
11

A Consensus Protocolfor Wide Area Networks*Serge Haddad, LAMSADE François Nguilla Kooh, LAMSADE, ESIGETELhaddad@lamsade.dauphine.fr nguilla{@lamsade.dauphine.fr,@esigetel.fr}Amal El-Fallah Seghrouchni, LIPNelfallah@lipn.univ-paris13.frLAMSADE: Laboratoire d'Analyse et de Modélisation des Systèmes pour l'Aide à la Décision. UPRESA 7024, Université Paris-Dauphine,Place du Maréchal De Lattre de Tassigny, F-75775 Paris Cedex 14, France.LIPN: Laboratoire d'informatique de l'Université Paris-Nord. UPRESA 7030, Institut Galilée, Av. J.-B. Clément, F-93430 Villetaneuse.ESIGETEL: Ecole Supérieure d'Informatique et de Génie des Télécommunications, 1 rue port de Valvins 77215 Fontainebleau-Avon.Abstract� We propose a consensus protocol for widearea networks (WAN) composed of interconnected localnetworks. We follow the approach initiated by Chandraand Toueg, based on unreliable failure detectors for asyn-chronous systems. We introduce a new detector class re-lated to WAN properties similar to the detector of class S.The main new functionality of our detector is the ability totest the failure of a domain via a broadcast address. Thealgorithm described in this paper, allows each local networkto apply its own decision strategy for the local proposedvalue. After proving the correctness of our algorithm, wewill show that the number of exchanged messages is oneorder less than that of the original algorithm.Keywords�Consensus, WAN, Broadcast Address, Unreli-able Failure DetectorsI IntroductionMost dependable services in distributed systems rely onsome kind of agreement. The consensus problem is con-sidered as a general paradigm for agreement. Althougha huge number of algorithms have been de�ned, most ofthem are based on mutual knowledge of the participants.Fault-tolerant systems often require means by which inde-pendent processors or processes can reach an exact mutualagreement [1] or Byzantine agreement [2]. In order to ob-tain such an agreement, the consensus paradigm has beenintroduced by several authors ([3] [4] [5] etc). As pointedout in [6], consensus is not only interesting from a theo-retical point of view but it has numerous applications infault-tolerant distributed systems.Roughly speaking, a consensus protocol enables a systemof processes, in which some may be faulty, to reach agree-ment.In the absence of faults, attaining a satisfactory mutualagreement is an easy matter. However this hypothesis isunrealistic in distributed systems. So the model of suchsystems must include more general assumptions on theirbehavior. The usual alternative assumptions are, on theone hand, the delay of the communications and computa-tions (synchronous versus asynchronous) and, on the other*Work partially supported by a Franco-Morocco Inte-grated Action Num. : 97/074/SI/R1

hand, the kind of faults (crash failures versus byzantinefailures).In purely asynchronous systems, Fisher et al [4] have shownthe impossibility to solve the consensus problem even with,at most, one faulty process. The idea of the proof is thatit is impossible to safely distinguish a crashed process froma very slow one. In order to circumvent this impossibilityresult, new models have been introduced by strengtheningthe assumptions about the environment :� Di�erent partially synchronous models are de�ned de-pending on the ful�llment of �ve basic criteria for syn-chronicity [7] [8]. In this approach, the authors exhibitthe minimal combinations that are enough to solve theconsensus problem.� The processes of timed asynchronous models manage alocal clock and, by restricting the mutual behavior ofthe clocks, during stable and unstable periods, algo-rithms are again available [9].� The processes of asynchronous system models, with un-reliable failure detectors, test the failure of other pro-cesses by a "black-box" mechanism which guaranteessome accuracy and completeness properties. For eachclass of Chandra and Toueg failure detectors [10], analgorithm is de�ned.In all of these approaches, the correctness of algorithmsmay depend on the number of faults.However, most of the numerous algorithms which solve theconsensus are not designed for wide area networks. Ourmain motivation is to tackle a large scale distributed sys-tem that could be developed on environments such as Inter-net. Indeed, Internet provides opportunities and challengesas infrastructure for collaborative distributed applications[11]. In such systems, an agreement could be necessary be-tween faraway local networks of processes.Our approach is based on :� A partition of processes in local area networks (LANs)where local communications are point to point insidea LAN and where distant communications betweenLANs are "anonymous" via broadcast adresses,� Unreliable failure detector associated with any process.

