that the gravimetrically determined value of nw includeswater molecules that go into defect regions between individual MLVs, but the number thatis required by the equation should include only the water that goes neatly between well-stacked bilayers. Consequently, this method, which has been much used for many di�erent3



lipids, tends to overestimate A. To compensate for this methodological problem, Randand Parsegian [7] supposed that the defect regions could be squeezed out by applying 10atmospheres of osmotic pressure. The A so obtained was then extrapolated to A0 at fullhydration using the formula, A = A0 � ADWPosm=KA; (2)where ADW is the water volume under osmotic pressure Posm and KA is the area com-pressibility. The values of A0 obtained were indeed lower - see Table 1 in the row labelledGXC for gravimetric x-ray compressibility method. Of course, the GXC method dependsupon having experimental values for KA. In an important new paper [13], the values of KAthat were previously used [7] have been revised upward and extended to other lipids. Thisrevision will add a negative correction (although only of order �0:4�A2) to the values shownin Table 1.Electron density pro�le methodA method that obtains A using electron density pro�les (EDP) is due to McIntosh andSimon and was applied by them to DLPE [14]. The method uses gel phase structure whichcan be accurately determined using wide angle chain packing di�raction. Then, di�erencesin volume and thickness, as measured by DHH in Fig. 2b, are used to obtain A in the L�phase. This method has more recently been applied to four phosphatidylcholines, DPPC[5], DOPC [15], DMPC and EPC [16] with results for A shown in Table 1 in the EDP row.The values are somewhat smaller than the GXC values, which is reasonable if defect waterhas not been completely removed by the GXC method. One reason for delay in obtainingthe EDP results was the necessity of obtaining gel phase structure for DPPC; this is morecomplicated than for DLPE because the chains are tilted [1]. The other reason is relatedto the fundamental role that uctuations play in lipid bilayer di�raction, which we discussnext.Liquid crystallography 4



If the distribution functions shown in Fig. 2a are broad, then the electron density pro�lewill be smooth and the higher orders of Fourier decomposition will be negligible. Thisdisorder of the �rst kind is intrinsic to bilayer structure. Such disorder is accounted forin previous bilayer di�raction analysis which essentially treats the system as a disorderedone-dimensional crystal [3,12]. In contrast, disorder of the second kind is not inherent inthe structure of the bilayer but a�ects the regularity of stacking of bilayers relative to eachother. Fig. 3 shows this kind of disorder which intimately involves bilayer undulations. Thiskind of disorder destroys the true long range order that all crystals have and replaces it with'quasi long range order' which is a characteristic feature of smectic liquid crystals. Disorderor the second kind also reduces the number of orders of di�raction that are observable.It has been shown that not taking this into account would wrongly imply, using standarddi�raction analysis, that there is rapid structural change as full hydration is approached [5].Disorder of the second kind takes intensity from the di�raction peaks, in higher proportionas the di�raction order increases, and distributes it broadly into di�use scattering in the tailsof the peaks where it is di�cult to distinguish from background without the aid of goodtheory and high resolution detection. A scattering theory developed for liquid crystals [21,22]has been shown experimentally, using synchrotron x-rays [23], to be superior to the olderparacrystalline theory used occasionally in membrane biophysics. The liquid crystal analysisuses the measured shapes of the di�raction peaks together with the theory to determine theuctuation parameters that can then be used to recover the lost intensity. Although thename 'liquid crystallography' has been used before for analysis of bilayer di�raction data[12], we suggest that this name is more appropriate for the more modern analysis thatincludes the quasi long range order feature that actually characterizes liquid crystals [22].Comparison with some other resultsWe turn now to the results listed in the last row of Table 1. The entry for DMPCcombined the GXC method for moderately low levels of hydration with an NMR method toobtain KA [18]. Although KA has since increased [13], the value of A does not change much.5



