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PROBLEMS AND RESULTS ON 3-CHROMATIC HYPERGRAPHS
AND SOME RELATED QUESTIONS

P. ERDOS - L. LOVÁSZ

A hypergraphi is a collection of sets . This paper deals with finite hy-
pergraphs only . The sets in the hypergraph are called edges, the elements
of these edges are points . The degree of a point is the number of edges
containing it . The hypergraph is r-uniform if every edge has r points .

A hypergraph is simple if any two edges have at most one common
point, and it is called a clique if any two edges have at least one common
point .

The chromatic number of a hypergraph is the least number k such
that the points can be k-colored so that no edge is monochromatic . As
far as we know families of sets with chromatic number 2 were first inves-
tigated systematically by M i 11 e r (who used the term property B) in the
case of infinite edges. There now is a large literature of this subject both
for finite and infinite sets .

The main idea behind our investigations is that being simple or being
a clique imposes surprisingly strict properties on 3-chromatic hypergraphs .
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The reason why we relate these two properties with chromatic number is
the following trivial observation :

If a hypergraph has chromatic number > 3 then it has two edges
with exactly one common point.

Let Mk (r) be the minimum number of edges of a (k + 1)-chromat-
ic r-uniform hypergraph . It is known [5], [9]

r+ 2 2
r-1 < m2(r) G r22r .

Perhaps r2r is the correct order of magnitude of m 2 (r), it seems likely
that

m (r)
-> Co2r

A stronger conjecture would be : Let {Ek )k=1 be a 3-chromatic (not nec-
essarily uniform) hypergraph . Let

m
f(r) = min

	

1 - ,
k=1 21Ek1

where the minimum is extended over all hypergraphs with min I Ek I = r.
We conjecture that f(r) -> - as r - - .

Let nk(r), mk (r) denote the minimum number of points and edges
in a (k + 1)-chromatic r-uniform simple hypergraph. We shall prove

Theorem 1 .

Thus in particular,
r

c1 4r < m2(r) < c 2 r4 4' ,

i .e. m2(r) is much larger then m 2 (r) .

lim }~n~*(r) = k ,
r >~

lim
r
~ mk(r) = k2 .

r->
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In fact, we will prove a more general theorem (Theorem 1') which
constructs small hypergraphs with large chromatic number and girth; see
[4] .

L o v á s z[ 6] and W o o d a 11 [7] proved that in every 3-chromatic
r-uniform hypergraph there is a vertex of degree > r . We improve this
result showing

Theorem 2. A (k + 1)-chromatic r-uniform hypergraph contains an
edge which is intersected by at least kr -1 14 other edges. Thus, the valen-
cy of at least one vertex is > kr -1 /4r .

S t r a w s formulated the following problem : Is there a function f(k)
such that if S in any set of integers with I SI = f(k) then the integers
can be k-colored so that each color meets every translated copy of S
(i .e . every set of form S + a = {x + a : x E S} ) .

A stronger form of this problem asserts that if f(k) is large then

each color occurs at least (1 - e) - k) times in each and similar statement
hold for the lattice points of the n-dimensional space . This problem will
follow from the method of the proof of Theorem 2 . In fact, a general the-
orem on hypergraph coloration can be obtained :

Theorem 3 . If each edge of an r-uniform hypergraph H meets at
most kr -1 /4(k - 1)' other edges then the vertices of H can be k-colored
in such a way that each color meets each edge . We also prove the stronger
version of S t r a u s s' conjecture (Theorem 4.)

For simple hypergraphs, we will prove the following sharpening of
Theorem 2 :

Theorem 5 . If H is a simple (k + 1)-chromatic r-uniform hyper-
graph then it contains at least ks-2 f4 (r- 1) points with degree
~kr-2 /4(r- 1) .

This theorem will be needed to prove Theorem 1 . E r d ő s and S h e l a h
[3] observed that in every simple 3-chromatic r-uniform hypergraph there
are two disjoint edges if r is large enpugh . Theorem 5 will imply



Corollary 2 to Theorem 5 . A simple (k + 1)-chromatic r-uniform
kr-2

hypergraph contains 4r (r - 1) independent edges .

