
Abstract of \Exact and Approximate Algorithms for Partially Observ-able Markov Decision Processes" by Anthony Rocco Cassandra, Ph.D., BrownUniversity, May 1998Automated sequential decision making is crucial in many contexts. Inthe face of uncertainty, this task becomes even more important, thoughat the same time, computing optimal decision policies becomes more com-plex. The more sources of uncertainty there are, the harder the problembecomes to solve. In this work, we look at sequential decision making inenvironments where the actions have probabilistic outcomes and in whichthe system state is only partially observable. We focus on using a modelcalled a partially observable Markov decision process (POMDP) and explorealgorithms which address computing both optimal and approximate policiesfor use in controlling processes that are modeled using POMDPs.Although solving for the optimal policy is PSPACE-complete (or worse),the study and improvements of exact algorithms lends insight into the op-timal solution structure as well as providing a basis for approximate solu-tions. We present some improvements, analysis and empirical comparisonsfor some existing and some novel approaches for computing the optimalPOMDP policy exactly.Since it is also hard (NP-complete or worse) to derive close approxi-mations to the optimal solution for POMDPs, we consider a number ofapproaches for deriving policies that yield sub-optimal control and empiri-cally explore their performance on a range of problems. These approaches



borrow and extend ideas from a number of areas; from the more mathemat-ically motivated techniques in reinforcement learning and control theory toentirely heuristic control rules.
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Chapter 1IntroductionIn a system where a human is the decision maker, the decisions can bebased upon a myriad of factors: knowledge of the immediate circumstances;specialized knowledge; previous experiences about the e�ects of various ac-tions; rules of thumb; established protocols; etc. For many situations, thisapproach works well or at least well enough that no one sees a need to changethe manner in which decisions are made. However, as systems become morecomplex they impose a greater burden on a decision maker, since the variouscomponents and their interactions become more di�cult to reason about.This di�culty only increases in systems where there is a high degree of uncer-tainty. This dissertation concerns itself with making sequences of decisionsin the face of signi�cant uncertainty.One aspect of automated decision making is to ease the burden on thehuman by developing tools that are better able to cope with complex, un-certain processes or that can provide better decisions than their humancounterparts. The �eld of operations research (or) is one of the disciplinesthat has addressed problems from this perspective. A task such as inventory1



2control for a large business has many complex interactions between customerdemand, supply availability and monetary/physical resource limitations, allof which could easily overwhelm even the most dedicated corporate manager.Operations research has provided useful and successful tools to businessesfor making these kinds of decisions.Another aspect of automated decision making is motivated by problemswhere decisions have to be made, but it is not feasible or desirable to have ahuman available to make them. A particular sub-discipline of the arti�cialintelligence (ai) community has focused on automated decision making fromthis perspective. An interplanetary rover on a distant planet may not havetime to communicate with earth-based controllers when it is faced witha navigational decision. With more autonomy, the rover can accomplishmore, which is advantageous both from the �nancial perspective and to thescienti�c goals of the mission.Naturally, regardless of the motivation for seeking automated decisionmaking systems, the same basic problem is being addressed. It is no surprisethat one �nds many connections between areas in or and ai. One area ofai is concerned with the problem of making a sequence of decisions overtime given a model of the system. This area is typically referred to asplanning and roughly corresponds to the problem of optimal control in or.The problems that this thesis addresses fall roughly into the overlap betweenplanning and optimal control.Speci�cally, we are focused on sequential decision tasks where there aretwo major forms of uncertainty: the results of our decisions may not alwayshave the same e�ects; and our perceptions of the system being controlled



3are not always very accurate. We will focus on a speci�c mathematicalmodel that allows both of these forms of uncertainty to be modeled usingprobabilities.The work in the or community has been focused on the underlying the-ory with little emphasis on algorithmic development. The ai communityhas done much to develop algorithms, but often addresses simpli�ed ver-sions of the problems using ad-hoc strategies to patch their algorithms toenable them to handle the more general cases; speci�cally, there is often adeterministic assumption about the domains and dealing with uncertaintyis an afterthought. In this thesis, we take a more algorithmic view of theor research, motivated by work which originated in the ai community, anddevelop algorithms which have a basis in theory and account for uncertaintyin a natural, motivated and consistent manner.Sequential Decision Making ExampleWe will introduce a simple, yet illustrative example of a sequential decisionmaking task which will help motivate the model in Chapter 2. This exampleis based on baseball, but is simple enough that only a vague familiarity withthe sport is required. Appendix A gives a brief explanation of baseball forreaders that are entirely unfamiliar.



4Example We consider a very small portion of the decision making tasksof a baseball manager. In this problem, the manager has to decide whento remove the current pitcher as the game progresses. On any given day,the pitcher may be a favorable choice against a given opposing team, orthe pitcher may be a poor choice.The dynamics of a pitcher's ability and psyche as well as the opposingteam's abilities and psyches are highly complex, so the manager does notnecessarily know for sure whether the particular game's pitching match-up is favorable or not. However, as the game progresses, events duringthe game will provide hints about that day's match-up. Speci�cally, themanager knows when a pitcher has done a good job against a particularbatter (e.g., the batter strikes out) and when they have not (e.g., thebatter hits a home run).This is a sequential decision making process, because as each opponentcomes to bat, the manager must decide whether to let his pitcher pitch, or toreplace the pitcher with someone from his pitching reserves in the bull-pen.There are immediate rewards and costs for any individual outcome, but thelong term e�ects are what is most important; e.g., it is more importantto win the game than to strike out a particular batter. This example isdeliberately over-simpli�ed and does not account for dozens of other factorsthat normally go into a baseball manager's decision, but its simplicity willallow us to illustrate the basic concepts of the model and algorithms muchmore lucidly.ApplicationsNaturally, uncertainty is not limited to the game of baseball and there aremany other real and important problems 1 in which decisions have uncer-tain outcomes and uncertain perceptions of the current state of the system.Below is just a small sample of problems of the type addressed in this thesis.1We do not mean to imply that baseball is not a real and important problem.



5Machine Maintenance A milling machine or lathe producing aircraftparts or a machine for assembling integrated circuits both have a myriad ofinternal components, all of which a�ect the tolerances and general qualityof the parts being produced. However, the state of the internal componentsin the machine is not directly observable. There may be some general pre-dictability based upon the age of the components or the number of operatinghours, but parts wear and fail in a very non-deterministic fashion. Replac-ing the worn components before they produce defective parts is economicallydesirable, but accessing the actual state of the components requires disas-sembling the machine and a loss of revenue while the machine does notproduce parts.The decision task here is to develop a maintenance schedule: when tomanufacture parts, inspect and/or replace internal components. This isnot simply a matter of establishing a schedule such as every Tuesday be-ing internal component inspection day, since the quality of the parts beingproduced provides an indirect, probabilistic observation about the internalcomponents. If a machine is producing predominantly defective componentson Thursday, waiting until Tuesday could cost the company a signi�cantamount of revenue. Similarly, if the machine is still producing perfect partsall day Monday, it will be desirable and it may be possible to continue man-ufacturing parts on Tuesday, thereby saving the inspection costs. There hasbeen a great deal of work using the models addressed in this thesis to addressjust such a problem [106, 99, 105] and we present a speci�c example of thisin Appendix H.3, which we use in evaluating the techniques developed inthis thesis. This inspection, maintenance and repair problem has a broader



6application than simply toward manufacturing machines; developing policiesfor infrastructure systems must also deal with stochastic state transitions(e.g., structural deterioration) and partially observable components (e.g.,surface coatings mask the crucial structural components) [41].Medical Diagnosis Doctors are constantly faced with sequential deci-sions making tasks under uncertainty [46, 125]. They must prescribe medicinesand recommend tests or treatments based upon the internal state of the pa-tient. However, accessing the true internal state of the patient is eitherimpossible or highly undesirable, resulting is signi�cant cost and risk to thepatient. Lab tests provide some indication of the patient's internal state,but these are subject to errors and incur some cost. Additionally, the treat-ments prescribed do not always succeed or have varying results for di�erentpatients. Thus, the state of the system being controlled is only partially ob-servable, though symptoms, lab tests, and the decisions (drugs, operations,etc.) are subject to probabilistic e�ects. Thus, determining good policiesfor patient diagnosis in the face of these uncertainties is a challenging, realand important problem. In addition to these individual patient decision-making tasks, the models used in this thesis are applicable to the higherlevel problem of developing health care system policies [115].Computer Networks Although high-speed computer networks are likelyto make signi�cant bandwidth improvements in the coming years, the im-provements in data storage and computer capabilities will continue to makethe communication channel the major bottleneck in future information pro-



7cessing tasks. Additionally, the amount of information that will be elec-tronically available will continue its explosive growth. There are, and willcontinue to be, a host of important decision making tasks in these do-mains [111, 10]. From routing decisions to distributed database queries,the need to account for uncertainty will be the key to robust systems. Re-gardless of the capacity of the network, the hardware will be prone to failure(e.g., power outages) the network con�guration and the availability of in-formation will change over time. Although there are many hints about thecurrent con�guration of the network, accessing the complete state of thesystem is often unneeded and/or undesirable due to the enormous band-width required to query all components in the network. Given that packetscan get lost or dropped, the e�ects of a routing request or query will notnecessarily have deterministic e�ects. Thus, computer or data networks areonly partially observable and the results of decisions are not deterministic.Good policies for dealing with these uncertainties will translate into moree�cient and productive network applications. We will present a particularlysimple network application in Appendix H.2.Other Domains The examples above are but a small portion of the do-mains where the techniques of this thesis are applicable. Additional appli-cations include: cost control in accounting [56]; corporate structure internalaudit timing [50]; learning processes [57]; teaching strategies [114]; movingtarget search [101]; �shery policies [64]; electric distribution network trou-bleshooting [123]; questionnaire design [128]; behavioral Ecology [77]; andelevator control [32].



