

A Consens

us Protocol

for Wide Area Networks™

Serge HADDAD, LAMSADE
haddad@lamsade.dauphine. fr

Francois NGUILLA KOOH, LAMSADE, ESIGETEL
nguilla{ @lamsade.dauphine.fr, @esigetel.fr}

Amal EL-FALLAH SEGHROUCHNI, LIPN
elfallah@lipn.univ-paris13.fr

LAMSADE: Laboratoire d’Analyse et de Modélisation des Systémes pour I’Aide 4 la Décision. UPRESA 7024, Université Paris-Dauphine,
Place du Maréchal De Lattre de Tassigny, F-75775 Paris Cedex 14, France.
LIPN: Laboratoire d’informatique de 1’'Université Paris-Nord. UPRESA 7030, Institut Galilée, Av. J.-B. Clément, F-93430 Villetaneuse.
ESIGETEL: Ecole Supérieure d’Informatique et de Génie des Télécommunications, 1 rue port de Valvins 77215 Fontainebleau-Avon.

Abstract— We propose a consensus protocol for wide
area networks (WAN) composed of interconnected local
networks. We follow the approach initiated by Chandra
and Toueg, based on unreliable failure detectors for asyn-
chronous systems. We introduce a new detector class re-
lated to WAN properties similar to the detector of class S.
The main new functionality of our detector is the ability to
test the failure of a domain via a broadcast address. The
algorithm described in this paper, allows each local network
to apply its own decision strategy for the local proposed
value. After proving the correctness of our algorithm, we
will show that the number of exchanged messages is one
order less than that of the original algorithm.

Keywords— Consensus, WAN, Broadcast Address, Unreli-
able Failure Detectors

I INTRODUCTION

Most dependable services in distributed systems rely on
some kind of agreement. The consensus problem is con-
sidered as a general paradigm for agreement. Although
a huge number of algorithms have been defined, most of
them are based on mutual knowledge of the participants.
Fault-tolerant systems often require means by which inde-
pendent processors or processes can reach an exact mutual
agreement [1] or Byzantine agreement [2]. In order to ob-
tain such an agreement, the consensus paradigm has been
introduced by several authors ([3] [4] [5] etc). As pointed
out in [6], consensus is not only interesting from a theo-
retical point of view but it has numerous applications in
fault-tolerant distributed systems.

Roughly speaking, a consensus protocol enables a system
of processes, in which some may be faulty, to reach agree-
ment.

In the absence of faults, attaining a satisfactory mutual
agreement 1s an easy matter. However this hypothesis is
unrealistic in distributed systems. So the model of such
systems must include more general assumptions on their
behavior. The usual alternative assumptions are, on the
one hand, the delay of the communications and computa-
tions (synchronous versus asynchronous) and, on the other

*Work partially supported by a Franco-Morocco Inte-
grated Action Num. : 97/074/SI/R1

hand, the kind of faults (crash failures versus byzantine
failures).

In purely asynchronous systems, Fisher et al [4] have shown
the impossibility to solve the consensus problem even with,
at most, one faulty process. The idea of the proof i1s that
it is impossible to safely distinguish a crashed process from
a very slow one. In order to circumvent this impossibility
result, new models have been introduced by strengthening
the assumptions about the environment :

o Different partially synchronous models are defined de-
pending on the fulfillment of five basic criteria for syn-
chronicity [7][8]. In this approach, the authors exhibit
the minimal combinations that are enough to solve the
consensus problem.

o The processes of timed asynchronous models manage a
local clock and, by restricting the mutual behavior of
the clocks, during stable and unstable periods, algo-
rithms are again available [9].

o The processes of asynchronous system models, with un-
reliable failure detectors, test the failure of other pro-
cesses by a "black-box" mechanism which guarantees
some accuracy and completeness properties. For each
class of Chandra and Toueg failure detectors [10], an
algorithm is defined.

In all of these approaches, the correctness of algorithms
may depend on the number of faults.