The previously mentioned result of L o v á s z and W o o d a I 1 states
that, if H is a hypergraph such that, for each H' C H,

(1)

	

I U E I > IH'i + 1
E EH'

then H is 2-chromatic . W o o d a 11 made the surprising observation that
(1) is best possible in the sense that there is an r-uniform 3 chromatic hy-
pergraph H such that (1) holds for each H' C H (but, of course, not for
H'= H) . In Wood all's example I H I - r! and we suspect that I H I
cannot be much smaller . We also conjecture that for simple hypergraphs
(1) can be replaced by a much weeker a assumption . Perhaps

U E I > I H'1/2`(1
`E

EEH'

r- 1

(b'H' C H)

will imply that H. is 2-chromatic, provided H is simple .

Consider now r-uniform cliques . Obviously, a clique can have chromat-
ic number 2 or 3 only ; we are interested in those with chromatic number
3 . Let m**(r) denote the minimum number of edges in such a hyper-
graph ; we prove

Theorem 6 . m (r) < 7 2

	

for infinitely many r .

We do not know if }gym**(r) is greater than 2; we cannot even show
m**(r) > m(r) .

Somewhat surprisingly, there are only finitely many 3-chromatic r-
uniform cliques for a given r, so we may ask for the maximum number
M(r) of edges in them . We have the inequalities

Theorem 7. r! (e - 1) < M(r) C rr .

To obtain the upper bound we only use the fact that the edges of a
3-chromatic r-uniform hypergraph cannot be represented by r - 1 points .
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Theorem 8 . Let N(r) denote the maximum number of points in a
3-chromatic r-uniform clique. Then
2(2r2)

Zf rr- 11) .

S h e l a h and the authors observed that if H is a 3-chromatic r-uni-
form clique then there are two edges E, F with

IEnF1>-r
log r

Perhaps the right hand side can be replaced by c • r or even r - c, since
the worst example we have is an r-uniform 3-chromatic clique with

IEnFI<r-2

(for infinitely many values of r), and we have no single example with

IEnF1<r-3 .

Theorem 9 . If r is large enough and H is an r-uniform 3-chromat-
ic clique then the cardinalities I E n F1, E, F E H take at least 3 distinct
values.

We make some further remarks on the distribution of I E n Ff, where
E, F are edges in 3-chromatic cliques, but we know here very little .

Finally, we consider the following problem . Denote by q(r) the
smallest integer for which there is an r-uniform clique which cannot be
covered by less than r points (r points, obviously, always cover an r-
unifonn clique ; e .g. the r points of an edge) . We prove

Theorem 10 . 8 r - 3 < q(r) < c • r 3 r 2 log r .

It is a challenging problem to prove or disprove q(r) < c • r. We feel
sure that q(r) < c • r • log r holds .
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We prove the following statement, which yields the upper bounds

(í .e . lim Ynt*r < k, lim r < k2 ) in Theorem 1 . The lower bounds
will be proved later (Corollary 2 to Theorem 2 and Corollary 3 to Theo-
rem 5) .

Theorem 1' . Let s>,2, r > 2, k l 2 ; n=4- 205- 1 r3s- 2

0 - 1)("+ 1), m = 4 • 20s , r3s- 2 , ks(r+ 1), d = 20r2 , V- 1 .

Then there exists an r-uniform hypergraph H on k • n points with
at most m edges and with degrees < d which does not contain any cir-
cuits of length < s and in which each set of n points contains an edge .

This hypergraph is, obviously, at least (k + 1)-chromatic .

Proof. S be any set of k • n points. We construct our hypergraph
H= {Et : i = 1, . . . , t} inductively . Suppose E 1 , . . . ,

P
have already

been chosen so that

(a) E 1 , . . . , EP from no circuit of length < s,

(j3) no point is contained in more than d of them .

Let S1 , . . . , SX be those n-element sets containing no one of E l , . . . , p .
P

If there is no such S, we are finished . Suppose xP > 1 . Choose now
EP + 1 in such a way that E 1 , . . . , EP + 1 satisfy (a) and (0) and EP + 1
is contained in as many SI , ( 1 < i < xP ) as possible . We will show that

this is possible and that EP + 1 will be contained in at least 20 xP /k' sets

as long as p < m . This will imply

(2)

	

XP+ 1 < xp (1 - 20k, : )

Suppose we know that if p < m then (2) holds . Then

-m

	

kn- m

xm <X01 - 201kr 1
m

< 2
kn , e2okr < e 2okr = 1
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thus our procedure stops before the m-th step, i .e. we get a hypergraph
satisfying the requirements with < m edges .