8Thesis Outline and SummaryThe remainder of this thesis is organized as follows:Chapter 2 presents the basic model for sequential decision making thatwill be used throughout this thesis. It breaks down roughly into an initialsection that presents a simpler model and a following section which gener-alizes this model to the problems this thesis addresses. There are no newcontributions in this chapter, since its purpose is to provide the generalbackground required for the remainder of the thesis.Chapter 3 discusses exact algorithms for solving problems formulatedwith the model de�ned in Chapter 2. It �rst develops the necessary back-ground and concepts required to understand the nature of the algorithmsand common issues that arise in all of them. The chapter then discussestwo new algorithmic developments, which were jointly developed with otherresearchers, that have better theoretical and empirical properties than thepreviously existing algorithms. Here we present the algorithms, discuss someimplementation concerns and show that they do indeed produce the correctanswers. We conclude this chapter with discussion of some of the previousalgorithms, including an intriguing variation of one algorithm that has pre-viously received little attention, but which has interesting potential to bee�ective in practice.In Chapter 4 we begin by reviewing the existing computational com-plexity results for the class of problems considered in this thesis. Here wesee that a few di�erent algorithms and variations of the algorithms lie inthe same general complexity class. We then proceed with a more detailed



9analysis of the previous chapter's algorithms to more clearly de�ne theirdi�erences. This will show that one of the novel variations developed hereactually has an asymptotic improvement to the other algorithms. This chap-ter then discusses some miscellaneous issues and some minor optimizationsto the algorithms which are only partially explored and developed at thistime. We conclude this chapter with a series of empirical evaluations of thesealgorithms to validate the analysis, connecting the best and worst case com-plexity to some problem instances. We will see that the practice and thetheory coincide nicely for these algorithms.Chapter 5 presents our �rst approach to developing approximate solu-tions for these problems. It uses the techniques from reinforcement learning,shows some new approaches and develops some novel variations on existingapproaches. We then present empirical results showing the potential ben-e�ts of these reinforcement learning schemes and discuss other variationswhich may add to the e�ectiveness of these techniques.Our next approach to developing approximate solutions is discussed inChapter 6 and concerns itself with heuristic approaches. While there is someunderlying theory upon which these are based, it is not nearly as solid asthe reinforcement learning approaches previously presented. Despite theirlack of theoretical guarantees, these heuristics have the advantage of beingextremely simple and fast, making them applicable to much larger problemsthan any of the previous approaches. We then compare and demonstrate thee�ectiveness of these heuristic approaches on a range of problems includingthe real problem of autonomous robot navigation. Aside from the e�ective-ness of these heuristics, we see that we can apply the models considered in



10this thesis to some real applications.We conclude the main part of the thesis with a chapter of conclusions,contributions and future research directions. Following this is an extensiveset of appendices, where some additional ideas and related concepts are dis-cussed. Among them is a novel extension to an interesting class of solutionsto these problems, though at this time it is unclear how useful this extensionwill prove to be.



Chapter 2The ModelIn this section we develop the formal model and review some of the wellknown results pertaining to this model. We use the terms process and systeminterchangeably to refer to the particular problem domain that is representedby the model.The formal model we use is the Markov decision process (mdp) and istreated much more thoroughly in many texts [102, 9]. The model itself isfairly simple and it is only when trying to use these models to determineoptimal behavior that any complications arise. We will �rst introduce asimpler version of the model, then discuss some of the existing theory andresults for this simpler version, and �nally discuss how to extend the mdp tohandle the more general class of problems which this thesis addresses. Theremainder of this thesis will look at algorithms for this more general classof problems, although further generalizations are possible [127, 129].11



122.1 Markov Decision ProcessesWe are concerned with sequential decision problems where there is a need tomake many decisions in the lifetime of the system. We assume that there iseither a discrete, �nite or in�nite, sequence of time points at which we get tomake decisions. It is possible to consider continuous time processes [102, 9],but we will not discuss the issues that arise from this added complexity.Example Each time a batter comes to bat is a decision point. Notethat the \time" points are based more upon logical organization thanupon some �xed increment of a clock.Regardless of the system we are trying to model, we assume that at anygiven decision point in time, t, it is in one of a set of states, S. We will usethe random variable St to represent the state of the system at decision timet.Example The state of the process is whether or not the current pitchingmatch-up is favorable. In this case we would denote the state set asS = fgood; badg.Since at each time point there is a decision to be made, the whole problemis to decide the proper action to take at a given time point. In the literature,control and decision are alternative names for the action choice. We de�neA to be the set of actions we have to choose from. We will use the randomvariable At to represent the action chosen at time t.Example In our simple example, the only choice facing the manageris either to leave the pitcher in or replace the pitcher with someonefrom the bullpen. Here we would de�ne this action set to be A =fpitch; bullpeng.



13We assume that the set of states and the set of actions are both �nite.Note that these assumptions are not necessary for mdps in general, butwithout them the theory and the algorithms become much more complex [12,13, 9]. We will see later a speci�c instance of an mdp with a continuous stateset, but this will be the only time we consider mdps without �nite sets.The system evolves as follows: at each time point, the system is in aparticular state, s, an action a is taken and there is a transition to anotherstate s0. However, we require that the state depend only upon s and a.In addition, s and a only give probabilistic information about what theresulting state will be.Example When a manager decides to replace the pitcher, there are noguarantees that the next pitcher will have a good or bad match-up withthe opposing team's batters. Thus, whether or not the current pitcheris a good match-up, the new state of the system when the next pitcherenters the game is equally likely to be good or bad.To formally describe this evolution of states over time, we de�ne the statetransition function, T : S � A ! �(S), to map each state-action pair intoa probability distribution over the state space. We will use the notationPr(St+1 = s0jSt = s; At = a) = �(s; a; s0) for the individual transitionprobabilities. The fact that the next state probabilities only depend uponthe current state and action is the Markov property of the process.



14�(s; pitch; s0) s0good bads good 0:9 0:1bad 0:0 1:0 �(s; bullpen; s0) s0good bads good 0:5 0:5bad 0:5 0:5Table 2.1: Transition probabilities, �(s; a; s0), for simpli�ed baseball exam-ple.Example Table 2.1 gives the state transition probabilities for our simpleexample. The transition function models the fact that occasionally agood match-up turns into a bad one during the course of a game. Forinstance, pitchers can get tired or start to su�er from some physicalproblem and could be reluctant to inform the manager of their condition.In this example, after each batter, there is a 10% chance that a goodmatch-up becomes a bad match-up due to such factors. A more realisticexample might have these probabilities dependent upon the time, sincea pitcher is much more likely to tire later in the game than earlier.However, our example keeps things simple for expositional purposes.Also notice that a bad match-up never becomes a good match-up duringthe course of the game. We make the assumption that when the managergoes to the bullpen, the pitching match-up for the new pitcher is equallylikely to be a bad or a good match-up. This could be altered to representthe manager's prior beliefs about the pitchers in his bullpen.Thus far, there is nothing in the model to indicate that any one actionshould be preferred to another. We introduce a reward function that willindicate the immediate value of performing an action in a given state andthen making a transition to some other state. We de�ne the function, R :S �A�S ! R, to be a real valued function over state-action-state triplets.Although this gives immediate values for guiding the action choices, we willnormally be concerned with more long range e�ects of the decisions. We willdiscuss how we de�ne the tradeo� between immediate and future rewardsin Section 2.1.1 below.



15Example In reality, replacing a pitcher can have a certain cost involvedwith it, since the manager has only a limited supply of pitchers and mustensure none of them ever pitches too often. Our model is too simple tobuild in anything as complex as this, so we use a much simpler modelfor the immediate rewards which we will discuss on page 32 when wediscuss extending this basic model.We will be able to represent the immediate reward slightly more suc-cinctly with the function r : S � A ! R that depends only on the currentstate and action chosen. With the transition probabilities, we can simplycompute the expected immediate reward for a given state-action pair usingr(s; a) = Xs02S �(s; a; s0)R(s; a; s0) : (2.1)To summarize, the full model presented is de�ned as � = (S;A;R; T ),where S is the set states, A is the set of actions, R is the immediate rewardfunction and T is the state transition function. This model is a Markovdecision process (mdp), though we will refer to it as a completely observablemdp (comdp) to distinguish it from the more general, partially observablemodel we discuss in Section 2.3.2.1.1 Optimality CriteriaThe immediate reward function, R or r, helps to guide the decisions, but ifwe were simply interested in the immediate e�ects then, given the model, theproblem would have a trivial solution of always choosing the action with thehighest r(s; a). The problem is more complex due to the trade-o� betweenimmediate short term rewards with the rewards that occur in the future.There are many ways we could make the tradeo� between immediateand future rewards, but the one we will use is expected future discounted



16reward E "T�1Xt=0 �tr(St; At)# ; 0 � � � 1 ; (2.2)where St and At are the random variables for the state and action chosenat decision point t. Other optimality criteria used for making this tradeo�are discussed elsewhere [49, 48, 100, 102, 42], though not all are directlyapplicable to the methods discussed in this thesis.With this criterion, rewards received later in time will have less valuethan an equivalent reward received closer to the present. The aim in solvingthe mdp is to �nd a control policy which maximizes this quantity.Equation 2.2 speci�es an expectation over T decision steps. When weare interested in optimizing this quantity, then we are solving a �nite hori-zon problem where the horizon length is T . This criterion is adequate if thenumber of decision steps is known in advance. However, often the horizonlength is not known in advance, or the decision process never actually ter-minates. For the inde�nite or in�nite horizon problem, we simply optimizewith respect to the in�nite sumE " 1Xt=0 �tr(St; At)# ; (2.3)where now we must impose the constraint 0 � � < 1 to ensure that theexpectation is bounded. There are other criterion that can be used, suchas average reward, which is sometimes more natural for a given problem.These tend to add complications to the theory and os we do not explorethese alternatives here.Aside from the mathematical convenience of yielding a �nite sum, thediscount factor often has more natural interpretations. When the problem



17is an inde�nite horizon problem, the discount factor can be viewed as theprobability that a subsequent decision will be required, i.e., the processterminates after each decision with probability 1 � �. For problems witha more monetary basis, economic discounting over future returns becomesquite natural.2.1.2 Solving MDPsThe model de�ned in Section 2.1 can be used to automatically determinethe best choice of action to take at each point in time. However, the vastmajority of mdp research makes the assumption that the actual state of thesystem at any time, St, is known to the decision maker when a decision isto be made. For many systems, this assumption is valid or close enough tocorrect to allow the results and algorithms to be useful.We will briey present some of this theory and algorithms for the com-pletely observable case (comdps), though we are ultimately interested inproblems with partially observable system states (pomdps).