However, most of the numerous algorithms which solve the
consensus are not designed for wide area networks. Our
main motivation is to tackle a large scale distributed sys-
tem that could be developed on environments such as Inter-
net. Indeed, Internet provides opportunities and challenges
as infrastructure for collaborative distributed applications
[11]. In such systems, an agreement could be necessary be-
tween faraway local networks of processes.

Our approach is based on :

+ A partition of processes in local area networks (LANS)
where local communications are point to point inside
a LAN and where distant communications between
LANSs are "anonymous" via broadcast adresses,

o Unreliable failure detector associated with any process.

This detector enables to test the failure of another pro-
cess 1n the same LAN| or the global failure of another
LAN. This unreliable failure detector, called S‘, has
properties similar to the S detector of Chandra and
Toueg.
We develop a consensus algorithm with the goals of en-
abling local strategies to decide values, reducing the num-
ber of communications (and especially the far communi-
cations) and using anonymous communications between
LANs. The principles of the new protocol are twofold. At
first, the LANs - each LAN represented by its current non
faulty processes - simulate the original protocol. Moreover,
within any LAN, the processes apply again the original pro-
tocol during each macrostep of the global protocol in order
to guarantee consistency of processes’ states and actions.
In addition to the initial goals, it appears that our algo-
rithm produces less messages than the original one.
To describe our consensus protocol for wide area networks,
we organize this paper in five sections. Section two presents
the consensus problem and the asynchronous system model
with unreliable failure detectors. Section three details our
system model emphasizing the hypotheses on the detec-
tors. Section four describes the "WAN" consensus, sketches
a proof of its correctness and evaluates its complexity in
number of messages. In section five we present practical
domains where it could be applied and some possible ex-
tensions of this work.

II SOLVING THE CONSENSUS PROBLEM WITH
UNRELIABLE FAILURE DETECTORS

The consensus problem has been initiated by Pease et
al [3], and solved in synchronous systems with Byzantine
failures by Lamport et al [12][13]. They consider that pro-
cesses fail by crashing and communicate only by two-party
messages. We describe informally a consensus protocol as
follows: at the beginning of the protocol each process is
given an input value and at the end, the non-crashed pro-
cesses must have decided on a common output value be-
longing to the set of input values.

This problem is defined more precisely by four properties :

o Validity: if a process decides a value then this value

must have been proposed by some process.

o Integrity. a process decides at most once.

o Agreement: no two correct processes decide different

values.

o Termination: every correct process eventually decides

some value.

Uniform Consensus Problem is characterized by the same
properties except that the Agreement property is substi-
tuted by the Uniform agreement property : no two pro-
cesses (crashed or not) decide differently. In [14] it is dis-
cussed why uniformity is important for recovery. Indeed,
the algorithm presented in this paper fulfills the Uniform
agreement property.

The unsolvability of consensus problem in asynchronous
distributed systems is mainly due to the impossibility to
detect failures in a complete and accurate way in such
system. So Chandra and Toueg introduce the unreliable

failure detectors. They pointed out that there are two un-
desirable behaviors for a detector : not detecting a faulty
process and suspecting a correct process. One way to con-
trol the detectors is to require a kind of completeness (i.e.
detecting a faulty processing) and accuracy (i.e. not sus-
pecting a correct process). There are two parameters for
the properties leading to eight classes of detectors :

o Strongness (Weakness) : all (one) detectors fulfill(s)
the property.
o Permanent (Eventual) the detector permanently

(eventually) fulfills the property.

We give below two examples of properties which character-
ize the S detectors class :

¢ Strong Completeness: Eventually every faulty par-
ticipant is permanently suspected by every correct par-
ticipant.

o Weak Accuracy: There is a correct participant that
1s never suspected.

Notations
Strong:— St; Weak:— We;
Accuracy — A; Completeness — C;

..... StA | WeA | O (StA)] O (WeA4)
StC | P S O P oS
WeC| Q | W > Q oW

Figure 1: Table of failure detectors classes.