This detector enables to test the failure of another pro-cess in the same LAN, or the global failure of anotherLAN. This unreliable failure detector, called Ŝ, hasproperties similar to the S detector of Chandra andToueg.We develop a consensus algorithm with the goals of en-abling local strategies to decide values, reducing the num-ber of communications (and especially the far communi-cations) and using anonymous communications betweenLANs. The principles of the new protocol are twofold. At�rst, the LANs - each LAN represented by its current nonfaulty processes - simulate the original protocol. Moreover,within any LAN, the processes apply again the original pro-tocol during each macrostep of the global protocol in orderto guarantee consistency of processes' states and actions.In addition to the initial goals, it appears that our algo-rithm produces less messages than the original one.To describe our consensus protocol for wide area networks,we organize this paper in �ve sections. Section two presentsthe consensus problem and the asynchronous system modelwith unreliable failure detectors. Section three details oursystem model emphasizing the hypotheses on the detec-tors. Section four describes the "WAN" consensus, sketchesa proof of its correctness and evaluates its complexity innumber of messages. In section �ve we present practicaldomains where it could be applied and some possible ex-tensions of this work.II Solving the consensus problem withunreliable failure detectorsThe consensus problem has been initiated by Pease etal [3], and solved in synchronous systems with Byzantinefailures by Lamport et al [12] [13]. They consider that pro-cesses fail by crashing and communicate only by two-partymessages. We describe informally a consensus protocol asfollows: at the beginning of the protocol each process isgiven an input value and at the end, the non-crashed pro-cesses must have decided on a common output value be-longing to the set of input values.This problem is de�ned more precisely by four properties :� Validity: if a process decides a value then this valuemust have been proposed by some process.� Integrity: a process decides at most once.� Agreement: no two correct processes decide di�erentvalues.� Termination: every correct process eventually decidessome value.Uniform Consensus Problem is characterized by the sameproperties except that the Agreement property is substi-tuted by the Uniform agreement property : no two pro-cesses (crashed or not) decide di�erently. In [14] it is dis-cussed why uniformity is important for recovery. Indeed,the algorithm presented in this paper ful�lls the Uniformagreement property.The unsolvability of consensus problem in asynchronousdistributed systems is mainly due to the impossibility todetect failures in a complete and accurate way in suchsystem. So Chandra and Toueg introduce the unreliable

failure detectors. They pointed out that there are two un-desirable behaviors for a detector : not detecting a faultyprocess and suspecting a correct process. One way to con-trol the detectors is to require a kind of completeness (i.e.detecting a faulty processing) and accuracy (i.e. not sus-pecting a correct process). There are two parameters forthe properties leading to eight classes of detectors :� Strongness (Weakness) : all (one) detectors ful�ll(s)the property.� Permanent (Eventual) : the detector permanently(eventually) ful�lls the property.We give below two examples of properties which character-ize the S detectors class :� Strong Completeness: Eventually every faulty par-ticipant is permanently suspected by every correct par-ticipant.