182.2 Completely Observable MDPsIn this section we discuss some of the theory and algorithms for solving com-pletely observable Markov decision processes (comdps). In these processesthe decision maker has access to the current state of the system at each de-cision point. Many more extensive and mathematically rigorous treatmentshave been given. [7, 49, 12, 102, 9].2.2.1 PoliciesThe entire problem to be tackled in solving an mdp is to �nd a good policybased upon the past history, H, of the process. This history will includethe starting state, each subsequent state and the action taken up until thecurrent decision point, t. Thus, a policy should provide us with an actionto take based upon the previous history: H ! A. Note that the decisionmaker has no access to future events and must restrict its basis for decisionto past information.For an �nite horizon problem, the number of possible histories is (jSjjAj)t�1and for the in�nite horizon problem there are an in�nite number of histories.However, it can be shown that when the processes state is fully observable,optimal performance can be achieved by using only the current state to de-cide what action to take [102]. A policy that uses only the current stateis called a Markov policy and all comdp policies we will consider will beMarkov.We de�ne a decision rule as a complete mapping from the set of states tothe set of actions, dt : S ! A. A complete Markov policy for a �nite horizoncomdp is a sequence of decision rules, � = (d0; d1; : : : ; dT�1), where dt is



19the decision rule for the tth time step. In general, we will want to knowthe best or optimal policy for an mdp and the process of determining theoptimal policy is typically referred to as solving the mdp.When the state set is �nite, a decision rule can be easily represented witha �nite-length vector of size jSj. Since we also assume that the action set is�nite, there is a �nite number of di�erent decision rules, jAjjSj, exponentialin the size of S. Correspondingly, there is a large, but �nite, number of�nite horizon policies.A policy where a di�erent decision rule is applied for each time step iscalled a non-stationary policy and is typically required for optimal behaviorin a �nite horizon comdp. A non-stationary in�nite horizon policy poses anumber of di�culties: not only are there an in�nite number of such policies,but it may be impossible to represent such a policy using �nite resources.Therefore, for the in�nite horizon case, it will be convenient to use astationary policy, � = (d; d; d; : : :), where the same decision rule is appliedat each decision point. It turns out that for an in�nite horizon comdp thereis always a stationary Markov policy that is optimal. This overcomes bothproblems, since there is a �nite number of such policies and we can representthe policy with a �nite vector of size jSj. Although we have used � for bothstationary and non-stationary policies, in subsequent formula the contextshould prevent any confusion.Policies where each decision rule completely determines the action totake are called deterministic policies. Randomized or probabilistic policiesuse a chance mechanism to decide on the action to choose. We will onlyneed to consider deterministic policies since for the mdp models we consider



20an optimal deterministic policy always exists.2.2.2 Value FunctionsIn this section we will briey review the optimality equations for comdpswhich are covered with signi�cantly more depth in many texts [102, 9] andearly research papers [7, 49, 12]. The results in this section will serve as thebasis for the remainder of the discussion.Although the policy is the item of interest in solving an mdp, most ofwhat we will discuss concerns itself with the value of a policy or the valuefunction. We note that, although the optimal value function for an mdpis unique, there can be more than one policy that leads to the optimalvalue function. In general, we will be satis�ed with any policy whose valuefunction is optimal.Finite HorizonFor a non-stationary �nite horizon policy, �, we can compute the expectedrewards for starting in a state s and following that policy for T steps. Wede�ne V t(�; s) as the value of starting in state s and executing the policy �for T � t time steps. We can compute this value with the recursive equationV t(�; s) = r(s; dt(s)) + �Xs02S �(s; dt(s); s0)V t+1(�; s0) ; (2.4)starting with t = 0, ending the recursion with t = T � 1 and lettingV T (�; s) = 0 for all states s.Evaluating a policy using Equation 2.4 directly, working from time 0to time T � 1, results in a very ine�cient procedure, since there is muchduplication of e�ort down in the recursion tree. The preferred method takes
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Figure 2.1: Relationship between time and dp indices.advantage of the principle of optimality [7] and uses dynamic programming(dp) to compute a policy's value by working from time t = T � 1 down todecision time t = 0. When viewed \bottom up", Equation 2.4 is essentiallythe dynamic programming equation for determining the value of a policythough we prefer to useVn(�; s) = r(s; dn(s)) + �Xs02S �(s; dn(s); s0)Vn�1(�; s0) ; (2.5)where we de�ne V0(�; s) = 0 for all states s.Comparing Equations 2.4 and 2.5, notice the change from superscriptedvalue functions and decision rules to subscripted value functions and decisionrules. This is necessary, though often confusing, since dynamic programmingworks backwards in time. Figure 2.1 shows the relationship between timeand the dp indices pictorially.In Equation 2.4, V t(�; s) is the value of starting in state s when thereare T � t decisions to go, whereas Vn(�; s) in Equation 2.5 is the value ofstarting in state s when there are n decisions to go. We will likewise usethe interchanged indices in the decision rules so that dt = dT�t. Most of the



22remaining equations use the \number of steps to go" notation, but keep inmind that even though dT will be the last decision rule computed for the�nite horizon, in the execution of the policy it is the �rst one that would beused.In�nite HorizonThere is a corresponding equation for the value of a stationary policy overthe in�nite horizon which is given, without a time index, byV (�; s) = r(s; d(s)) + �Xs02S �(s; d(s); s0)V (�; s0) : (2.6)Note that the �niteness of the state set makes this a system of jSj equationswith jSj unknowns. The nature of the model parameters and 0 � � < 1guarantees that this set of equations has a unique solution. A value functionwithout a time index is assumed to be an in�nite horizon value function.Note that we could evaluate a stationary policy with Equation 2.5 overa �nite horizon and, in fact, for a stationary policy �limn!1 jjVn(�; s)� V (�; s)jj = 0 ; (2.7)where jj � jj is the supremum norm. In this case, Equation 2.5 is just asuccessive approximation scheme for solving the system of equations givenin Equation 2.6. The proof of this uses the fact that the one-step dp operatoris a contraction mapping when 0 � � < 1, though we defer an explanationof this part of the theory to the more rigorous treatments [102, 9]. However,we will later use the fact that Equation 2.7 holds for both discrete andcontinuous space comdps.



232.2.3 Value IterationThe dynamic programming approach does more than give us a way to eval-uate a policy. By working from time T � 1 to time 0, we can simultaneouslycompute the optimal policy and the optimal values. The intuition here isthat with n steps to go, deciding on the optimal n-step policy is easy if weknow what the optimal n� 1st-step policy, since we can simply consider theimmediate next action for the current state and assume we know the optimalpolicy for the subsequent states. The additivity of the rewards in our opti-mality criteria and the Markov property makes this dynamic programmingapproach possible.To compute the optimal value function for a �nite horizon comdp, weuse the dynamic programming equationV �n (s) = maxa2A "r(s; a) + �Xs02S �(s; a; s0)V �n�1(s0)# ; (2.8)where V �n (s) represents the value of an optimal policy, ��, when the startingstate is s and there are n decision steps remaining. Note that the dynamicprogramming approach to �nding the optimal value/policy in mdps is re-ferred to as value iteration (vi), or sometimes as iteration in value space.It will be convenient to write the value function of Equation 2.8 in termsof other, related value functionsV �n (s) = maxa2A V �;an (s) ;where V �;an (s) = r(s; a) + �Xs02S �(s; a; s0)V �n�1(s0) : (2.9)



24valueIteration(�; �; T )for each s 2 SV0(s) := 0end for each sfor each n 2 f1; 2; : : : ; TgVn := oneStepDP(�; �; Vn�1)end for each nreturn VT (�)end valueIterationTable 2.2: Routine for the value iteration algorithm.The value V �;an has the interpretation: the value of performing action a withn steps remaining and performing optimally for the remaining n � 1 steps.The functions will take on more signi�cance in Chapter 5 where they willbe referred to as Q-functions or Q-factors.We can simultaneously compute the optimal policy �� = (d�T ; d�T�1; : : : ; d�0)with d�n(s) = argmaxa2A V �;an (s) :Tables 2.2 and 2.3 shows the general structure of a routine for the valueiteration algorithm for the comdp model � with discount � and a �nitehorizon T . Note that the value iteration routine only returns the last valuefunction computed and that the policy, though computed, is never storedexplicitly. The bookkeeping required to maintain the policy and/or theintermediate value functions is omitted to keep the exposition simple.



25oneStepDP(�; �; V )for each s 2 Sfor each a 2 AV a(s) := r(s; a) + �Ps02S �(s; a; s0)V (s0)end for each aV 0(s) := maxa2A V a(s)end for each sreturn V 0(�)end oneStepDPTable 2.3: Routine for one step of dynamic programming for a comdp.VI for the In�nite HorizonThere are many ways in which the in�nite horizon value function can becomputed, but one of these uses the same basic mechanisms of value iterationfrom the �nite horizon problems. Recall that in section 2.2.2 we stated thatan in�nite horizon mdp is the limiting case of the �nite horizon mdp.Equation 2.6 de�nes the value of any policy, including the optimal policy,��. Since V �(s) is the value of following the optimal policy for an in�nitenumber of steps, adding one additional step of rewards will not change itsvalue and we haveV �(s) = maxa2A "r(s; a) + �Xs02S �(s; a; s0)V �(s0)# : (2.10)From this we can compute an optimal in�nite horizon policy, given theoptimal value function withd�(s) = argmaxa2A "r(s; a) + �Xs02S �(s; a; s0)V �(s0)# ;when the optimal stationary policy �� = (d�; d�; : : :).



26The main results of applying the value iteration algorithm to solve in-�nite horizon problems are that both the value function and the policyconverge and that they converge to the optimal stationary policy and valuefunction. The value function converges in the limit or can converge to bewithin some � of the optimal values in a �nite number of iterations forwhich loose upper bounds on the number of iterations exist. The policyalways converges in a �nite number of iterations and we can put a looseupper bound on the number of iterations required. The rates of conver-gence, stopping criteria, upper bounds and many other results relating tothe convergence behavior of mdps are interesting by themselves, though notdiscussed here [102]. We also note that these results apply to a much moregeneral class of mdps than the comdps thus far discussed.2.2.4 Policy IterationThe policy iteration (pi) method for solving in�nite horizon comdps is basedupon an iteration over policies and is sometimes referred to as iteration inpolicy space. We will discuss using the policy iteration idea in Chapter 5,but provide a simple overview of policy iteration for comdps here.Although a policy's value function is a vector of values, it can be shownthat there is guaranteed to be at least one policy � with the property:8s; 8�0; V�(s) � V�0(s). Thus, a naive way to implement policy iterationis to iterate over the �nite number of possible policies, use Equation 2.6 tocompute their values and choose the policy with the highest value. However,this is terribly ine�cient since there are an exponential number of policies.The more e�cient and practical approach, attributed to Bellman [7]



27and Howard [49], �nds a sequence of policies of increasing quality and thusavoids the consideration of many suboptimal policies. This savings is purelyempirical or average case, since it is possible to construct comdps wherepolicy iteration would have to evaluate every possible policy. However, realproblems tend not to have the structure required to force policy iterationinto its worse case behavior.The general structure of the policy iteration algorithm is shown in Ta-ble 2.4. Here the call to the function evalPolicy(�) is simply a routinethat solves the systems of equations given by Equation 2.6. The routineimprovePolicy(�) is given in Table 2.5 and amounts to using a greedyone-step look-ahead value calculation,d0(s) = argmaxa2A "r(s; a) + �Xs02S �(s; a; s0)V�(s0)# ;over all states where �0 = (d0; d0; : : :). The routine of Table 2.5 uses thecurrent value function and ensures that, when updating the policy, the policyonly changes in states where an action is strictly better than the currentaction for that state.The main result of applying this algorithm is that the sequence of policiesgenerated by this algorithm is guaranteed to be monotonically increasing invalue. Since there are a �nite number of policies, this algorithm will convergeon the optimal solution in a �nite number of steps.



28policyIteration(�; �)d0 := any decision ruledo d := d0V := evalPolicy(�; �; d)d0 := improvePolicy(�; �; V; d)until d = d0return dend policyIterationTable 2.4: Code fragment for the policy iteration algorithm.policyImprovement(�; �; V; d)for each s 2 Sfor each a 2 AV a(s) := r(s; a) + �Ps02S �(s; a; s0)V�(s0)V (s) = maxa2A V a(s)if V (s) > V d(s)(s)then d0(s) = argmaxa2A V a(s)else d0(s) = d(s)end for each aend for each sreturn d0end policyImprovementTable 2.5: Code fragment for the policy improvement routine.