Chandra and Toueg show that strong completeness can be
achieved by weak completeness. So there remain only four
relevant classes : 1) -the perfect detector class P for which
the consensus problem is trivial, 2)-the &S detector which
is proved in [15] to be the weakest in solving the consensus
problem (with the additional constraint that a majority
of processes remain correct) and 3) 4) two intermedi-
ate classes (S and OP). To solve OP class, one needs to
use the algorithm for &S class while a specific algorithm
is proposed for the S class. Moreover, this algorithm has
the advantages that the number of messages exchanged is
bounded and that it works for at least one correct process.
Our solution for WANSs is based on Chandra and Toueg al-
gorithm (" Propose™) given in Appendix A. This algorithm
proceeds in n rounds where n is the number of processes.
Each process p maintains a vector of values V,, (one per pro-
cess) initialized by its own value for its item and by the null
value for the other items. In the first round, each correct
process broadcasts its initial vector and in the next rounds
it only relays (by broadcasting) the new values received at
the previous round. According to the first n — 1 rounds
and due to the class S properties, all correct processes re-
ceive at least all the values received by the non-suspected
correct process (in the current execution). Thus in the last
round, they exchange their vector and update it (item by
item) with the least defined value. Their vectors are thus
all identical to the vector of the non-suspected correct pro-
cess and include at least one non-null value (the input value
of the non-suspected correct process). They make decision
by applying any predefined strategy.

II1 THE CONCEPTUAL FRAMEWORK

We consider an environment £ composed of a set of do-
mains :
E = (5,....5,...,5g) with G the number of domains.
Each domain S, includes a fixed number of processes :
Sy = APy Plgp)s - Pign,t where Py denotes
process p of Sy, and N, is the number of processes of the
domain 5.
Each P, ;) has a network address known by the processes
of Sy and each domain S; maintains a broadcast address
known by the processes of the other domains. Subse-
quently, Py ») (resp. Sy) will denote both the process (resp.
the domain) and its network address (resp. its broadcast
address).
We consider an asynchronous system where underlying
communication network is reliable but with no limit to the
transit delay. Thus, it does not lose, generate or garble
messages. Each process of a domain can both communi-
cate with the other members of its domain through the
network addresses or send a message to all the members
of another domain through the broadcast address of this
domain.
In our model, a process is correct or crashed (in this case
we say that it is faulty). We do not cover the case of Byzan-
tine failure.
Any process has a WAN failure detector for testing the pro-
cesses of its own domain or the other domains. It cannot
test individually the failure of remote processes (let us re-
call that it does not even know their network addresses).
Our failure detection model S relies on the class S of un-
reliable failure detectors [10] characterized by strong com-
pleteness and weak accuracy properties (see previous sec-
tion).
There are two ways to address the failure question in the
set of domains with respect to internal and external point
of view of each domain:

o A member of a domain can be suspected by the other
members of its domain. In the case of communication
within a domain, the failure detector S has the same
behavior as the class S of Chandra-Toueg’s unreliable
failure detectors.

¢ In an inter-domains communications context, a broad-
cast address becomes unreachable if and only if all
of the domain members are faulty. If all of these
members are crashed, the domain is said to be
faulty, otherwise we say that the domain is correct.

The Wide Failure Detector (WFD) can be seen as an im-
plementation of our class S failure detector. Tt acts as if
each process maintains two failure detectors: in the case of
internal communication it acts like a Member Failure De-
tector (MFD) to inspect other members. And in the con-
text of communications between sites, it acts as a Domain
Failure Detector (DFD) on a domain address to control if
some domain is not operational. We do not discuss how
the DFD monitoring can be achieved since it is out of the
scope of this paper.

The properties that describe the wide unreliable failure de-
tector class S are explained as follows.

- Wide Weak Accuracy :
¢ In each domain, there exists at least one correct mem-
ber which is never suspected as long as the domain
remains non-faulty.
o In the environment E, there is a correct domain which
will never be suspected by any member of E.
- Waide Strong Completeness :
o Each faulty member of a domain is eventually sus-
pected by any correct member of this domain.
¢ In the environment, each faulty domain will eventually
be suspected by any correct domain.