� Weak Accuracy: There is a correct participant thatis never suspected.NotationsStrong:! St; Weak:! We;Accuracy ! A; Completeness ! C;..... St A We A 3 (St A) 3 (We A)St C P S 3 P 3 SWe C Q W 3 Q 3 WFigure 1: Table of failure detectors classes.Chandra and Toueg show that strong completeness can beachieved by weak completeness. So there remain only fourrelevant classes : 1) -the perfect detector class P for whichthe consensus problem is trivial, 2)-the 3S detector whichis proved in [15] to be the weakest in solving the consensusproblem (with the additional constraint that a majorityof processes remain correct) and 3) 4) two intermedi-ate classes (S and 3P). To solve 3P class, one needs touse the algorithm for 3S class while a speci�c algorithmis proposed for the S class. Moreover, this algorithm hasthe advantages that the number of messages exchanged isbounded and that it works for at least one correct process.Our solution for WANs is based on Chandra and Toueg al-gorithm ("Propose") given in Appendix A. This algorithmproceeds in n rounds where n is the number of processes.Each process pmaintains a vector of values Vp (one per pro-cess) initialized by its own value for its item and by the nullvalue for the other items. In the �rst round, each correctprocess broadcasts its initial vector and in the next roundsit only relays (by broadcasting) the new values received atthe previous round. According to the �rst n � 1 roundsand due to the class S properties, all correct processes re-ceive at least all the values received by the non-suspectedcorrect process (in the current execution). Thus in the lastround, they exchange their vector and update it (item byitem) with the least de�ned value. Their vectors are thusall identical to the vector of the non-suspected correct pro-cess and include at least one non-null value (the input valueof the non-suspected correct process). They make decisionby applying any prede�ned strategy.

III The conceptual frameworkWe consider an environment E composed of a set of do-mains :E = (S1; :::; Sg; :::; SG) with G the number of domains.Each domain Sg includes a �xed number of processes :Sg = fP(g;1); :::; P(g;p); :::; P(g;Ng)} where P(g;p) denotesprocess p of Sg , and Ng is the number of processes of thedomain Sg.Each P(g;p) has a network address known by the processesof Sg and each domain Sg maintains a broadcast addressknown by the processes of the other domains. Subse-quently, P(g;p) (resp. Sg) will denote both the process (resp.the domain) and its network address (resp. its broadcastaddress).We consider an asynchronous system where underlyingcommunication network is reliable but with no limit to thetransit delay. Thus, it does not lose, generate or garblemessages. Each process of a domain can both communi-cate with the other members of its domain through thenetwork addresses or send a message to all the membersof another domain through the broadcast address of thisdomain.In our model, a process is correct or crashed (in this casewe say that it is faulty). We do not cover the case of Byzan-tine failure.Any process has a WAN failure detector for testing the pro-cesses of its own domain or the other domains. It cannottest individually the failure of remote processes (let us re-call that it does not even know their network addresses).Our failure detection model Ŝ relies on the class S of un-reliable failure detectors [10] characterized by strong com-pleteness and weak accuracy properties (see previous sec-tion).There are two ways to address the failure question in theset of domains with respect to internal and external pointof view of each domain:� A member of a domain can be suspected by the othermembers of its domain. In the case of communicationwithin a domain, the failure detector Ŝ has the samebehavior as the class S of Chandra-Toueg's unreliablefailure detectors.� In an inter-domains communications context, a broad-cast address becomes unreachable if and only if allof the domain members are faulty. If all of thesemembers are crashed, the domain is said to befaulty, otherwise we say that the domain is correct.The Wide Failure Detector (WFD) can be seen as an im-plementation of our class �S failure detector. It acts as ifeach process maintains two failure detectors: in the case ofinternal communication it acts like a Member Failure De-tector (MFD) to inspect other members. And in the con-text of communications between sites, it acts as a DomainFailure Detector (DFD) on a domain address to control ifsome domain is not operational. We do not discuss howthe DFD monitoring can be achieved since it is out of thescope of this paper.The properties that describe the wide unreliable failure de-tector class Ŝ are explained as follows.