We still have to show (2) . Suppose s = 2s' is even ; the odd case can
be treated similarly . Let 1 < j < xp ; we estimate how many r-tuples of
S could be chosen for Ep+ 1 without violating (a) and (0) .

Let N be the number of those points of S with degree d . Then

d •N'<r •p <r •m ,

	

N< r •
d

	 m = nr .
Therefore, the number of those points in Sj with degree < d is

n -N> n(l - r) .
Any r-tuple chosen from these points will satisfy (g) . Let us see, how

many r-tuples are excluded by (a) . We can describe these r-tuples as those
not containing any pair of points which is at distance < 2s' - 1 in
{E1 , . . . . Ep } ; or which are both at distance < s' - 1 from a certain edge
Et , 1 < i < p . Now there are at most rr • ds - 1 points at distance
< s' - 1 from Ei ; therefore, Et excludes at most

i
ds' -1

< r 2s' , d2s' - 2
2

pairs and so, there are at most

p , r2 s' d2 s'- 2 < m r2s' d2 s'- 2

excluded pairs . One excluded pair forbids at most ( r - 2 ) r-tuples of

Si ; thus, the total number of r-tuples of Si forbidden by (0) is

< (n - 2 1 , m r2s'd2s'-2
r-2

and so, the number of r-tuples of S which are candidates for Ek+ 1 is

~ n~ l

	

r

	

n- 2

	

m • r2s' , d2s'- 2
r

	

-( r-2) •
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e í n Í _ m•r2s'+2 • d 2s' - 2
[ n ) = ( e

	

4 ) r, > 1
~n)

.

Thus, there are altogether

xP (n)
20 r

r-tuples of S 1 , . . . , Sx which can be chosen .
P

Since the total number of r-tuples is
tknl

there must be an r-tuple
1r

which is counted in at least

xp
(r)

- xp

20(kn ~

	

20k r
lr

n-tuples . This proves (2) .

2 .

Lemma. Let G be a (finite) graph with maximum degree d and
vertices v l , . . . , vn . Let us associate an event Aj with vi (i = 1, . . . , n)
and suppose that A 1 is independent of the set

{Aj : (vi , v ) E E(G) } .

Also suppose

(3)

	

P(A ) I
I

	

4d

Then

(4)

	

P(A 1 . . . An ) > 0 .

Proof. We prove more, namely that

(5)

	

P(A 1 IA 2 . . .An )- 2d .

This formula makes sense because we may assume by induction
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P(A 2 . . . An ) > 0 .

Then (5) obviously implies (4) .

We prove (5) by induction on n . For n = 1 it is trivial . Let
v2 , . . . , vq be the points adjacent to v l , (q < d + 1) . Then we have

Here, by (3)

_

	

P(A IA 2 . . .Aq IAq+I . . .An )
P(A I I A 2 . . . An )	

P(A2 . . . Aq IAq + I . . . An )

P(A I A 2 . . . Ag 1Aq+I

	

An ) <,

P(A I 1Aq+I . . .An ) =P(A1)<	1 '

and on the other hand

P(A 2 . . .Aq IA q+I . . .A n )=

= 1 - P(A 2 + . . . + Aq JAq +

This proves the lemma .

Proof of Theorem 2. Let us color each point of H with colors
1, . . . , k at random, independently of each other and with equal proba-
bility . Let E(H) _ {E 1 , . . . , Em } and let A i denote the event that E i

is monochromatic . Then

P(A i )
= kr1 I .

Let G be the line-graph of H i.e. a graph with points v l , . . . , vm
where v i is adjacent to i iff Ei n Ej * 0 . Then the events A t are as-
sociated with the points of G and obviously, Ai is independent of the

I . . .An )>

4
>1- Y-, P(Ai 1Aq+1 . . .An )>1-(q -1) 2d > 2i= 2

by the induction hypothesis. Thus

P(A I 1A2 . . .An)~ 1

	

1 _ 1
4d 1 2 2d
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set of all AI-'s such that E- n E

	

i .e . (v i , vi) q E(G) . Moreover, the
maximum degree of G is, obviously d < kr -1 /4 and thus

P(A,) = k,. l 1 c 4d

í .e. (3) is satisfied . Thus, the lemma gives

P(Á1 . . .Am)>0 .