292.3 Partially Observable MDPsAlthough we can e�ectively solve comdp problems, the solutions (policies)have limited use and generally cannot be applied when the system does notpermit access to the state directly. A more general mdp model, a partiallyobservable Markov decision process (pomdp), does not make the assump-tion that the states are directly observable. We will see that this addedexpressiveness comes at a signi�cant cost in complexity.Example In our simple example, the manager does not know for surewhether or not they have a favorable or unfavorable match-up. It mayhave been an unfavorable match-up from the start due to factors of whichthe manager is unaware, or at some point the pitcher might becomefatigued possibly causing a good match-up to become a bad match-up.In a pomdp, we still assume that the system behaves in the same fashionas the mdp discussed previously: there are states, actions, rewards and statetransitions based upon the current state-action pair. However, a set of ob-servations, Z , is added to the model so that after each state transition of thesystem, one of these observations is produced by the system and is accessi-ble to the decision maker. The observation produced is correlated with thestate transition, but does not generally allow us to completely determine thecurrent state. We use the random variable Ot for the observation receivedat decision time t.



30Example Although the manager does not have access to the underlyingstate, he can monitor the progress of the game and get some indicationabout whether or not the match-up is favorable. Again, for simplicity,suppose that each time a pitcher faces another batter, there are onlytwo possible outcomes: a hit or an out. The game of baseball is notdeterministic, so even the best pitchers give up hits. Likewise, eventhe worst pitchers can force some batters to make an out. However, ifa pitcher is in a good match-up, then batters are less likely to get ahit than they would in a bad match-up. The manager can use theseoutcomes to gauge when they should remove the pitcher. Returning tothe addition of the set of observations, in this example the observationsare whether a batter gets a hit or makes an out. Thus, Z = fout; hitg.In addition to the observation set, we need to add an observation func-tion, O : A � S ! �(Z), to the model. This function maps the action attime t� 1 and the state at time t to a distribution over the observation set,which means that the observation is dependent upon the resulting state inthe state transition1. We de�ne Pr(Ot = zjSt = s; At�1 = a) = o(a; s; z) forthe individual observation probabilities.Example The observation probabilities for our example are given inTable 2.6 and show that these probabilities happen not to be dependentupon the action. They also show that a batter is more than twice as likelyto get a hit in a bad match-up (0:350) than they are in a good match-up(0:150). This would roughly correspond to the opposing batters' battingaverages for the two di�erent states.Finally, we note that the immediate reward function r(s; a) is still ap-plicable. However, recall that these were derived from a more expressivereward function where we used Equation 2.1 to de�ne r(�; �) as an expecta-tion over the more general structure. This same technique can be applied in1It is possible to make the observations dependent upon the initial state of the transi-tion, or both the initial and �nal state, but these alternative formulations are expressivelyequivalent. [87]



31o(pitch; s0; z) zout hits0 good 0:85 0:15bad 0:65 0:35 o(bullpen; s0; z) zout hits0 good 0:85 0:15bad 0:65 0:35Table 2.6: Observation probabilities, o(a; s0; z), for simpli�ed baseball ex-ample.the pomdp model, though here we are allowed an even more general immedi-ate reward structure. The most general form of a pomdp model's immediatereward, R : S�A�S�Z ! R, makes the reward value dependent on everyaspect of the state transition, including the observation received. We thende�ne a simpler expected value version, similar to Equation 2.1, withr(s; a) = Xs02SXz2Z �(s; a; s0)o(a; s0; z)R(s; a; s0; z) :Also note that we will occasionally represent the immediate rewards with acolumn vector, r(a), where the sth component of the vector is r(s; a).



32r(s; a) apitch bullpens good 0:065 �0:375bad �0:925 �0:375Table 2.7: Expected immediate rewards, r(s; a), for simpli�ed baseball ex-ample.Example Because our example is so oversimpli�ed, it is hard to derivea meaningful reward function. The various aspects of the game and thecomplicated interactions that a real baseball manager considers cannotbe captured in such a simplistic model. Therefore, we will opt for asimple reward model where each hit and each out has some immediatereward. We de�ne an out to have a value of 1:0 and a hit to have avalue of �4:5. The motivation for this reward structure comes from anargument that uses the following facts: there are 27 outs in a game; onaverage, every two hits leads to a run; on average, if a pitcher gives up3 or fewer runs in a game, then we consider it to be a good match-up.Therefore, over the course of a game, in a good match-up we wouldexpect 6 hits. If we de�ne a out to have value 1:0, then a game willresult in a reward of +27:0 and if we want a bad game to have negativevalue, then more than 6 hits should cost us more than �27:0 in reward,thus 1 hit equals �4:5. Anything less than 6 hits and we would gain;anything more than 6 hits and we would lose.In this example, we do not exploit the full generality available in thepomdp reward structure. In fact, the only dependency the rewards useis on the observations. Therefore, 8s; a; s0 we have R(s; a; s0; out) = 1:0and R(s; a; s0; hit) = �4:5. This translates into the expected immediaterewards shown in Table 2.7.To summarize, the full pomdp model is formally de�ned by the 6-tuple� = (S;A;Z ;R;T ;O) where: S, A and T are the same as their comdpcounterparts; Z and O are the observation set and related probabilities; andR generalizes the comdp rewards to add a dependency on the observation.The system structure modeled by a pomdp is given in Figure 2.2.
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bFigure 2.2: System structure for a system which can be represented using apomdp.2.3.1 PoliciesAs in any mdp, our goal is to �nd the optimal policy. From �rst principles,recall (from page 18) that, in general, a policy was de�ned over the entirehistory of the process: H ! A. The properties of a comdp allowed usto simplify the problem to �nding a simple mapping from states to actionswhich we called a Markov policy. A comdp-type policy de�ned over S willbe of little use when we do not have access to the system states.Since it is generally infeasible to record the entire history of a process,and since a pomdp has many more possible histories, one approach is tolook for a similar simpli�cation used in the comdp model. Since we onlyhave access to the observation, we could consider de�ning a pomdp policyto be mapping from the last observation to an action, � : Z ! A. However,this type of policy can be very poor.



34Example Supposed the manager in our baseball problem de�ned thepolicy: d(out) = pitch and d(hit) = bullpen. Every hit will cause themto make a pitching change. If the pitcher got 15 outs in a row, then itis very likely to be a good match-up for the manager. Removing thepitcher after the �rst hit is not necessarily going to be desirable, sincethey are equally likely to end up with a bad match-up after the pitchingchange.For a pomdp there may be no policy of this type which is optimal [51].Some research exploring policies based upon the last observation only canbe found in work by Littman [69].A slightly better approach than the deterministic observation-based pol-icy is to de�ne the policy, � : Z ! �(A), as a mapping from observationsto a distribution over actions. This is commonly referred to as a proba-bilistic policy and is slightly more general since it includes the deterministicobservation-based policies. Although there has been some research into thesetypes of policies [51], these too can be arbitrarily poor.It turns out that the optimal policy for a pomdp is not necessarily aMarkov policy with respect to observations or any �nite history of obser-vations. In general, to behave optimally in a pomdp, the policy must beable to remember the entire history of the process. Since this history can bearbitrarily long, one might imagine that events far in the past might haveminimal e�ects on our current decision. For this reason, researchers haveexplored policies based on a �nite history of the process [133]. Althoughthese methods can yield good solutions, they too can be arbitrarily poor.As a example of how a �nite history can be poor, consider the simple casewhere knowledge of some sort of parity in the history will be required tobehave optimally. No matter what �nite history size is chosen, information



35will be lost and optimal behavior will be unachievable. The only way fora policy to specify truly optimal behavior is for it to remember the entirehistory.2.3.2 Information StatesAs mentioned, optimal behavior in a pomdp is going to require access tothe entire history of the process. It is possible to derive a summary statisticfor the entire history of a process. We will refer to this statistic as aninformation state or belief state. Unlike the entire history, the informationstate size is of �xed dimension. An information state is a su�cient statisticfor the history, which means that optimal behavior can be achieved usingthe information state in place of the history [120, 2, 117].An information state, b, is simply a probability distribution over theset of states, �(S), with b(s) being the probability of occupying state s.We de�ne B = �(S) to be the space of all probability distributions overS. A single information state can capture the relevant aspects of the entireprevious history of the process, and more importantly can be easily updatedafter each state transition to incorporate one additional step into the history.We can derive the formula for updating an information state from �rstprinciples using basic rules from probability theory, Bayes rule and the inde-pendence assumptions inherent in the pomdp model. Given a informationstate vector b, we would like to compute the resulting information state, baz ,



36after a transition in the process, which, for the sth component, is derivedbaz(s0) = Pr(s0jb; a; z)= Pr(s0; b; a; z)Pr(b; a; z)= Pr(zjs0; b; a)Pr(s0jb; a)Pr(b; a)Pr(zjb; a)Pr(b; a)= Pr(zjs0; a)Pr(s0jb; a)Ps;s00 Pr(zjb; a; s; s00)Pr(s; s00jb; a)= Pr(zjs0; a)Ps Pr(s0jb; a; s)Pr(sjb; a)Ps;s00 Pr(zja; s00)Pr(s00jb; a; s)Pr(sjb; a)= Pr(zjs0; a)Ps Pr(s0ja; s)Pr(sjb)Ps;s00 Pr(zja; s00)Pr(s00ja; s)Pr(sjb) ;where Pr(sjb) = b(s), Pr(s00ja; s) = �(s; a; s00) and Pr(zjs00; a) = o(a; s00; z)making the information state update equationbaz(s0) = o(a; s0; z)Ps �(s; a; s0)b(s)Ps;s00 o(a; s00; z)�(s; a; s00)b(s) : (2.11)By basing the pomdp policies on the information state, we have regainedthe Markov property for our policy: the next information state depends onlyupon the previous information state and the immediate transition taken (i.e.,the action and observation received). In fact, the information state processis itself a Markov process, which we will discuss in Section 2.3.3.Information State EquationsIt will be convenient to de�ne some extra notation related to informationstates that allows concise formulation of the optimality equations and algo-



37rithms. We de�ne the conditional probability of an observation as�(b; a; z) = Pr(zjb; a)=Xs2S Xs02S b(s)�(s; a; s0)o(a; s0; z) ; (2.12)where we are conditioning on the current information state and action choice.Note that this simpli�es Equation 2.11 tobaz(s) = o(a; s; z)Ps02S �(s0; a; s)b(s0)�(b; a; z) : (2.13)Next, we de�ne the state transition probabilities for information states.The state transition function de�nes the probability of a particular successorinformation state, given an initial information state and action. Since eachobservation can yield a di�erent succeeding information state, the informa-tion state transitions can be speci�ed (b; a; b0) =Xz2Z �(b; a; z)I(b0; baz) ; (2.14)where I(x; y) = � 1 if x = y0 otherwise. (2.15)In words, the probability of an information state is the sum of the probabil-ities of all the observations that would lead to this information state.2.3.3 Value FunctionsThe most interesting result concerning the use of information states is that,having regained the Markov property, the pomdp can be reformulated as acontinuous space comdp [2, 1, 109]. The fact that Equations 2.8 and 2.10