- Wide Weak Accuracy :� In each domain, there exists at least one correct mem-ber which is never suspected as long as the domainremains non-faulty.� In the environment E, there is a correct domain whichwill never be suspected by any member of E.- Wide Strong Completeness :� Each faulty member of a domain is eventually sus-pected by any correct member of this domain.� In the environment, each faulty domain will eventuallybe suspected by any correct domain.IV Wide consensus: Algorithm, proof andcomplexityIV.A General description of the protocolThe basic idea of the algorithm (LocalConsensus) is de-scribed in four phases:Phase 0: each domain chooses its value by the localconsensus procedure executed by each member of thedomain. Note that the LocalConsensus is like the Pro-pose procedure of Chandra-Toueg's algorithm, exceptthat :� the proposed value (i.e. the �rst parameter) is nowthe current vector of knowledge of the domains val-ues,� there is a second parameter which distinguishes dif-ferent executions of this function (all of the processesmessages will be stamped with this parameter).This value will be proposed within local consensus asthe domain value in the wide consensus protocol.Phase 1: G � 1 asynchronous rounds are proceededby each process of any domain. Each process of a do-main waits for only the �rst message coming from eachdomain. In addition, in each round, an additional lo-cal consensus is executed to ensure that in the nextround, the domain's members will send the same vec-tor of values . This guarantees consistency of actionsinside a domain.Phase 2: The goal of this phase is to ensure that allmembers of the whole set of domains will have thesame vector of knowledge (wide consistency). It isclosed to the phase of the Propose algorithm and itdoes not require additional local consensus.Phase 3 proceeds to make a global decision since atthis step, all correct processes share the same vector.IV.B The algorithmIV.B.1 Data structureWe consider the point of view of the process p of a do-main g noted P(g;p) or more simply (g,p).� ADP is the list of all domains participating in the"WAN" consensus;� V(g;p) is a vector of the domains values, containing ini-tially for domain g the value proposed by member p,and for the other domains the null value (?);� 4(g;p) is a vector of new values received during the cur-rent round which will be sent to other G� 1 domains.Initially 4(g;p) will be set to V(g;p)

� Messages is an array indexed by rounds containing allcorrect domains messages received at the correspond-ing round in phase 1 of the algorithm. (a domainmessage is the �rst message received from thisdomain).� LastMessage variable is used to save the messages re-ceived by a member of a domain in phase 2 of thealgorithm.� Two communication primitives are used :- Send (r(g;p);4(g;p); (g; p)) to ADP means that at around r, the member p of the domain g sends thevector 4(g;p) to all the anonymous addresses of thedomains.- Received(r(g;p),4(g0;p0),(g',p')) means that at around r, the member p of domain g receives thevector 4(g0 ;p0) sent by a process (g',p') of domaing'.� LocalConsensus(4(g;p), r(g;p)) means that duringany round r(g;p)process p of domain g proposed as in-put value its vector 4(g;p) for the local consensus andthe result is put into the same vector.� Max(V(g;p) ,4(g;p)) function compares the two vectorscomponent by component and takes the most de�nedvalue. (Let us note that there can be no con�ict be-tween equally de�ned values).Example :Max(� V(g;p);?; V(g0;p0);?�4;�?; ; V(g00;p00); V(g0;p0);?�4gives � V(g;p); V(g00;p00); V(g0;p0);?�4� GlobalDecisionStrategy is a function known by allprocesses in the environment. For instance it can bethe one included in Chandra and Toueg algorithm. Itallows all processes to take the same global decisionvalue relying on the same vector of domains values.Each process p of each domain g executes the algorithmbelow.WANConsensus(InputValue)V(g;p) �?;?; :::;?�G/*V(g;p):Vector of proposed values maintained by m*/Phase 0 (local):/* Executed by each member m of a domain g*/0.1 V(g;p)[g] InputV alue0.2 /* Each g chooses a value*/0.3 V(g;p) LocalConsensus(V(g;p), 0)0.4 4(g;p)[Sg] V(g;p)Phase 1 :/*G� 1 asynchronous rounds are proceeded*/1.1 For r(g;p) 1 To G� 1 Do1.2 Send (r(g;p);4(g;p); (g; p)) To (ADPng) [(g; p)1.3 Wait Until [8g0 2 ADP , 9p0 2 g0Received(r(g;p),4(g0;p0),(g',p'))Or g' 2WFD]/* Query the Wide Failure Detector */