Concerning the entry for DPPC, it has been suggested [5] that there are two better ways toobtain A that use the primary results shown in Fig. 2a for distances of component groupsalong the bilayer normal [3]; this revision raises A close to 63�A2 instead of the originallyreported value for A in Table 1 [5]. The entry for EPC was also obtained using the GXmethod [19]; it is an exception to the rule that the GX method gives larger values than theGXC or EDP methods. The entry for DOPC in the 'other' row comes from the importantjoint re�nement method developed by Wiener and White [12]. Unfortunately, this lipid wasvery dry, nW = 5:4 at 66% relative humidity, which corresponds to Posmotic = 570 atm. Evenwith the compressibility correction in Eq. 2 and a temperature adjustment, the predictedfully hydrated A would still only be 65�A2, signi�cantly lower than the GXC and EDP valuesfor DOPC in Table 1. More recent work from White's lab [24] explains this discrepancy asan abrupt structural change as a function of increasing hydration near nW = 12. Indeed,a recent simulation indicated that about 12 water molecules are needed to provide the �rststrong hydration shell for DOPC [25] and an earlier simulation suggested about 15 [26]. Itis not surprising that the strong forces that arise from stripping o� essential water shouldcause drastic structural changes that can not be handled by any kind of extrapolation suchas Eq. 2. For comparison, there was a minimum nW that safely exceeded 12 for the othersamples reported in Table 1.Let us turn briey to the use of NMR order parameters to obtain A. Fig. 1 indicatesthat the literature values for A have spanned a slightly greater range than the di�ractionvalues. This range is due, not to di�erent primary data for the SCD order parameters, butfrom di�erent methods of interpretating those data to give A. A recent attempt to improvethe interpretation employed simulations and a method emerged that �t the simulations verywell [27]. The new method gives nearly identical numerical results as the method employedearlier for DPPC by Brown's group [8] that gave A = 71:7�A2. When applied to DMPC data[18], it gives A = 65:4�A2 [27]. Both these values are considerably higher than the valuesgiven by the EDP method and even higher than the GXC values, which should provide anupper bound. Some NMR practitioners refuse to attempt to determine absolute values of6



A [18] and that may be a reasonable, if disappointing, conclusion for this use of NMR. Onthe other hand, a new NMR method that involves magic angle spinning has been shown togive good agreement with the EDP and GXC results for DOPC [28].Temperature dependenceTemperature dependence of bilayer thickness has been obtained for EPC with the resultthat the bilayer becomes thinner by about 0:08�A=oC over a temperature range from 10�50oC[29]. The temperature dependence of D in DMPC and DPPC accelerates as the temperatureis lowered towards the main transition [30{33]. It appears that half this increase is due tothickening of the bilayer caused by a pretransitional straightening of the hydrocarbon chainsas T is reduced [32{34]. The cause of the other half of the increase is still not clear and mayinvolve interactions between the bilayers that cause the water space to increase anomalously[32].Chain ordered phasesAlthough chain ordered phases are not usually directly biologically relevant, the EDPmethod emphasizes the value of gel phase structure as a stepping stone to obtaining L�phase structure. Chain ordered phases are also valuable to elucidate molecular interactionsand to test simulations; only recently has a molecular dynamics simulation [36] been able tomatch the experimental hydrocarbon chain tilting pattern established for gel phase DPPCbilayers [1]. The reason that gel phase structure is directly obtainable is that the ordering ofthe hydrocarbon chains produces wide angle reections that can be directly indexed to givelateral chain packing area Ac. Although it is challenging to obtain chain tilt angle �t, oncethat is done [35], A = 2Ac=cos� and many other quantities follow directly [1]. Temperatureand chain length dependence of the gel phase for di-saturated lecithins show great regularityup to chains with 20 carbons [37], but new types of gel phases form in lecithins with longersame chain lipids [38,39]. Curiously, when the lipid is varied so that the chain lengths di�erby two carbons, there is no gel phase at all [40], as has recently been recon�rmed for MPPC7



[44]. Instead, the subgel phase that was �rst found in DPPC becomes more stable than thegel phase and melts directly into the ripple phase. Understanding this di�erence betweensame-chain and mixed-chain phase behavior requires more detailed structure of the subgelphase. In addition to the hydrocarbon chains becoming more ordered [41,42], it also appearsthat the subgel phase involves headgroup ordering in DPPC [43] and in DPPG [42]. A recentstudy of one of the members of the glycosphingolipid family illustrates some of the varietyof di�erent ordered chain structures that can occur in di�erent lipids of special biologicalrelevance [45].Enigmatic ripple phaseThe ripple phase that occurs in the lecithins continues to attract attention. Freezefracture electron microscopy and di�raction studies have for many years indicated that theripple is not sinusoidal and this has been positively con�rmed by solving the x-ray phaseproblem [46] for high resolution intensities from DMPC [47] with the result shown in Fig.4. The packing of the hydrocarbon chains within this structure is still not known althougha recent suggestion has been made which, however, would require that the thickness of themajor M side be greater than the thickness of the gel phase [48], in contradiction to theresult in Fig. 4. Determining the detailed molecular structure would seem to be prerequisiteto understanding the interactions that are responsible for the formation of this enigmaticphase.The ripple phase in DPPC is more complicated because a di�erent ripple pattern occurswhen the phase is formed by cooling from the L� phase than when it is formed by heatingfrom the gel phase [49]. The nature of the cooling phase was somewhat ambiguous frompowder di�raction data, but recent data on aligned samples [51] unambiguously con�rmsthe original suggestion [49] that this phase is a mixture of short ripples of the kind in Fig. 4and of ripples that are nearly twice as long (255�A). The occurrence of a rectangular unit cell[51] and images from freeze fracture electron microscopy [50] are consistent with the longripples consisting of an MmmM repeating motif instead of the MmMm motif of the short8