38still apply to the continuous space problem (as do the related equations)means that we can borrow many of the theoretical results and algorithmicideas to apply to the pomdp problem.To actually derive the dynamic programming equation fromEquation 2.8,we need to describe the full transformation of the discrete space pomdp intothe continuous space comdp. The state space for this continuous spaceproblem is the information space B and the action set is the original pomdpaction set.Given an information state, since the action set and observation setare �nite, there are only a �nite number of possible successor informationstates. The state transition function for information states is given by Equa-tion 2.14. We de�ne the set of possible successor states asB0(b; a) = fbaz jz 2 Zg :The rewards for our information state comdp need to be de�ned for eachstate-action pair, which in this case means for each information state andaction. Since the pomdp rewards are based upon actual pomdp states, thereward for a information state is!(b; a) =Xs2S b(s)r(s; a) ; (2.16)which simply uses the information state in an expectation over all states.We can now make the following substitutions in Equation 2.8: b for s;B0(b; a) for S 0;  (b; a; b0) for �(s; a; s0); and !(b; a) for r(s; a). This yields



39the dynamic programming equation for a pomdp,V �n (b) = maxa2A 24!(b; a) + � Xb02B0(b;a) (b; a; b0)V �n�1(b0)35 : (2.17)From Equation 2.14, it follows that the sum over the possible successorinformation states can be replaced with a sum over all observations, so thatV �n (b) = maxa2A "!(b; a) + �Xz2Z �(b; a; z)V �n�1(baz)# (2.18)is equivalent to Equation 2.17.Although this is a continuous space comdp and much of the existingwork on continuous space problems would be applicable, there are certainproperties of the converted pomdp problem that can be exploited, which canmake it amenable to techniques not available for general continuous spacecomdps. One property is that, though the state space is continuous, thenumber of succeeding states is �nite.Here we rewrite Equation 2.17 in the more explicit, though more clut-tered, manner which uses the pomdp model parameters directly:V �n (b) = maxa2A Xs2S b(s)r(s; a)+ �Xs2S Xs02SXz2Z b(s)�(s; a; s0)o(a; s0; z)V �n�1(baz) : (2.19)We re-emphasize that Equations 2.17, 2.18 and 2.19 are all equivalent andthe in�nite horizon optimality equations for a pomdp can be adapted inthe same manner though it would use Equation 2.10 as the basis for theconversion.For many of the algorithms discussed in Chapter 3, it will help to breakdown the optimal �nite horizon pomdp value function of Equation 2.18 into



40a series of related value functions2 as follows:V �n (b) = maxa2A V �;an (b) (2.20)V �;an (b) =Xz2Z V �;a;zn (b) (2.21)V �;a;zn (b) = 1jZj!(b; a) + ��(b; a; z)V �n�1(baz) : (2.22)Equation 2.22 uses the identityexpreward(b; a) = sumz1=jZj!(b; a) so that the proper immediate rewardis recovered for the V �;an (b) V �n (b) value functions.The value function V �;an (�) is the pomdp counterpart to the comdp Equa-tion 2.9 and has the same interpretation: the value of performing action awhen there are n steps to go and then performing optimally thereafter. Thevalue function V �;a;zn (�) has a slightly more complicated interpretation: itis the expected reward attributable to making observation z when action ais performed in state b when there are n decisions remaining and when theoptimal actions are performed thereafter.2.3.4 Value Function PropertiesWe now return to the question of how we might compute and representpomdp policies and value functions. Recall that the main di�culty is thatour state space is the in�nite continuous space of probability distributionsover S. We break down the discussion into �nite and in�nite horizon valuefunctions, since there are slightly di�erent properties for each.2This particular decomposition was proposed by Michael Littman.



41Finite Horizon PropertiesSondik showed that the optimal �nite horizon value function is piecewiselinear and convex (pwlc) for any horizon T [117, 116]. This piecewise linearproperty is useful because it allows the value function to be representedusing �nite resources. It was this insight that allowed the developmentof the �rst exact algorithm for general �nite horizon pomdps. We willshow a proof for the pwlc property below, since it will allow us to developadditional formulas that we will require in later discussions. However, beforeproceeding with the proof, we provide some intuition and properties of pwlcfunctions.Recall that the value function is a function over B which is an jSj � 1-dimensional space. Thus, in a pwlc value function, each linear segmentis a hyper-plane in jSj-space and can be represented by an jSj-vector ofcoe�cients. We will use  to represent a single linear segment of a valuefunction, (s) for the sth component of that vector, and � to represent theset of vectors or hyper-planes that comprise a pwlc value function V (�).The convexity (or concavity, if you like) property means that the valuefunction is the upper (or lower) surface of those linear value planes, whereif � represents the value function V , then the value of an information statecan be computed with V (b) = max2� Xs2S b(s)(s)= max2� b �  : (2.23)
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Figure 2.3: An example of a pwlc value function for a pomdp with twostates.Example As simple example of a pwlc value function, consider Fig-ure 2.3, which is a value function for a two state pomdp where j�j = 5.In this �gure, the state space is along the horizontal axis and values arealong the vertical axis. Although the information space is speci�ed withtwo probabilities, the constraint that b(s0) + b(s1) = 1 results in a 1-dimensional space and allows us to use a single number to represent anyinformation state. In the �gure, only the value for b(s0) is representedalong the horizontal axis; b(s1) = 1 � b(s0). In this �gure, each linearsegment of � is shown with a thin line and the upper surface of the valuefunction is shown with a heavier line.There are some useful properties of pwlc functions which we will beexploiting in the proof of the piecewise linearity and convexity of the optimal�nite horizon value function. We list two of them here, though Appendix Bhas a complete list.Proposition 2.3.1 The sum of two pwlc functions is a pwlc function.Proposition 2.3.2 The max over two pwlc functions is a pwlc function.Additionally, we will be needing the following fact:



43Theorem 2.3.1 If 8a; z, V �;a;zn (�) is pwlc, then 8a; V �;an (�) is pwlc andV �n (�) is pwlc.Proof When V �;a;zn (�) is pwlc, using Proposition 2.3.1 and Equation 2.21we can conclude that each of the value functions for V �;an (�) are pwlc. WhenV �;an (�) is pwlc, Using Proposition 2.3.2 and Equation 2.20 we conclude thatV �n (�) is pwlc. �We now have all the required information to present and prove the fol-lowing theorem which was �rst proven for the general case by Sondik [117].Theorem 2.3.2 For any T , the optimal �nite horizon value function for apomdp is pwlc.Proof The proof proceeds by induction on the horizon length. For a �nitehorizon problem, after the last action is taken, no more rewards are accumu-lated. Our induction base case is when there is a single decision remainingat n = 1. Here only immediate rewards matter, since the future has no valueand V �;a;z1 (b) = 1jZjXs2S b(s)r(s; a) ; 8a; z= 1jZjb � r(a) :Therefore, each of the V �;a;z1 (�) functions are linear and a linear function istrivially convex. Using this fact and Theorem 2.3.1, we get that V �1 (�) ispwlc.The inductive step assumes that V �n�1(�) is pwlc and represented with



44the set of vectors �n�1. From Equation 2.23 we conclude thatV �n�1(baz) = max2�n�1 baz �  :If we let �n�1(b) = argmax2�n�1 b �  ; (2.24)then we get V �n�1(baz) = baz � �n�1(baz)and substituting into Equation 2.22 we getV �;a;zn (b) = 1jZj!(b; a) + ��(b; a; z) (baz � �n�1(baz)) :Substituting Equations 2.13 and 2.16 into this and canceling out the �(b; a; z)terms we are left withV �;a;zn (b) = 1jZjXs2S b(s)r(s; a) + �Xs2S Xs02S b(s)�(s; a; s0)o(a; s0; z)�n�1(baz ; s0)= 1jZjXs2S b(s)"r(s; a) + �Xs02S �(s; a; s0)o(a; s0; z)�n�1(baz ; s0)# ;where �n�1(baz ; s) is the sth component of the vector �n�1(baz). Lettinga;zn (b; s) = 1jZjr(s; a) + �Xs0 �(s; a; s0)o(a; s0; z)�n�1(baz ; s0) ; (2.25)we have V �;a;zn (b) = b � a;zn (b) :Since there are only a �nite number of possible a;zn (b) vectors, as in the basecase, we use Theorem 2.3.1 to conclude that V �n (�) is pwlc, which completesthe induction. �



45As developed in this proof, we will de�ne a series of vector sets, ��n, ��;anand ��;a;zn , each representing one of the value functions in Equations 2.20,2.21 and 2.22 respectively, and all of which have been shown to be pwlc forall n.In�nite Horizon PropertiesAlthough V �n (�) is piecewise linear, andlimn!1 jjV �n (�)� V �(�)jj = 0 ;this does not imply that V �(�) is piecewise linear and there are pomdp prob-lems whose optimal value functions are not piecewise linear [117]. However,there are a class of in�nite horizon pomdp problems for which the opti-mal value function is piecewise linear. Since V �(�) is pwlc and the in�nitehorizon problem is the limiting case for Vn(�), using vi and a large enoughhorizon, we can get as close as desired to V �(�). This issue is of theoret-ical importance, but practically we can use a piecewise linear function toapproximate any non-linear value function as closely as desired.The property of in�nite horizon pomdp policies alluded to above is called�nite transience, which was originally de�ned by Sondik [117]. When a pol-icy is �nitely transient, then its value function is piecewise linear. However,there are policies with piecewise linear value functions that are not �nitelytransient as well as policies whose value function is not piecewise linear atall. Finitely transient policies allow for a compact representation as we willsee in Appendices D and G . Unfortunately, there is no easy general way todetermine when the optimal in�nite horizon policy is �nitely transient. How-



46ever, all policies can be approximated with a �nitely transient policy, whichis exploited in an in�nite horizon policy iteration algorithm by Sondik [118].Despite the uncertainty about the optimal in�nite horizon value func-tion's piecewise linearity, the convexity of V �(�) is preserved. This propertywill be exploited in some approximation schemes discussed in Chapter 5.2.3.5 Value IterationValue iteration in comdps consists of an iteration over time, and for eachtime step and iteration over the states and actions, computing new valuesfrom the dynamic programming equation. Table 2.2 showed the code forperforming vi in comdps. For pomdps, value iteration retains the iterationover time steps; however, the continuous state space prohibits the iterationsover information states. Thus, the main di�culty in implementing valueiteration for pomdps lies in the problem of computing V �n (�) from V �n�1(�).Chapter 3 is devoted to algorithms that perform this one-step of dynamicprogramming. Aside from being the basis of a vi algorithm, this one stepdp step is used in many approximation schemes that are not directly basedupon value iteration.2.3.6 Policy IterationThe two main steps in policy iteration, value determination and policy im-provement, do not easily generalize from the comdps to the pomdps. Foran arbitrary in�nite horizon policy, it is not even known if its value func-tion is �nitely representable [95], which calls into question the existence ofan algorithm for the value determination step. Thus, exact policy iteration



47algorithms for general pomdps do not exist and approximation methods arerequired.Although we do not address policy iteration techniques in this thesis, twoapproximate pi algorithms, one by Sondik [117, 118] and one by Hansen [45],use the single dp step of value iteration in their policy improvement phase.The next chapter addresses the single dp step for pomdps in detail.