1.4 Messages(g;p) [r(g;p)] f((r(g; p);4(g0;p0); (g0; p0))|Received(r(g;p);4(g0;p0); (g0; p0))}/*The Wait statement is non-blocking since eachmember of a domain waits for only one message ofa domain or it suspects this domain*/1.5 4(g;p) �?;?; :::;?�G1.6 For k 1 To G1.7 If V(g;p)[k] =? And 9(r(g;p);4(g0;p0);(g0;p0)2Messages(g;p) [r(g;p)])1.8 Such that 4(g0 ;p0)[k] 6=? Then1.9 4(g;p)[k] 4(g0;p0)[k]1.10 EndFor1.11 LocalConsensus(4(g;p), r(g;p))/* Executed since some members of the same do-main would received di�erent values*/1.12 V(g;p) Max(V(g;p) ,4(g;p))/* The new V(g;p) is updated by all values thatdi�er of ? taken in V(g;p) and 4(g;p)*/1.13 EndForPhase 22.1 Send V(g;p) To (ADPng) [(g; p)2.2 Wait Until [8g0 2 ADP , 9p0 2 g0Received(V(g0;p0))Or g' 2WFD]/* Query the Wide Failure Detector */2.3 LastMessage(g;p) fV(g0;p0)| Received(V(g0;p0)}2.4 For k 1 To G2.5 If 9V(g0;p0) 2 LastMessage(g;p)WithV(g0;p0)[k] =? Then2.6 V(g;p)[k] ?2.7 EndForPhase 33.1 GlobalValue = GlobalStrategy(V(g;p))Figure 2: Solving consensus in WAN with the classdetector Ŝ.IV.C Proof of the consensus propertiesWe follow the same lines as the Chandra and Touegproof. We only sketch the proof of the algorithm above.The reader can refer to [10] for more detailsResult 1: No process is blocked in a wait statement.Suppose that during a round, a process blocks, andlet us take one such process with the earliest roundpossible. Ŝ behaves like S inside a domain. Thus the

wait statement of local consensus cannot be the earli-est blocking one. Thus, if the expected process waitson a faulty domain, the detector Ŝ will detect thisdomain, otherwise the domain has at least a correctprocess and this process is not blocked at the previousround (by our choice). So it must have sent its messagein the current round. This message will eventually bereceived. This contradict our hypothesis.Result 2: At the end of each round all processes of anydomain share the same vectors V(g;p) and 4(g;p). Thisis a direct consequence of the local consensus execu-tion.Result 3: At the end of phase 1, each process' V(g;p)vector is more de�ned than the corresponding vectoror any correct process of the non suspected domain,let us call it V(g0;�).Each non-null value of the vector V(g0;�) is obtainedduring some round. If it is not the last round, thisvalue must have been sent and received by the otherprocesses of the other domains. Otherwise, due tothe management of 4(g;p) there is a chain of G� 1di�erent domains which send this value. Thus alldomains (6= g0) must have received this valueResult 4: With "macro-processes" considerations andsince there exists a process in the environment whichis never suspected (Weak accuracy), all processes inthe environment have the same vector. Each processreceives V(g0;�) during phase 2. By result 3 we canstate that all processes have the same vector at theend of phase 2.We can now assert the required properties.� The Validity property is veri�ed. The global non-nullvalue of the vector V(g;p) are the input values proposedby a member of a domain. The related vector at theend of phase 2 has at least one non-null value which isthe one decided at phase 0 by the non-suspected do-main. So every outcome value is a domain value sinceit is a value decided by the LocalConsensus procedure(line 0.3).� The protocol satis�es the Integrity property i.e. eachcorrect member in the environment decides at mostonce (line 3.1).� No two members decide di�erently (Agreement) (line3.1). This is a direct consequence of result 4� Termination condition relies on the completeness prop-erty (the strong form) of the unreliable failure detec-tor. With respect to the reliability of the communica-tion network it can be argued that a correct membereither receives a proposition from a domain by a mes-sage of one of the members of this domain or suspectsthe expected domain. So the wait statement beforeexecuting the two phases Phase 1, Phase 2, are nonblocking. This is a direct consequence of result 1. Con-sequently, the protocol terminates globally.IV.D ComplexityEvaluating the cost of distributed algorithm is not aneasy matter. It can be done by taking into account the