IV WIDE CONSENSUS: ALGORITHM, PROOF AND
COMPLEXITY

IV.A General description of the protocol

The basic idea of the algorithm (LocalConsensus) is de-
scribed in four phases:

Phase 0: each domain chooses its value by the local
consensus procedure executed by each member of the
domain. Note that the LocalConsensus is like the Pro-
pose procedure of Chandra-Toueg’s algorithm, except
that :

— the proposed value (i.e. the first parameter) is now
the current vector of knowledge of the domains val-
ues,

— there is a second parameter which distinguishes dif-

ferent executions of this function (all of the processes

messages will be stamped with this parameter).
This value will be proposed within local consensus as
the domain value in the wide consensus protocol.

Phase 1: (' — 1 asynchronous rounds are proceeded
by each process of any domain. Each process of a do-
main waits for only the first message coming from each
domain. In addition, in each round, an additional lo-
cal consensus is executed to ensure that in the next
round, the domain’s members will send the same vec-
tor of values . This guarantees consistency of actions
inside a domain.

Phase 2: The goal of this phase is to ensure that all
members of the whole set of domains will have the
same vector of knowledge (wide consistency). Tt is
closed to the phase of the Propose algorithm and it
does not require additional local consensus.

Phase 3 proceeds to make a global decision since at
this step, all correct processes share the same vector.

IV.B The algorithm
IV.B.1 Data structure

We consider the point of view of the process p of a do-
main g noted P, ,y or more simply (g,p).

o ADP 1s the list of all domains participating in the
"WAN" consensus;

o Vigpy is a vector of the domains values, containing ini-
tially for domain ¢ the value proposed by member p,
and for the other domains the null value (—);

o A(gp) 18 avector of new values received during the cur-
rent round which will be sent to other G — 1 domains.

Initially A ») will be set to Vi, ;)

o Messages is an array indexed by rounds containing all
correct domains messages received at the correspond-
ing round in phase 1 of the algorithm. (a domain
message is the first message received from this
domain).

o LastMessage variable is used to save the messages re-
ceived by a member of a domain in phase 2 of the
algorithm.

¢ Two communication primitives are used :

- Send (r(y4p), Dgp), (9,P) to ADP means that at a
round r, the member p of the domain g sends the
vector Ay, to all the anonymous addresses of the
domains.

- Received(r(y), Ay py,(g,p7)) means that at a
round r, the member p of domain g receives the
vector Ay, sent by a process (g’,p’) of domain

2

g’

¢+ LocalConsensus(A,), 7(yp)) means that during
any round r(, ,yprocess p of domain g proposed as in-
put value its vector A,) for the local consensus and
the result is put into the same vector.

o Max(V(,,),2,p)) function compares the two vectors
component by component and takes the most defined
value. (Let us note that there can be no conflict be-
tween equally defined values).

FErample :

Max

(= Vigp)s = Vg =7 <= Vg), Vigr pr)s =4
gives < Vig py, Vign prys Vigrpr), =>4

o GlobalDecisionStrategy is a function known by all
processes in the environment. For instance it can be
the one included in Chandra and Toueg algorithm. It
allows all processes to take the same global decision
value relying on the same vector of domains values.

Each process p of each domain g executes the algorithm
below.