ripples. If this is the case, then the free energies of the two ripple phases ought to be verysimilar, and this is consistent with the recent result that the two patterns melt into the L�phase within 0:3oC of each other [51].Conclusions and future directionsModern structural determinations are reducing the uncertainty suggested in Fig. 1. Theolder, purely gravimetric x-ray method (GX) (which has been used for many results in theliterature) has been improved by the GXC method. Except for DPPC, the GXC methodgives results for A only a little larger than those obtained by the completely independentEDP method, and the di�erence can be rationalized as residual amounts of weighed waternot involved in the structure. Although the EDP method requires rather arduous liquidcrystallography, this method also provides information about interactions between bilayers(see McIntosh, next paper). Now that the vapor pressure paradox has been resolved (also seeMcIntosh, next paper), it is very likely that fully hydrated aligned samples will be employedto obtain data to higher spatial resolution and better values for A.Once A has been determined, many other bilayer structural quantities follow (as shownin Fig. 2c for DPPC). The joint use of the experimental determinations, as in Figs. 2b and2c, and simulations, as in Fig. 2a, promises to lead to better quantitative determinationof bilayer structure and eventually to the molecular interactions that determine biologicallyinteresting di�erences in structure of di�erent lipid bilayers.Acknowledgment: Support from NIH Grant GM44976 is gratefully acknowledged.
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produced upon cooling.
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Figure CaptionsFig. 1. (a) The sketch of two bilayers in a multilamellar vesicle (MLV) identi�es theprimary lamellar repeat spacing D, the area A per molecule, the hydrophobic thickness2DC , the Luzzati thickness DB, the water thickness DW , the steric thickness D0B, and thesteric water thickness D0W . (b) Prominent literature values for A for DPPC in the L� phase(black) compared to the gel phase (grey).Fig. 2. Several views of the structure of fully hydrated DPPC in the L� phase(T = 50oC). (a) the curves show simulated probability distribution functions [9] for variouscomponent groups and the solid bars at the top left of the �gure show average positions fromneutron di�raction [3]. (b) shows an electron density pro�le [5]. (c) shows two volumetricviews, employing Gibbs dividing surfaces, that relate lateral area A to various thicknesses.Both volumetric views in (c) show the hydrocarbon thickness 2DC . The view on the leftshows the Luzzati bilayer thickness DB and the more realistic view on the right mixes wa-ter into the headgroup region to show the steric thickness D0B. The Luzzati thickness isgiven by DB = VL=A, where for DPPC the lipid volume is accurately determined to beVL = 1232�2�A3 per molecule [5].Fig.3. Snapshot of a Monte Carlo simulation of eight liquid crystalline bilayers (in black)with uctuating water spacings (in white) [20]. The mesoscale Monte Carlo simulationincorported bilayer bending energy and van der Waals and hydration force interactionsbetween the bilayers (see McIntosh review - next paper).Fig. 4. Electron density map obtained using x-ray phases from [46] and intensity datafrom [47] for the ripple thermodynamic phase of DMPC with 25% water (nW = 13) at 18oC.The rippling repeat period is 142�A (length of unit cell) and the lamellar repeat is 58�A (heightof unit cell). The pro�les show a major M side (across A) that has the same thickness asthe gel phase and a thinner minor m side (across B). The presence of a thin water layerbetween bilayers (across C) indicates complete inner shell hydration of the headgroups.
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TABLE 1. Comparison of Literature Values for Area/LipidMethod DPPC(gel) DPPC(L�) DMPC DOPC EPCGX [7] 52.3 71.2 65.2 82.0 75.6GXC [7] 48.6 68.1 61.7 72.1 69.5EDP 47.9 [1] 62.9 [5] 59.7 [16] 72.2 [15] 69.4 [16]Other 48.6 [17] 57 [3] 59.5 [18] 59.3 [12] 64 [19]
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