following criteria : the number of messages exchanged, thecommunication steps or latency degree [16] and in real net-works, the termination time. For simplicity, we will con�neour evaluation to the messages exchanged and we will �xthe number of processes inside one domain to be N . G isthe number of domains. Thus, the total number of mem-bers in the environment, is P = GN.In a context without domains (i.e. all members of the en-vironment communicate directly) we obtain the followingevaluations of the cost of the communications (number ofmessages):Without Domains With DomainsG3N3 + G3N3 G2N2(N � 1) +G2N2(G� 1)Figure 2: Evaluation of the number of messages in thetwo cases .Without domains considerations : at phase 1, each of the Pprocesses send P messages (messages sent to all processesincluding itself) in P�1 times (related to the P�1 rounds).And by adding the number of messages sent at phase 2 weapproach P 3 (i.e. G3N3 messages exchanged).With physical partitions, two levels of communication aretaken into account:locally: N3 messages are exchanged due to the localconsensus launched by each member of each domain.So, we have G�N �(N�1)3 for all domains. In phase 1and phase 0, the local consensus procedure is launchedG times. That gives a number of exchanged messagesequal to G � (G(N � 1)3.globally (distant communications): Let us considerphase 1 and phase 2. In G rounds N processes of eachdomain send N � (G � 1) messages. These messagescorrespond to the messages sent to all processes of theenvironment (i.e. to all domains excluding their owndomain (i.e. to G � 1 domains)). That gives aboutG �G �N � (N � (G� 1)).By combining all of these evaluations we obtain the resultsin the table above. As we can remark, the gain is ap-proximately an order of messages exchanged equal to G ininter-domains communications and about an order equalto N communications within a domain. It is clear thatour proposition brings more bene�ts with respect to theexchanged messages. Note that communications betweendomains are more expensive than inside a site. For dis-tributed applications running in a WAN where this kindof consensus is frequently used, our algorithm appears tobe a good alternative since it provides more gains than theoriginal one.V Discussion and some concluding elementsThe signi�cance of wide area networks has increased asthe population of computers connected to them and therange of software supporting their use has grown [17].Due to the development of new technologies such as In-tranet, Internet, it becomes fundamental to think di�er-ently and to conceive protocols which consider parametersor problems arising in such environments. This means, for

instance, conceiving hierarchical algorithms.In this paper we presented a "WAN" consensus protocolthat aims to deal with wide area networks seen as a setof domains of logical or physical components belonging tothese domains by their geographic proximity. This protocoluses a class Ŝ of Wide unreliable Failure Detector . Thisclass can be seen as an adaptation of Chandra and Toueg'sprotocol which solves consensus by using class S of unre-liable failure detectors for such environments. The mainimprovements of our algorithm are :Flexibility since the domains are anonymous and thelocal networks can be di�erent. The protocol workswith only a minimum knowledge of the domains andthe local consensus can be implemented di�erently.Performance with respect