WAN Consensus(InputValue)
Vigp) €<= s —>a
/*Vig,p) Vector of proposed values maintained by m*/

Phase 0 (local):
/¥ Erxecuted by each member m of a domain g*/
0.1 Vigplgl < InputValue
0.2 /* Each g chooses a value*/
0.3 V{gp) «LocalConsensus(V{,), 0)
04 Agp)[Se] < Vigw)

Phase 1 :
/*¥G — 1 asynchronous rounds are proceeded* /
1.1 For r(;) < 1 To G -1 Do
1.2 Send (7(g), Dg,p); (9,p)) To (ADP\g) U (g,p)

1.3 Wait Until [V¢' € ADP,3p' € ¢
Received(r(y,),A g p1),(8'07))
Org € WFD |
/* Query the Wide Failure Detector */

1.4 Messages (g p)[1(g,p)] <
{((rg,p), Dgrpry, (9, 1")
[Received(r(y,p), Dy pn, (9, 9)}
/*¥The Wait statement is non-blocking since each
member of a domain waits for only one message of
a domain or it suspects this domain*/

1.5 A(gyp) L =, — G

1.6 For k<1 To (&

L7 If Vig) [F] =— And 3(r(g), Dgr 1), (0)
€ Messageé;(gyp)[r(gyp))

1.8 Such that A, ,n[k] #= Then

1.9 A(g,p)[k] — A(glypl)[k]

1.10 EndFor

1.11 LocalConsensus(A g 1), 7(4,p))
/* Ezecuted since some members of the same do-
main would received different values* /

1.12 Vig.py ¢ Max(Vig), L)
/¥ The new Vig) is updated by all values that
differ of — taken in Vig,y and Ny p)*/

1.13 EndFor

Phase 2

2.1 Send V(,,) To (ADP\g) U (g,p)

2.2 Wait Until [V¢' € ADP, 3p' € ¢'
Received(V(g,yp,))

Or g’ € WFD]
/* Query the Wide Failure Detector */
2.3 LastMessage(g py <

{V(g',p')| Received(V(g,yp,)}

2.4 Fork « 1 To G
2.5 If Vg pry € Last Message g)
With‘/(glyp/)[k’] =— Then
2.6 Vigp k] &=
2.7 EndFor
Phase 3

3.1 GlobalValue = GlobalStrategy(V(,)

Figure 2: Solving consensus in WAN with the class
detector S'.

IV.C Proof of the consensus properties

We follow the same lines as the Chandra and Toueg

proof. We only sketch the proof of the algorithm above.
The reader can refer to [10] for more details

Result I: No process is blocked in a wait statement.
Suppose that during a round, a process blocks, and
let us take one such process with the earliest round
possible. S behaves like S inside a domain. Thus the

wait statement of local consensus cannot be the earli-
est blocking one. Thus, if the expected process waits
on a faulty domain, the detector S will detect this
domain, otherwise the domain has at least a correct
process and this process is not blocked at the previous
round (by our choice). So it must have sent its message
in the current round. This message will eventually be
received. This contradict our hypothesis.

Result 2. At the end of each round all processes of any
domain share the same vectors V(,) and A,). This
i1s a direct consequence of the local consensus execu-
tion.

Result 3: At the end of phase 1, each process’ V,
vector is more defined than the corresponding vector
or any correct process of the non suspected domain,
let us call it Vig, _y.

Each non-null value of the vector V(4 _) is obtained
during some round. If it 1s not the last round, this
value must have been sent and received by the other
processes of the other domains. Otherwise, due to
the management of A,) there is a chain of G — 1
different domains which send this value. Thus all
domains (# go) must have received this value

Result 4: With "macro-processes" considerations and
since there exists a process in the environment which
is never suspected (Weak accuracy), all processes in
the environment have the same vector. Each process
receives Vi, _) during phase 2. By result 3 we can
state that all processes have the same vector at the
end of phase 2.

We can now assert the required properties.

o The Validity property is verified. The global non-null
value of the vector V(, ,y are the input values proposed
by a member of a domain. The related vector at the
end of phase 2 has at least one non-null value which is
the one decided at phase 0 by the non-suspected do-
main. So every outcome value is a domain value since
it 1s a value decided by the LocalConsensus procedure
(line 0.3).

o The protocol satisfies the Integrity property i.e. each
correct member in the environment decides at most
once (line 3.1).