But in any case when A, . . . A m occurs we get a k-coloration of H.
Thus H is k-colorable .

Corollary 1 . If each point of an r-uniform hypergraph H has degree
kr -1 /4r then the chromatic number of H is < k .

Corollary 2 . If H is a simple (k + 1)-chromatic r-uniform hyper-
graph then I V(H)I > c • kr -1

Proof of Theorem 3. Let H = {E1 . . . Em 1 . Color the points of H
with colors 1, . . . , k at random, independently of each other. Let A1
denote the event that E- does not get all colors . Obviously,

P(Ai ) < k( 1 - k~ r

Considering the line-graph of H again, we get that the maximum degree
is

d S k` 1 14(k - ly

by the assumption, thus

P(AI ) <, 14d

holds, and the lemma implies that P(A 1 . . . Am ) > 0 ; this means there
exists a desired coloration .

Theorem 3 immediately implies the weak form of S t r a u s s' con-
jecture; in fact, f(k) = c • k • log k will be appropriate . The stronger ver-
sion would have a similar generalization to hypergraphs, but it would be
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lengthy to formulate it, so we leave it to the reader and only prove

Theorem 4. Let e > 0, k > 2, n > 1 . Then there is an ro = ro (k, e)
such that if S is any set of lattice points in the n-dimensional space with
I SI = r > r p then the lattice points can be k-colored so that each set
S + a obtained by translating S with an integer vector a contains at
least (1 .- e) k points of any given color .

Proof . By compactness, it suffices to show this for a finite collection
H of translated copies of S. Let us color the vertices of H with one of
k given colors at random, independently of each other . The probability
of the event AÍ that the i-th translated copy contains < (1 - e) r ofk
a given color is

P(A1)<(I-5)r (5>0)

where S depends on k and e but not on r (this follows from the
central limit theorem) . On the other hand, each copy of S meets less than
r2 other copies (since if S + a meets S + b then b - a must be one
of the vectors joining two points of S) . Thus if

(1 -S)r< 14r 2
then we can conclude as in the two previous cases .

Proof of Theorem 5 . Let, for each edge E E H, Z(E) be a point of
E with maximum degree and set E' _ E - {t(E)}, H' _ {E' : E E H}.
Obviously, H' cannot be k-colorable (any k-coloration of H' would
yield one of H) thus by Theorem 2, H' contains a vertex of degree
> kr- 214(r - 1) . Let El , . . . , E' be those edges of H' containing x,
t > e -2 14(r -1) . Then t(El ), . . . , t(Et ) must have degree > t in H
by definition, which proves the assertion .

Corollary 1 . A (k + I)-chromatic r-uniform simple hypergraph can-
not be covered by less than kr- 2 /4(r - 1) points.

Proof. Suppose T covers all edges where I T I < kr - 2 /4(r - 1) . By
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Theorem 5, there is a point x with degree > I TI not belonging to T .
But then T cannot cover all edges adjacent to x as H is simple, a con-
tradiction .

This assertion immediately implies

Corollary 2. A (k + I)-chromatic r-uniform simple hypergraph con-
tains at least kr -2/4r(r - 1) disjoint edges.

Corollary 3. A (k + 1)-chromatic r-uniform simple hypergraphs has
at least k 2(r- 2)11 br(r - 1) 2 edges.

3 .

This paragraph contains constructions of 3-chromatic r-uniform cliques,
and proves some simple properties in general .

(a) All r-tuples from 2r - 1 points form a 3-chromatic r-uniform
clique .

(b) Let S be a set, I SI = 2r - 2 . For each partition P = {SP S2 1
of S with I S l 1 = 1 S21 = r - 1 take a new point xp . Define H to
consist of all r-tuples from S plus all r-tuples of the form S l u {xp }
where P = {Sl , S 2 } is a partition as above . Then H is a 3-chromatic r-
uniform clique .

(c) Let H be a 3-chromatic r-uniform clique . Let T n V(H) _ 0,
I TI = r + 1 and define H' to consist of T and all (r + 1)-tuples of the
form E u {t}, E E H, t E T. Then H' is an (r + I)-uniform 3-chromatic
clique .

(d) Let H be a 3-chromatic r-uniform clique, V(H) _ { 1, . . . , n} .
Let H1 , . . . , Hn be 3-chromatic p-uniform cliques, V(H) n V(H) _ ~ .
Define

H* = {Etl U . . .UE1r : Ei EH., {i,, . . . , i r } E H} .