482.4 ConclusionsThis chapter has given the basic framework for Markov decision processformulations and solutions. These are the basic building blocks which we willuse in subsequent chapters. This chapter barely scratches the surface of thetheory and formalisms for mdps and research in this area �lls many volumes,though the majority of the research has been on comdps. Good startingreferences for comdps are Puterman's text [102] and Bertsekas' text [9],with the latter touching upon the work in pomdps. Sondik's thesis [117]and the survey articles by Monahan [87], Lovejoy [76] and White [131] givenice overviews of both the history of the study of pomdps, as well as theexisting work in the operations research �eld.



Chapter 3Exact AlgorithmsAll the exact algorithms for solving �nite horizon pomdps discussed in thisthesis use value iteration as the basic framework and the algorithms them-selves are simply di�erent ways of computing a single dynamic programmingstep. For this reason, we will discuss the exact algorithms in the context ofhow they compute V �n from V �n�1 or, equivalently, how they compute the set��n from the set ��n�1. With an algorithm to perform this single exact dpstep, embedding it in an iteration over time is all that is needed to solve a�nite-horizon pomdp exactly.The discussion in this chapter does not dwell on implementation issuesor cover many of the details of the previous algorithmic approaches. Detailsof this sort are covered at length in earlier work [22]. Since we only discussoptimal value functions in this chapter, we will drop some of the notationalclutter and let Vn = V �n with the related functions being similarly simpli�ed.Additionally, summations and unions for s, a and z will implicitly be de�nedover the state, action and observation sets respectively.This chapter is organized into four major topics. First we will cover49



50some concepts and issues that are common to all of the exact algorithms.We follow this with discussion of a number of exact algorithms from thealgorithmic perspective. The penultimate topic presents analysis of thesealgorithms and we conclude this chapter with empirical results to supportthe analyses.
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5Figure 3.1: An example of a pwlc value function with useless vectors.3.1 General IssuesWe have discussed representing a piecewise linear and convex value functionwith a set of vectors �, but there are a number of issues that will continuallyarise concerning this representation in the algorithmic approach to the singledp step of value iteration. We will �rst present these common issues beforemoving onto the speci�c exact algorithms.3.1.1 Parsimonious RepresentationsGiven a set � representing a value function V as in Equation 2.23, if weconstruct a vector e such that 8b 2 B, b � e � max2� b �, then �[ feg willrepresent the exact same value function as �. We will refer to vectors withthis property as useless or dominated vectors in the representation. As anexample, Figure 3.1 shows a value function with useless vectors, 2, 3, 5,6, in the representation.Since there is an in�nite number of vectors that could be added withoutchanging the value function, for any pwlc value function there is an in�nite



52number of sets that could be used as the representation. The unfortunateaspect of this is that there would not seem to be a one-to-one correspondencebetween a pwlc value function and its representation, nor between the sizeof the representation and the complexity of the value function.In fact, it can be shown [72, 74] that any pwlc value function does haveunique minimal representation. We use the term parsimonious set1 whenreferring to the unique minimal set of vectors representing a value function.The next few sub-sections are devoted to precisely de�ning a parsimoniousset and to presenting a reduction or pruning procedure for computing thisset. We will see that there are some subtle issues that arise in implementingthis reduction procedure.RegionsGiven a set of vectors, �, representing a value function over informationspace, we can de�ne a partition of the information space where the partitionhas a �nite number of elements, one for each  in �. Additionally, each  2 �has a set or region of information states, R(;�) � B, where it dominates,that is, R(;�) = fbjb �  > b � e; e 2 �� fg; b 2 Bg : (3.1)Note that because of the strict inequality in this de�nition, some infor-mation states can be in the region of none of the vectors in �, which makesit not quite a true partition of the information state space2. The set of1This term is borrowed from Nevin Zhang [138].2This can be made more mathematically precise, using measure theory, by eliminatingconsideration for regions with Lebesque measure of zero
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Figure 3.2: An example of the partition imposed by a pwlc value function.points which are not in any region de�ne the borders of the partition andare points where more than one vector gives the same maximal value. Pointson these region borders will pose a problem when we need to construct vec-tors from information states, but we defer this discussion until Section 3.1.2.Figure 3.2 shows a value function over information space with the partitionit imposes on the information space along the horizontal axis.These regions are all that are needed for our de�nition:De�nition 3.1.1 A parsimonious representation, �, of a pwlc value func-tion is one where, for all  2 �, the region R(;�) is non-empty.Since there is a single unique hyper-plane that can be �t over any particularregion, the parsimonious representation is unique [72]. Next, we develop theroutines necessary for reducing a set to its parsimonious representation.Simple Domination CheckingThere is a very simple procedure, �rst discussed by Eagle [39], to removesome useless vectors from a non-parsimonious set e�. This procedure looks



54dominationCheck(�)if j�j < 2then return �e� := ;do  := removeElement(�)if 6 9 0 2 e� s.t.  0 � thene� := f 0j 0 2 e� ;  6�  0ge� := e� [ fgend ifuntil � = ;return e�end dominationCheckTable 3.1: Routine for the dominationCheck routine.for vectors  2 e� where there exists some other vector e 2 e� such that forevery s 2 S, (s) � e(s). This is not guaranteed to reduce the set at all,and rarely would result in a parsimonious set all by itself, but in practice itis very e�ective in quickly reducing the size of the set e�.The e�ectiveness of this technique lies in the fact that very little compu-tational e�ort is exerted when a vector is removed from the set e�. Contrastthis to the general case where determining if a vector is useless is the sameas determining whether a region is empty or not, which requires setting upand solving a linear program. Table 3.1 gives a simple routine to eliminatedominated vectors from a set, though there are more e�cient ways thatthis procedure could be implemented. In this routine the vector compari-son  �  0 is a component-wise comparison where every component of  isgreater than or equal to the corresponding component of  0.
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0Figure 3.3: An example of a pwlc function before using thedominationCheck routine.Figures 3.3 and 3.3 show a pwlc representation before and after thisdomination check to remove useless vectors. Notice that vectors 0 and 1are not removed, even though they are not useful, since there is no singlevector that dominates either of them.Vector PruningAlthough the simple domination check is useful, it is not su�cient for reduc-ing a set to its parsimonious representation. We will need a more generalroutine which can take an arbitrary set of vectors, e�, and reduce it to aparsimonious set, �, where e� and � represent the same value function and� � e�.We will �rst de�ne a subroutine that explicitly encodes the de�nition ofa region. It simply checks whether a given region is empty or not and, ifit is not empty, returns an information state that lies within that region.Table 3.2 gives a routine for doing this; it takes a vector,  and set of vectors� and returns null if the region R(;�) = ; or, when the region is not empty,
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0Figure 3.4: An example of a pwlc function after using the dominationCheckroutine.findRegionPoint(;�)L := setUpLP(;�)solveLP(L)if infeasible(L)then return nullif objectiveValue(L) � 0then return nullreturn solution(L)end findRegionPointTable 3.2: Routine for the findRegionPoint routine.returns an information state b such that b 2 R(;�). This routine sets upand solves a linear program (lp) [137] to �nd such a point, where the lp isshown in Table 3.3. When the lp is infeasible or the objective function isnot greater than zero, then null is returned, otherwise the solution point ofthe lp is returned.Although this routine and lp are fairly straightforward in theory, ex-treme care must be used in actual implementations. Floating point compar-



57variables: 8s 2 S; x(s); "maximize: "subject to:x � ( � e) � " , 8e 2 �; e 6= x 2 �(S)Table 3.3: Linear program de�ned by the setUpLP(;�) routine.isons, machine precision and the ranges of the vector coe�cients can causesevere stability problems in the lps, requiring a stable and robust lp solver.The simplest approach towards �nding a parsimonious set is to lookat the regions R(;e�) for every vector . Those with non-empty regionsare then added to the parsimonious set. This is the method described byMonahan [87], but is not the most e�cient method. Table 3.4 gives a moree�cient routine that will reduce a set of vectors to its unique parsimoniousset. This pruning procedure was �rst proposed by Lark and White [131],though there is a subtlety involved in implementing the bestVector routinewhich is discussed below.The algorithm works by building up the parsimonious set one vectorat a time. It starts with an empty set b� and loops over the vectors in e�.At any given point in the algorithm, the set b� is a subset of the parsimo-nious representation �. Within the loop it removes a vector from e� withthe removeElement routine, and compares this vector against the vectorscurrently in b�. Speci�cally, it looks to see if the region R(; b�) is empty ornot using the routine findRegionPoint from Table 3.2. If the region is notempty, then it will return an information state that lies within this region;



58
prune(e�)b� := ;while e� 6= ; := removeElement(e�)b := findRegionPoint(;b�)if b 6= nullthene� := e� [ fg� := bestVector(e�; b)e� := e�� f�gb� := b� [ f�gend ifend while� := b�return �end prune Table 3.4: Routine for the prune routine.