¢ No two members decide differently (Agreement) (line
3.1). This is a direct consequence of result 4

o Termination condition relies on the completeness prop-
erty (the strong form) of the unreliable failure detec-
tor. With respect to the reliability of the communica-
tion network it can be argued that a correct member
either receives a proposition from a domain by a mes-
sage of one of the members of this domain or suspects
the expected domain. So the wait statement before
executing the two phases Phase 1, Phase 2, are non
blocking. This is a direct consequence of result 1. Con-
sequently, the protocol terminates globally.

IV.D Complexity

Evaluating the cost of distributed algorithm is not an
easy matter. It can be done by taking into account the

following criteria : the number of messages exchanged, the
communication steps or latency degree [16] and in real net-
works, the termination time. For simplicity, we will confine
our evaluation to the messages exchanged and we will fix
the number of processes inside one domain to be N. G is
the number of domains. Thus, the total number of mem-
bers in the environment, is P = GN.

In a context without domains (i.e. all members of the en-
vironment communicate directly) we obtain the following
evaluations of the cost of the communications (number of
messages):

With Domains
G’N?(N — 1)+ G*N?*(G - 1)

Without Domains
G3N3 + G3N3

Figure 2: Evaluation of the number of messages in the
two cases .

Without domains considerations : at phase 1, each of the P
processes send P messages (messages sent to all processes
including itself) in P—1 times (related to the P—1 rounds).
And by adding the number of messages sent at phase 2 we
approach P? (i.e. G3®N?3 messages exchanged).
With physical partitions, two levels of communication are
taken into account:
locally: N3 messages are exchanged due to the local
consensus launched by each member of each domain.
So, we have G'x N * (N —1)3 for all domains. In phase 1
and phase 0, the local consensus procedure is launched
G times. That gives a number of exchanged messages
equal to G * (G(N — 1)3.
globally (distant communications): Let us consider
phase 1 and phase 2. In G rounds N processes of each
domain send N * (G — 1) messages. These messages
correspond to the messages sent to all processes of the
environment (i.e. to all domains excluding their own
domain (i.e. to G — 1 domains)). That gives about
Gx G+ Nx(Nx(G-1)).
By combining all of these evaluations we obtain the results
in the table above. As we can remark, the gain is ap-
proximately an order of messages exchanged equal to G in
inter-domains communications and about an order equal
to N communications within a domain. It is clear that
our proposition brings more benefits with respect to the
exchanged messages. Note that communications between
domains are more expensive than inside a site. For dis-
tributed applications running in a WAN where this kind
of consensus is frequently used, our algorithm appears to
be a good alternative since it provides more gains than the
original one.

V DISCUSSION AND SOME CONCLUDING ELEMENTS

The significance of wide area networks has increased as
the population of computers connected to them and the
range of software supporting their use has grown [17].
Due to the development of new technologies such as In-
tranet, Internet, it becomes fundamental to think differ-
ently and to conceive protocols which consider parameters
or problems arising in such environments. This means, for

instance, conceiving hierarchical algorithms.

In this paper we presented a "WAN" consensus protocol
that aims to deal with wide area networks seen as a set
of domains of logical or physical components belonging to
these domains by their geographic proximity. This protocol
uses a class S of Wide unreliable Failure Detector . This
class can be seen as an adaptation of Chandra and Toueg’s
protocol which solves consensus by using class S of unre-
liable failure detectors for such environments. The main
improvements of our algorithm are :

Flexibility since the domains are anonymous and the
local networks can be different. The protocol works
with only a minimum knowledge of the domains and
the local consensus can be implemented differently.

Performance with respect to the number of exchanged
messages.

Sergent presents in [18] the results she obtained by sim-
ulation in two network communication models: Ethernet
and FDDI. Her work provides clues for adapting the sys-
tem parameters in order to obtain the best performance
for the consensus algorithm in such models . Considering
our approach, local participants (to local consensus) may
use these "local" parameters. But for "wide" parameters,
it remains an open issue. We are going to carry out more
investigations in this field.