Then H* is a (pr)-uniform 3-chromatic clique .

The proof is straightforward in all cases . Obviously, (c) and (d) yield
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several families of 3-chromatic cliques when applied with different initial
3-chromatic cliques . We will use two initial hypergraphs, the triangle and
the Fano plane on seven points . Let us collect the consequences of the
above constructions .

Proof of Theorem 6 . Apply (d) inductively, with H(1) the Fano
plane, H = H (k) and H l , . . . , H, V(H)i Fano planes to get H(k + 1) Then
H(k) is 3k-uniform and

1 H(k+1)1 = 73k . 1H(k) 1 ,

3k-1
whence IH(k)I= 71+3+ . . .+3 k-1 _ 7 2

Proof of Theorem 7.

I . Starting with the triangle, apply (c) repeatedly . It is easy to see that
the obtained r-uniform 3-chromatic cliques have (e - 1)r! edges .

II . Suppose there is a 3-chromatic r-uniform clique with more than
r' edges. In fact, we will not use that H is 3-chromatic only that H is

an r-uniform clique which cannot be covered by less than r points .

Let E E H. Since there are - r' other edges, there will be a point
x l E E with degree > r r-1

Let us define x 1 , . . . , xr inductively as follows . Suppose x 1 , . . . , x i
are defined in such a way that more than rr- i edges contain all of them .
Since x 1 , . . . , x i do not cover all the edges, there is an edge El not
containing any of them . All the edges containing x 1 , . . . , x i meet Ei ;
therefore, Ei contains a point xi+, such that more than r' -i- 1 edges
contain x, , . . . , x i and xi+, '

Now more than one edge contains x l , . . . . xT , a contradiction .

Proof of Theorem 8 .

l . The lower bound immediately follows from construction (b) .

Il. For every x E V(H), there are two edges E, F E H with E n F =
_ {x} ; for let E be any edge adjacent to x, and consider E - x . This
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set does not cover all edges, therefore there is an edge F avoiding E - x.
Since E n F0 0 we must have E n F= {x} .

Thus the assertion will be implied by the following

Lemma. If H is an r-uniform clique such that, for each point x,
there are two edges with E n F= {x} then

IV(H)1< 2' 1 2r - 1)'

This is a sharpening of a theorem of C a l c z y n s x a- K a r l o w i c z
The proof uses a method due to L u b e 11 [2 ] .

Proof. Let (x 1 , . . . , xn ) be a permutation of V(H) . There is at
most one point xj such that both {x 1 , . . . , x,) and {x i , . . . , x n } con-
tain an edge, since H is a clique. If we count this for each permutation
of the points each point x is counted; in fact, if E, F E H with
E n F = x then order E U F so that the points of E be on the first r
plances or on the last r places. This can be done in 2(r - 1)!2 ways ;

then choose the 2r - 1 places of E U F, this can be done in
(2r

n
- 1

ways ; finally, place the n - 2r + 1 remaining points on the remaining
places, this can be done in (n - 2r + 1)! ways. Thus the number of times
x is counted is

2[(r - 1)!] 2

	

n

	

(n - 2r+ 1)! =	2nr.

í2r-1

	

r (2r-11
J

r

Thus we count at most n! points, each point at least

times. Hence I V(G) I c 2
~2rr 1 .

Set, for a hypergraph H,

A(H) = {IEn FI : E,FeH,E F} .

- 6 22 -
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orem 7 yields



max A(H) >	 rlog r

We don't know how sharp this estimation is ; the construction in the proof
of Theorem 6 yields a 3-chromatic 3k -uniform clique with

A(H)={1,á, . . .,3k-2} .

But we do not know any example with

maxA(H)<r-3 .

Also note the interesting property of the preceding example that
A(H) consists of odd numbers only . How "lacunary" can A(H) be? We
cannot even prove

IA(H)I - - as r -+ 00

for r-uniform 3-chromatic cliques . The best we can show is I A(H) I > 3
for large enough r.