to the number of exchangedmessages.Sergent presents in [18] the results she obtained by sim-ulation in two network communication models: Ethernetand FDDI. Her work provides clues for adapting the sys-tem parameters in order to obtain the best performancefor the consensus algorithm in such models . Consideringour approach, local participants (to local consensus) mayuse these "local" parameters. But for "wide" parameters,it remains an open issue. We are going to carry out moreinvestigations in this �eld.The algorithmalso guarantees reliability, availability (forquality of service requirements), and re�nement since a do-main can be partitioned into domains and so forth. Inaddition it deals with real applications involving domaincommunication where agreement protocols are needed. Weplan to implement our class Ŝ, as well as point out the wayto combine di�erent classes of failure detectors for solvingconsensus in a WAN. More precisely, we plan to maintaindi�erent failure detector properties depending on local orremote processes.It is known that Internet provides opportunities and chal-lenges as infrastructure for collaborative distributed appli-cations [11]. In such systems, an agreement could be nec-essary between faraway processes. In distributed comput-ing, several reasons can be mentioned for using our "WAN"Consensus in group context [11] [19] [20] [21] but with phys-ical semantics :� To maintain a share state between domains (physicalgroups) : for fault-tolerance involving relatively smalldomain dimensions or for load balancing.� Groupware : for applications such as teleconferencingor any kind of groupware where the group's member-ship ought to be guaranteed.� "WAN" Consensus will be useful for some Internet ser-vices like the netnews service for distribution of newtypes of messages to newsgroups located in domainsor Internet Request Chat (IRC). It will also be usefulin situations where a decision must be taken in orderto accept or not a type of message. WANConsensuscould also be deeply interesting for the resolution ofsome kind of technical problems such as routing orname resolution problems.� For mobility (or migration) when an agreement is re-

quired among domains before any successive migrationof a particular object.We are now de�ning models of implementation of the unre-liable failure detectors. A comparison will be made betweengeneral implementations of failures detectors and those cus-tomized to consensus algorithms as pointed out in [18],but for Internet environment. These models will be usedfor instance for real cooperative applications with real timeguarantees considerations by taking into account the inher-ent constraints of such environment.References[1] Andrzej Goscinski, Distributed operating systems: the logicaldesign, Addison-Wesley Publishing Compagny Inc., 1991.[2] Pankaj Jalote, Fault tolerance in distributed systems, PTRPrentice Hall, 113 Sylvan Avenue. Englewood Cli�s, New Jersey07632, 1994.[3] M. Pease, R. Shostak, and L. Lamport, �Reaching agreementin the presence of faults�, Journal of ACM., vol. 27, no. 2, pp.228�234, April 1980.[4] Michael J. Fisher, Nancy A. Lynch, and Michael S. Paterson,�Impossibility of distributed consensus with one faulty process�,Journal of ACM., vol. 32, no. 2, pp. 374�382, April 1985.[5] Gabriel Bracha and Sam Toueg, �Asynchronous consensus andbroacast protocols�, Journal of ACM., vol. 32, no. 4, pp. 824�840, Octobre 1985.[6] Rachid Guerraoui and André Shipper, �Consensus : The bigmisunderstanding�, In Proceedings of the IEEE InternationalWorkshop on Future Trends in Distributed Computing Systems(FTDCS'97), Tunis, October 1997.[7] D. Dolev, C. Dwork, and L. Stockmeyer, �On the minimal syn-chrony needed for distributed consensus�, Journal of ACM, vol.34, no. 1, pp. 77�97, January 1987.[8] C. Dwork, N. Lynch, and L. Stockmeyer, �Consensus in thepresence of partial synchrony�, Journal of ACM, vol. 35, no. 2,pp. 288�323, April 1988.