The algorithm also guarantees reliability, availability (for

quality of service requirements), and refinement since a do-
main can be partitioned into domains and so forth. In
addition 1t deals with real applications involving domain
communication where agreement protocols are needed. We
plan to implement our class S, as well as point out the way
to combine different classes of failure detectors for solving
consensus in a WAN. More precisely, we plan to maintain
different failure detector properties depending on local or
remote processes.
It is known that Internet provides opportunities and chal-
lenges as infrastructure for collaborative distributed appli-
cations [11]. In such systems, an agreement could be nec-
essary between faraway processes. In distributed comput-
ing, several reasons can be mentioned for using our "WAN"
Consensus in group context [11] [19][20] [21] but with phys-
ical semantics :

+ To maintain a share state between domains (physical
groups) : for fault-tolerance involving relatively small
domain dimensions or for load balancing.

o Groupware : for applications such as teleconferencing
or any kind of groupware where the group’s member-
ship ought to be guaranteed.

o "WAN" Consensus will be useful for some Internet ser-
vices like the netnews service for distribution of new
types of messages to newsgroups located in domains
or Internet Request Chat (IRC). It will also be useful
in situations where a decision must be taken in order
to accept or not a type of message. WANConsensus
could also be deeply interesting for the resolution of
some kind of technical problems such as routing or
name resolution problems.

o+ For mobility (or migration) when an agreement is re-

quired among domains before any successive migration
of a particular object.

We are now defining models of implementation of the unre-
liable failure detectors. A comparison will be made between
general implementations of failures detectors and those cus-
tomized to consensus algorithms as pointed out in [18],
but for Internet environment. These models will be used
for instance for real cooperative applications with real time
guarantees considerations by taking into account the inher-
ent constraints of such environment.

REFERENCES

[1] Andrzej Goscinski, Distributed operating systems: the logical
design, Addison-Wesley Publishing Compagny Inc., 1991.

[2] Pankaj Jalote, Fault tolerance in distributed systems, PTR
Prentice Hall, 113 Sylvan Avenue. Englewood Cliffs, New Jersey
07632, 1994.

[3] M. Pease, R. Shostak, and L. Lamport, “Reaching agreement
in the presence of faults”, Journal of ACM., vol. 27, no. 2, pp.
228-234, April 1980.

[4] Michael J. Fisher, Nancy A. Lynch, and Michael S. Paterson,
“Impossibility of distributed consensus with one faulty process”,
Journal of ACM., vol. 32, no. 2, pp. 374-382, April 1985.

[5] Gabriel Bracha and Sam Toueg, “Asynchronous consensus and
broacast protocols”, Journal of ACM., vol. 32, no. 4, pp. 824—
840, Octobre 1985.

[6] Rachid Guerraoui and André Shipper, “Consensus : The big
misunderstanding”, In Proceedings of the IEEE International
Workshop on Future Trends in Distributed Computing Systems
(FTDCS’97), Tunis, October 1997.

[7] D. Dolev, C. Dwork, and L. Stockmeyer, “On the minimal syn-
chrony needed for distributed consensus”, Journal of ACM, vol.
34, no. 1, pp. 77-97, January 1987.

[8] C. Dwork, N. Lynch, and L. Stockmeyer, “Consensus in the
presence of partial synchrony”, Journal of ACM, vol. 35, no. 2,
pp- 288-323, April 1988.

[9] Christof Fetzer and Flaviu Cristian, “On the possibility of con-

sensus in asynchronous systems”, Proceedings of the 1995 pacific

Rim International Symposium on fault-tolerant systems, Decem-

ber 1995.

T. D. Chandra and Sam Toueg, “Unreliable failure detectors for

reliable distributed systems”, Journal of the ACM, vol. 43, no.

2, pp. 225-267, 1996.

O. Babaoglu and A. Shipper, “On group communication in large-

scale distributed systems”, Operating systems review, Journal of

ACM, vol. 29, no. 1, pp. 62-67, January 1995.