Proof of Theorem 9 . Suppose I A(H) I < 2 . We know
known, IHI > 2r -1 . Similarly as in the proof of Theorem 4, we find two
points x, y contained in at least 2r-1 Ir 2 edges F 1 , . . . , Ft . Any two
of these have at least two points in common . Hence I A(H) I = 2, say
A(H) _ {1, k} . Any two of the edges containing x and y must have
exactly k points in common. As

2` 1
t> 2 >r2 -r+ 1

r
if r is large enough, a theorem of D e z a 18] implies F n F= M= const .
for any i, j. Now any edge not covered by M has at least t > r points,
a contradiction .

4 .

Modifying slightly the definition of 3-chromatic r-uniform cliques,
let us consider now r-uniform cliques which cannot be covered by less
then r points. As pointed out, the proof of Theorem 4 works, so for the
maximum number of edges in such a clique we have the same bounds as
for M(r) .
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The question of üAe minimum number q(r) of edges is more con-
fusing (or more interesting), as Theorem 10 shows .

Proof of Theorem 10 . 1 . Suppose there are <
3

r - 3 edges in an

r-uniform clique H, we show it can be covered by r - 1 points. Let x l
be a point of H with maximum degree, let x 2 be a point of H - x l
with maximum degree, etc ., let xi+ 1 be a point of H - x l - . . . - xi

with maximum degree (H - x, - . . . - x p denotes the hypergraph ob-
tained by removing all edges which meet {x, , . . . , x,}) . Observe that the
degree of xi+ 1 in H - x l - . . . - xt is > 4 if I H - x , - . . . -x,!>
>2r+ 1 ; it is _>3 if I H - x, - . . . - x

i

I > r + l, and it is > 2 if
I H - x, - . . . - x t I > 1 . (This immediately follows from the assumption

that H is a clique) . Hence, if there are

	

8 r edges to begin with, in

6 step we get down to < 2r + 3 edges, in another - 3 steps we will

only have < r + 1 edges, which can be covered by - r5 points. These

are

	

r points altogether . The accurate calculation with integral parts

yields that if I HI < 8 r - 3 then, in fact, we use only r - 1 points to

cover all edges .

11 . For sake of simplicity let r = p" + 1 and our edges will be lines

of a finite plane . Set t = 4r312 log r . We can choose í lines
I r2 - t

r + 1
)

2

	

~

ways; we will show that all but
o ~r -r+

1 1
choices of the lines cannot

r
be represented by fewer than r points .

To prove this we make a few simple known remarks about lines in a
finite geometry . Let v 1 ,

. . . , y r _
1

be vertices and 1P . . .
Ilk

be the
lines determined by them . Let et be the number of vl 's on l . . Clearly

(12)

	

tZ 2

	

2
= 6r

	

1l

Let el > e 2 ?

l

. . . _> ek and let B be the number of lines disjoint from
{v1 , . . . . vk

} . Simple computation shows
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and so from (12)

k
B= ~, (ei - 1) + 1

i= 1

k

	

k
(13)l

	

(r-1)(r-2)=iZei(ei-1)<e,

	

(ei-1)= e,(B-1) .

Another simple argument shows

(14)

	

B>el (r-el ) .

What we need is the following

Lemma.

B>
~_r (r- ~_r ) if e l <r-C,

r - 1

	

otherwise .

This immediately follows from (13) if e l < C or e l > r - C,
and from (14) if

	

< el < r - hr_ .

Now we are ready to prove out theorem . Assume first
The number of ways of choosing such a system of points is

<(r2-r+
1)lr)lr2

-r+1 <r3C
Cr

	

~-r

Thus the number of choices of t lines which can be represented by a sys-
tem of r - 1 points with more than r - }fir on a line is

< r3C .
l r2

- 2r + 2
t

	

l
J

and so the percentage of such choices of t lines among all choices is

lr2	
- 2r+ 21

J

	

,~-

	

r
<r3 yr

	

t

	

<r3Cr'
r
l 1

	

r-1~ =0(1))
lr2 -r+ 1)

t

Suppose now el < r - {fir .. We can only say that the number of ways of
choosing r - 1 such points is

- 62 5 -

e, >r-Y7r .



2<
l
r - r + 1 <

(er)r
.

r-1

The number of choices of t lines covered by such systems of r - 1 points
is

[1]

[3]

<
lr2

-r+ 1 -~_r (r-1r)1
J

t

Hence the precentage of such choices among all choices is

r 2 -r+ 1 -~(r-C)
(er)r (	 t

lr2
-

t
r+ 1)
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