59if the region is empty it will return null.If the region is empty, then we are sure that  is a useless vector sincethe vectors in the set b� already dominate it at every point, and since b� � �.If the region is not empty, then we know that b� � �, which means that theremust be a vector in e� that should be included in �. The subtlety here isthat it is not necessarily the case that  should be added to b�; it only saysthat b� is not yet complete. However, the findRegionPoint routine providesa point, b, where the value function represented by b� is not the same as thevalue function represented by �; i.e., maxb2b� b � b < max2� b � . It is forthis reason the vector  must be put back into the e� set before �nding thebest vector for the returned information state b.In practice, the most e�cient version of pruning a set to get its par-simonious representation would either preface a call to prune with a callto dominationCheck (Table 3.1), or incorporate this call into the pruneroutine itself.Given a point where the value function for b� is incorrect, we can then�nd the proper vector from e� to add by maximizing over the set. However,there is a very subtle issue that arises. Figure 3.5 shows the situation wherewe are checking the region R(; b�); it shows both the current form of b� andthe information state b returned by the findRegionPoint routine. Supposethat the true �nal representation, �, looks like Figure 3.6. We see that atpoint b there are two vectors that give precisely the same value, both ofwhich would have to be in e� when we executed bestVector(e�; b). In thissituation, the bestVector routine will be left with a choice of two equallymaximal vectors to return. For the case of Figure 3.6 it could arbitrarily
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Figure 3.5: Snapshot of an example of the prune routine.decide which one to return, or we could alter the code slightly so it couldreturn both. However, for the general case, the bestVector routine cannotbe implemented in either of these ways.Figure 3.7 shows the same true �nal parsimonious representation as inFigure 3.6 except we have augmented the �gure with two other vectors,shown with dashed lines, that are in e�, but not in �. When the best vectorroutine executes bestVector(e�; b), it will �nd itself with a choice of fourvectors. Two of these vectors, which we term imposters, are not in �.Although there is a single point where they yield a maximal value, there is nopoint where they dominate every other vector, i.e., they have empty regions.The schemes of arbitrarily selecting one and returning all vectors are bothwrong and will result in the prune routine producing a non-parsimoniousset. The next section presents the correct implementation of the bestVectorroutine that insures that no imposter vectors are returned.
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62Lexicographic Ordering of VectorsAs shown, there can be information points where more than one vector from� will provide the same maximal value, i.e., 9 6= e 2 � such that b � = b �e.We would like a procedure for deterministically selecting one of these and,furthermore, to select one that is guaranteed to have a non-empty regionin the �nal parsimonious set. To accomplish this, we de�ne a lexicographicordering scheme [72] over S. The bestVector routine will use this orderingto deterministically decide which vector to select when more than one vectorproduces the same maximal value.We de�ne an arbitrary, though �xed, ordering over the elements in S suchthat s � s0 when state s comes before state s0 in the ordering relationship.De�nition 3.1.2 The vector  is lexicographically greater than  0 if thereexists a state s such that (s) >  0(s) and (s0) =  0(s0) for all s0 � s.We will use the notation  L>  0 to denote that vector  is lexicographicallygreater than  0. Table 3.5 gives a routine that returns the lexicographicmaximum of two vectors. We will use this routine when faced with twovectors that yield equivalent values at an information state.Table 3.6 shows the routine which will select, for a given informationstate, a vector from a set. When there is a single clear dominating vectorat the point b, then this vector is returned. If one or more vectors result inthe same maximal value, then the components of the vector are compared inlexicographic order until the tie is broken. It is assumed that the for eachs 2 S loop selects states in the �xed order de�ned over the set of states.We now want to show that the bestVector routine always returns a



63lexicographicMax(;e)for each s 2 Sif (s) > e(s)then return if (s) < e(s)then return eend for each sreturn end lexicographicMaxTable 3.5: Routine for the lexicographicMax routine.bestVector(�; b)v� := �1for each  2 �v := b � if v = v�then � := lexicographicMax(�; )if v > v�thenv� := v� := end ifend for each return �end bestVectorTable 3.6: Routine for the bestVector routine using lexicographic ordering.



64vector that is in the parsimonious representation of a given set. If there isonly one vector � 2 � where b � � = max2� b � , then b 2 R(�;�) whichmeans that � must be in the parsimonious set by de�nition. We are left toshow that when there is more than one vector which achieves the maximalvalue at b, then the lexicographic maximum choice ensures a vector in theparsimonious representation is returned.Let � be any set of vectors and b be any information state. We de�ne� = �j 2 �; b �  = max2� b � � ;i.e., the set of all vectors that yield the same maximal value at b. We thenhave the following:Theorem 3.1.1 If there exists �� 2 � such that �� L> � for all other � 2 �,then R(��;�) is non-empty.Proof This is proved in Appendix G:2 of Littman's thesis [72]. �Since �� is the vector returned by bestVector and it has a non-emptyregion, it must be part of the parsimonious representation of �.3.1.2 Vector at a PointRecall that we are only concerning ourselves with a single dp step to computeVn(b) from Vn�1(b); in terms of representation, we are trying to compute theset �n from the set �n�1. A very important concept, which can easily beoverlooked due to the myriad of formulas presented in Chapter 2, is the easewith which we can compute Vn(b) for a given information state and givenVn�1(�).



65Equation 2.19 (or either Equation 2.17 or 2.18) can be used to computethe value of an information state using the model parameters and a fewsummations over �nite sets, which is relatively little e�ort. However, thevalue of a single information state is not going to be useful by itself. Wewill not be able to compute and store the value for each information state,which is why the �nitely representable pwlc property becomes important.Instead of computing the value of an information state, we would prefer to�nd an element of �n for an information state, which is easy to calculateby using Equation 2.25 from the proof of Theorem 2.3.2. We will �nd itconvenient to rewrite Equation 2.25 in vector form asa;zn (b) = 1jZjr(a) + �P a;z�n�1(baz) ; (3.2)where r(a) is a column vector of immediate rewards for action a and P a;z isan jSj � jSj matrix where the element in row s and column s0 is given byP a;zs;s0 = �(s; a; s0)o(a; s0; z) : (3.3)Recall that �n�1(b) is the vector from �n�1 which gives the maximal valuefor information state b and was de�ned in Equation 2.24.As a result of Theorem 2.3.2, the V an (�) value functions are pwlc andfor a given information state, the element of �an for that state is given byan(b) =Xz a;zn (b) : (3.4)Finally, with a an for each action, we usedn(b) = argmaxa b � an(b) (3.5)



66to see which is the optimal action for b at step n, which makes the vector in�n for information state b n(b) = dn(b)n (b) : (3.6)We note that n(s) is the sth component of the vector n and n(b) is thevector in �n that is maximal for b. This is a notational convenience andsince the arguments are of di�erent types, the context will disambiguate thetwo. Also note that the sth component of the vector n(b) would be n(b; s).Therefore, for a given information state and the n� 1st-step value func-tion representation �n�1, it is easy to compute its n-step value and thecorresponding value hyper-plane in �n. Furthermore, having computed theindividual values for each action in the maximization of Equation 3.5, wehave computed the optimal decision for that information point, which showsthat each hyper-plane will have a speci�c associated action representing thepolicy over that hyper-plane's region.Computing this vector, although relatively easy, presents the same prob-lem that arose in Section 3.1.1. There may be more than one action thatachieves the same maximal value, or even for the same action, there couldbe ties in the �n�1(�) choices from the �n�1 set when constructing the in-dividual a;zn (b) vectors. When either of these situations occur, we can usethe same lexicographic ordering scheme that was presented in Section 3.1.1.When we are faced with the equivalent values for the �n�1(baz) vectors, wewill be �nding the lexicographic maximum over the �n�1 set.



673.1.3 Fixed Action Value FunctionsThe two exact pomdp algorithms we focus on in this chapter constructthe V an (�) value functions individually. This approach was suggested bySondik [117], but �rst taken with the witness algorithm (Section 3.2) andsubsequently used by the incremental pruning algorithm (Section 3.3.2).Therefore, both algorithms share the common operation of constructing �nfrom the �an sets.For our representation of Vn(�) we could simply use Sa �an, since for allb we have max2Sa �an b �  = maxa �max2�an b � �= maxa V an= Vn(b) :Since the complexity of computing Vn+1 will be directly related to the size ofthe representation of Vn, we prefer to have the parsimonious representationfor Vn, i.e., �n = prune [a �an! :Thus, both the witness and incremental pruning algorithms, after construct-ing the �an sets, use the prune routine from Section 3.1.1 to compute �n.Algorithms that attempt to construct �n directly from �n�1 bene�t fromnot having to perform this extra prune operation. However, the removal ofthe maximization by considering the �an sets individually often simpli�es theproblem and can allow techniques which would otherwise not be applicable.This issue will be discussed further in Chapter 5.



683.2 Witness AlgorithmThere are a number of papers related to the witness algorithm; from when itwas �rst proposed by Cassandra, Littman and Kaelbling [23], to elaborationson its implementation [22], and in a more formal treatment where it wasproved correct [70, 74, 72]. The witness algorithm computes �an and is basedupon the idea of exploring a �nite number of regions in information statespace. These regions are a partition of the state space imposed by the pwlcproperty of the value function. Exactly how the witness algorithm does thiswill be elaborated upon below, but we note that some previously proposedtechniques [117, 116, 26] also employ a region-based approach, though theyconstruct �n directly.The witness algorithm is given in Table 3.7 but before discussing the al-gorithm in detail, we will discuss a particular relationship among the vectorsthat are manipulated by the algorithm and present some of its properties.3.2.1 NeighborsFor each vector in �an we de�ne a set of vectors which we will call its neigh-bors, though this neighboring relationship only loosely coincides to a geo-metric relationship. It is neighboring vectors that will comprise the set �,which we call the agenda in the witness algorithm. Recall that we use thenotation an(b) to refer to the vector in �an that is maximal for b and which isconstructed using Equations 3.2 and 3.4. We will use the notation without



69the information state argument and de�ne its construction asan =Xz a;zn=Xz � 1jZjr(a) + �P a;zzn�1� ; (3.7)where zn�1 is the vector from �n�1 that was used for observation z toconstruct a;zn . Without the dependency on a particular information state,it is possible to construct vectors an that are not in �an; i.e., an is not maximalfor any b. We de�ne �an to be the set of all the an we can possibly constructusing Equation 3.7. We similarly de�ne �a;zn as the set of all vectors thatcould be constructed from Equation 3.2. Note that j�anj = j�n�1jjZj, sinceeach an is constructed by selecting a vector from �n�1 for each observation.De�nition 3.2.1 A vector � is a neighbor of the vector an =Pz a;zn if� = Xz 6=z0 a;zn + ea;z0n ;for z0 2 Z, ea;z0n = 1=jZjr(a) + �P a;z0n�1, for some n�1 2 �n�1 andea;z0n 6= a;z0n .The de�nition shows that a neighbor is any vector that di�ers by a singleterm in the summation over the observation set. Using �an to represent theset of all possible an vectors, we see that all neighbors of any vector in�an are included in the set �an. Since there are jZj possible observationsand j�n�1j � 1 possible choices for each observation, we see that each a;znvector has jZj(j�n�1j � 1) total neighbors. The usefulness of this neighborrelationship lies in the following theorem. We de�ne the set of all neighborsof a vector  as N ().