L. Lamport and M. Pease R. Shostak, “The byzantine generals

problem.”;, ACM Trans. Program. lang. Syst., vol. 4, no. 3, pp.

52-78, July 1982.

L. Lamport and M.J Fisher, “Byzantine generals and transaction

commit protocols.”, Technical report, vol. OP. 62. SRI Interna-

tional, Menlo Park, Calif, 1982.

Michel Raynal, “Fault-tolerant distributed systems: a modu-

lar approach to the non-blocking atomic commitment problem”,

Rapport de recherche INRIA Num. 2973, February 1997.

T. D. Chandra and Sam Toueg, “The weakest failure detectors

for solving consensus”, In Proceedings of the 11th the ACM

Symposium on Principles of Distributed Computing, pp. 147—

158, 1992.

A.Schiper, “Early consensus in an asynchronous system with a

weak failure detector”, Dsitributed Computing, vol. 10, no. 3,

pp. 149-157, April 1997.

G. Coulouris, J. Dollimore, and T. Kindberg, Distributed Sys-

tems: concepts and design, Second Edition. Addisson-Wesley

Publishing Compagny Inc., 1994.

Nicole Sergent, Soft real-time analysis of asynchronous agree-

ment algorithms using petri nets, PhD thesis, Département

d’informatique, Ecole polytechnique de Lausanne, 1998.

Kenneth P. Birman, Robert Cooper, and Barry Gleeson, De-

sign Alternatives for process group membership and multicast,

vol. Reliabble Distributed Computing with Isis Tooklit, pp. 109—

132, IEEE Computer Science Society Press, 10662 Los Vaqueros

Circle PO Box 3014 Los Alamitos, CA 90720-1264, 1994.

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20] Silvano Maffeis, “Adding group communication and fault-
tolerance to corba”, Proceedings of the USENIX Conference on
Objected Oriented Technologies, Monterey, CA,, June 1995.

[21] Silvano Maffeis, “The object group design pattern”, Proceedings
of the USENIX Conference on Objected Oriented Technologies,
Toronto, June 1996.

APPENDIX
A

Chandra and Toueg’s algorithm: solving consensus
using any detector D € S

We have n processes participating. And each process exe-
cutes the following protocol:

The algorithm proceeds in n rounds; n is the number of pro-
cesses. Each process p maintains a vector of values V,, (one
per process) initialized by its own value for its item. The
other items are initialized with null value —. In the first
round, each correct process broadcasts its initial vector.
In the next rounds it broadcasts the new values received
at the previous round. By the first n — 1 rounds, due to
the class S properties, all correct processes receive at least
all the values received by the non-suspected correct pro-
cess (in the current execution). So in the last round, they
exchange their vector and update it (item by item) with
the least defined value. Their vectors have the same val-
ues than the non-suspected correct process’s vector. These
vectors have at least one non-null value (the input value
of the non-suspected correct process). At the end of the
protocol all correct processes decide by applying the pre-
defined strategy (the first non-null item).

Procedure Propose(v,)

{

‘/p <=, = T

{ p’s estimate of the proposed values }
Volpl ¢ vp

Lp —Vp

Phase 1 :{asynchronous rounds rp,1 <r, <n—1}
For r, <~ 1 Ton —1 Do
Send (rp, &, p) To all

Wait Until [Vg : Received(rp, Ay, q) Or q € D,
1{Query the failure detector }
msygsp[rp] {(rp, Ng, q) | Received(r,, Ay, q)}
AP N Rt R EE! Rt

Fork <« 1Ton
If Vp[k] =— And 3(ry, Ly,) € msgs,[ry])
With A k] #— Then
Vplk] < Ag[k]
Ap[k] Aglk]

EndFor
EndFor

Phase 2

Send V, To All

Wait Until V q: Received(V})
Or q € D, /* Query the failure detector */
lastmsgs, < {V,| Received(V,}

For k «+ 1 To n
If 3V, € lastmsgs, With V,[k] =— Then
A
EndFor

Phase 3
Decide(first non-— component of V},)