[9] Christof Fetzer and Flaviu Cristian, �On the possibility of con-sensus in asynchronous systems�, Proceedings of the 1995 paci�cRim International Symposium on fault-tolerant systems, Decem-ber 1995.[10] T. D. Chandra and Sam Toueg, �Unreliable failure detectors forreliable distributed systems�, Journal of the ACM, vol. 43, no.2, pp. 225�267, 1996.[11] O. Babaoglu and A. Shipper, �On group communication in large-scale distributed systems�, Operating systems review, Journal ofACM, vol. 29, no. 1, pp. 62�67, January 1995.[12] L. Lamport and M. Pease R. Shostak, �The byzantine generalsproblem.�, ACM Trans. Program. lang. Syst., vol. 4, no. 3, pp.52�78, July 1982.[13] L. Lamport andM.J Fisher, �Byzantine generals and transactioncommit protocols.�, Technical report, vol. OP. 62. SRI Interna-tional, Menlo Park, Calif, 1982.[14] Michel Raynal, �Fault-tolerant distributed systems: a modu-lar approach to the non-blocking atomic commitment problem�,Rapport de recherche INRIA Num. 2973, February 1997.[15] T. D. Chandra and Sam Toueg, �The weakest failure detectorsfor solving consensus�, In Proceedings of the 11th the ACMSymposium on Principles of Distributed Computing, pp. 147�158, 1992.[16] A.Schiper, �Early consensus in an asynchronous system with aweak failure detector�, Dsitributed Computing, vol. 10, no. 3,pp. 149�157, April 1997.[17] G. Coulouris, J. Dollimore, and T. Kindberg, Distributed Sys-tems: concepts and design, Second Edition. Addisson-WesleyPublishing Compagny Inc., 1994.[18] Nicole Sergent, Soft real-time analysis of asynchronous agree-ment algorithms using petri nets, PhD thesis, Départementd'informatique, Ecole polytechnique de Lausanne, 1998.[19] Kenneth P. Birman, Robert Cooper, and Barry Gleeson, De-sign Alternatives for process group membership and multicast,vol. Reliabble DistributedComputing with Isis Tooklit, pp. 109�132, IEEE Computer Science Society Press, 10662 Los VaquerosCircle PO Box 3014 Los Alamitos, CA 90720-1264, 1994.

[20] Silvano Ma�eis, �Adding group communication and fault-tolerance to corba�, Proceedings of the USENIX Conference onObjected Oriented Technologies, Monterey, CA,, June 1995.[21] Silvano Ma�eis, �The object group design pattern�, Proceedingsof the USENIX Conference on Objected Oriented Technologies,Toronto, June 1996. AppendixAChandra and Toueg's algorithm: solving consensususing any detector D 2 SWe have n processes participating. And each process exe-cutes the following protocol:The algorithmproceeds in n rounds; n is the number of pro-cesses. Each process p maintains a vector of values Vp (oneper process) initialized by its own value for its item. Theother items are initialized with null value ?. In the �rstround, each correct process broadcasts its initial vector.In the next rounds it broadcasts the new values receivedat the previous round. By the �rst n � 1 rounds, due tothe class S properties, all correct processes receive at leastall the values received by the non-suspected correct pro-cess (in the current execution). So in the last round, theyexchange their vector and update it (item by item) withthe least de�ned value. Their vectors have the same val-ues than the non-suspected correct process's vector. Thesevectors have at least one non-null value (the input valueof the non-suspected correct process). At the end of theprotocol all correct processes decide by applying the pre-de�ned strategy (the �rst non-null item).Procedure Propose(vp){Vp �?;?; :::;?�n{ p's estimate of the proposed values }Vp[p] vp4p VpPhase 1 :{asynchronous rounds rp; 1 � rp � n� 1}For rp 1 To n� 1 DoSend (rp;4p; p) To allWait Until [8q : Received(rp;4q; q) Or q 2 Dp]{Query the failure detector }msgsp [rp] f(rp;4q; q) | Received(rp;4q; q)}4p �?;?; :::;?�nFor k 1 To nIf Vp[k] =? And 9(rp;4q; q) 2 msgsp [rp])With 4q[k] 6=? ThenVp[k] 4q[k]4p[k] 4q[k]EndForEndForPhase 2

Send Vp To AllWait Until 8 q: Received(Vq)Or q 2 Dp /* Query the failure detector */lastmsgsp fVq| Received(Vq}For k 1 To nIf 9Vp 2 lastmsgsp With Vq[k] =? ThenVp[k] ?EndForPhase 3Decide(�rst non-? component of Vp)}