70Theorem 3.2.1 The neighbor theorem. For any an 2 �an, there exists ab 2 B and a ean 2 �an such thatb � ean > b � an ;if and only if there exists a � 2 N (an) whereb � � > b � an :Proof b � � > b � an: implies b � ean > b � an Proof in this direction is easy,since each neighbor itself is an element of �an.b �ean > b �an implies b �� > b �an: Here we will show that such a neighborexists by constructing it. We are givenb � ean > b � anXz b � ea;zn >Xz b � a;zn ;Since one summation is larger than the other, there must exist a z0 suchthat b � ea;z0n > b � a;z0n :Using this fact we construct � and show that it satis�es the theorem withthe derivation Xz 6=z0 b � a;zn = Xz 6=z0 b � a;znXz 6=z0 b � a;zn + b � ea;z0n > Xz 6=z0 b � a;zn + b � a;z0nb �0@Xz 6=z0 a;zn + ea;z0n 1A| {z }� > b � an ;



71witness(�n�1; a)b := any information stateb� := fan(b)g� := N (an(b))while � 6= ;� := removeElement(�)if � 2 b�then b := nullelse b := findRegionPoint(�; b�)end ifif b 6= nullthenb� := b� [ fan(b)g� := � [ f�g� := � [N (an(b))end ifend while�an := b�return �anend witnessTable 3.7: The witness algorithm for constructing �an. �In words, Theorem 3.2.1 says that if there is a point where a bettervector exists, then one of the neighbors must also be better at this point.Appendix E discusses some properties of neighbors, though it requires someof the notation and concepts from Section 3.3.3.2.2 The AlgorithmThe witness algorithm shown in Table 3.7 begins by selecting any infor-mation state, then constructing the maximal vector for it as well as all of



72its neighbors. It is important that the an(b) vector be constructed usingthe lexicographic ordering scheme (Section 3.1.2) for the �nal result to be aparsimonious set. The set b� is used to store the vectors that comprise �anas they are discovered by the algorithm; at all times b� � �an and the valuefunction, bV , represented by b� is an underestimate so that: 8b; bV (b) � V an (b).The neighbors are put into a set of agenda items �, which serves as the basisfor the iteration.The loop removes neighbor vectors from � one at a time and terminateswhen the set is empty. After a neighbor � is removed from �, if it is notalready in b�, we determine whether or not an information state exists wherethis neighbor would be better than all the vectors in our current b� set.Formally, we are checking the region R(�;b�) and returning an informationstate in the region if one exists.If the region is empty or the � is already in b�, then we discard � andselect a new one from our agenda. When the region is not empty, using anypoint b from within the region, we construct the maximal vector for thatpoint (using Equation 3.4) and add it to b�. We then put � back into the set� and add all the neighbors of the new vector an(b) to the agenda. Putting� back into � is an important step in ensuring the algorithm's correctness.Putting � back into � is important because although we have found that� is not maximal at b, we have not demonstrated that it is useless over theentire region.The intuition behind why this algorithm works lies in Theorem 3.2.1.No matter what vectors are in b� at any point in time, if there is a vectorin �an which would give a higher value at a belief point b, then one of the



73neighbors � of the vector b 2 b� that is currently best at b also gives alarger value at this point and thus has a non-empty region R(�; b�). Sincewe ensure that all neighbors are checked, we will not miss any vector in �anthat belongs in �an. The actual proof that this algorithm is correct becomesa little more complex, since we have to ensure it works for any particularorder the vectors are added and any particular order that the neighbors arechecked.Theorem 3.2.2 The witness algorithm correctly constructs the parsimo-nious representation, �an, for the value function V an .Proof The proof breaks down into four steps:1. If  is added to b�, then  2 �an.2. If  is added to b�, then  62 b� just before it is added.3. The algorithm terminates in a �nite number of iterations.4. When the algorithm terminates, b� = �anStep 1: We �rst show that any vector added to b� must be a vectorin �an. Any vector added to b� is constructed directly from an informationstate using Equation 3.4 and ties are broken using the lexicographic orderingscheme of Section 3.1.1. The fact that an 2 �an follows from Theorem 3.1.1which assures that we select a vector with a non-empty region in �an.Step 2: Next we show that it never adds the same vector twice to b�. Weprove this by contradiction. Assume that findRegionPoint(�; b�) routinereturns a b such that an(b) 2 b�, then we know that b �an(b) � b �; 8 2 �an.



74It must also be the case that b �� > b �b; 8b 2 b�, since the algorithm ensuresthat all � considered are not in b�. Because � 2 �an and an(b) 2 b� we havea contradiction, since we cannot have b � an(b) � b � � and b � � > b � an(b)simultaneously.Step 3: We now show that the algorithm terminates. Each iterationthrough the loop either removes a vector from � or adds a vector to b� andits neighbors to �. We know that �an is �nite and we only add vectors tob� that are in �an. Since we never add the same vector twice to b�, we onlyattempt to add a vector to b� a �nite number of times. Since each vector onlyhas a �nite number of neighbors, we only add a �nite number of neighborsto �. Therefore, the loop can only execute a �nite number of times.Step 4: Finally, we show that the �nal b� = �an with a proof by con-tradiction. Assume that the algorithm terminates with b� 6= �an, then theremust exist an information state b and a vector  2 �an where b �  > b � b,where b = argmax2b� b � . Using this and Theorem 3.2.1, we know thatthere must be a neighbor, �, of b such that b � � > b � b. However, we haveadded all neighbors of b to � when we added b to b� and only removed �from � when R(�; b�) = ;. But if R(�; b�) = ; then 8b we must have b�� � b�bfor all b 2 b�. This contradicts the statement that b � � > b � b. �The proof that the witness algorithm correctly computes �an �rst ap-peared elsewhere [72]. Appendix F.2 shows an example of how this algo-rithm works on the simple baseball problem which was introduced in theprevious chapters. The witness algorithm has some appealing theoreticalguarantees which are discussed further in Section 4.1.4. The main result is



75that constructing the set �an can be done in time polynomial in S, A, Z ,�n�1 and �an.3.2.3 Witness OptimizationsAs presented in the previous section, the witness algorithm is not in itsmost e�cient form. This section briey discusses some of the optimizationsthat can be incorporated into this algorithm to help reduce the amountof computation required. Some of these optimizations are applicable forother algorithms and are discussed further in Section 4.7 in the context ofanalyzing the algorithms.Initializing b� The witness algorithm initializes b� with a single vector andall other vectors added to b� will be the result of solving an lp. A simpleoptimization is to check every vertex of the information space simplex andinitialize b� to be each vector computed at these points. If j�anj > 1, then weare ensured of �nding at least two vectors this way, and in practice it canbe considerably more. A slight generalization of this idea is to initialize b�with vectors generated from some set of random information states. Thisisn't guaranteed to �nd more than one vector, but could save a reasonableamount of time in practice.Discarded Neighbors After a neighbor � is removed from �, it is pos-sible that a vector  subsequently added to b� will result in � being addedback into �; i.e., � 2 N (). Because we only removed � when R(�; b�) wasempty, by adding more vectors to b� it is not possible for this region to be-come non-empty. A simple optimization keeps tracks of neighbors that have



76been removed from � to ensure they are not again added to �.Domination Checking The simple domination check discussed in Sec-tion 3.1.1 can be used in conjunction with the witness algorithm and, on asmall sample of problems, has reduced the computation time by as muchas 50%. Its incorporating into the witness algorithm checks each � beforethe findRegionPoint routine. Applied to this case, it simply looks to see ifthere is a vector in b� which already dominates �. If � is already dominatedby b�, we proceed as if the findRegionPoint routine returned null. Analternative is to check an item against b� before it is put into � rather thanwhen it is taken out, which leads to the idea for the next optimization.Redundant Neighbors In the description of the witness algorithm whenadding  to b� we are required to add all of its neighbors, which is su�cientfor correctness but not entirely necessary. All the witness algorithm reallyrequires is that for every b 2 R(; b�), where b �  < V an (b), that we add avector  0 to � such that b � 0 > b �. Adding all neighbors guarantees this byTheorem 3.2.1, however, for a given neighbor �, if for all those informationstates there is another vector  0, either in � or in N (), where b �  0 � b � �then adding � is not necessary, since  0 is just as su�cient as  in �ndingthese points. For each � 2 N (), we can compare it to the vectors currentlyin � or with the other vectors in N (), using either the simple dominationcheck, or more completely with an lp. The former is likely to save time,while the latter may only have diminishing returns. Avoiding putting anitem in � is done for the sake of saving an lp, so the requirement of an lp



77to decide whether to put the item into � may be of little help. If the lpdetermines that the item must be added, then we have done two lps wherenormally one would have su�ced.Region Adjacency Information There is an optimization that Small-wood and indexSondik, Edward J.Sondik [116] propose for their one-passalgorithm which uses information about the adjacency of regions to reducethe amount of computation that is required. Givan [43] has pointed outthat this same idea could be applied to other algorithms, including witness,which search in information space.Suppose we �nd a vector an = Pz a;zn and we are considering addingall jZjj�n�1j vectors of N (an) to �. The purpose of this is to ensure thatif R(an; b�) is too large, then we will have a vector in � that will lead to awitness point. The observation needed here is that if the region is too large,then there must be some point on the border of its true region, R(an;�an),that would be a witness point. For each observation, z, instead of consideringall j�n�1j neighbors in �a;zn , it su�ces to limit ourselves to those ea;zn 2 �a;znwhere R(ea;zn ;�a;zn ) is adjacent to R(a;zn ;�a;zn ).To implement this optimization requires generating and storing the ad-jacency information for each �a;zn . This is not as bad as it sounds sincethis adjacency information is essentially derived from the adjacency infor-mation from �n�1. For Smallwood and Sondik's algorithm, this adjacencyinformation must be computed anyway, so there is no extra work involved.Unfortunately, the witness algorithm does not generate regions in a way thatimmediately gives the adjacency information. Therefore, this information



78must be explicitly computed which leads to the potential problems with thisoptimization. We must ensure that the time spent computing adjacency in-formation does not exceed the time saved from eliminating vectors that areadded to �. This will be directly related to the relative adjacency of regionsin high dimensional space for typical pomdp problems, which is mostly un-known at this point, though Zhang [139] has some preliminary results whichpoint to this relationship being relatively sparse.



793.3 Incremental Pruning AlgorithmsThe incremental pruning algorithm was �rst proposed by Zhang and Liu [140]and was subsequently analyzed, compared and improved [24]. Like witness,it breaks down the problem into constructing the �an sets individually. Un-like the witness algorithm, this method does not search in regions of thestate space; instead, it considers constructing each possible an 2 �an. How-ever, it constructs each vector in an incremental fashion which reduces thecomputational complexity signi�cantly.3.3.1 Batch EnumerationTo understand to basic approach of the incremental pruning algorithm, ithelps to �rst discuss the batch enumeration algorithm as presented by Mon-ahan [87]3, since it is conceptually the simplest of all the exact algorithms.The witness algorithm, and the algorithms to be discussed in Section 3.4,search in information space for a set of points that are able to yield the fullparsimonious representation of the value function. This approach requiredde�ning regions in the information space and performing some sort of searchto �nd points in other regions. The alternative approach comes from lookingat Equation 3.2 in a slightly di�erent manner. We repeat this equation herefor convenience: a;zn (b) = 1jZjr(a) + �P a;z�n�1(baz) ;The only function that the speci�c information state plays in this formula3Sondik [117] actually proposes such a scheme, but never presents it as an algorithmin its own right. Curiously, Monahan presents this algorithm under the guise of Sondik'sone-pass algorithm.



80is in the �n�1(�) term, which does nothing other than select a vector from�n�1. Regardless of the speci�c information state, there are only j�n�1j pos-sible values for �n�1(baz), which means that there are only as many possiblea;zn vectors for a given action a and observation z. We de�ne�a;zn = � 1jZjr(a) + �P a;zn�1jn�1 2 �n�1� ;which is the set of all possible a;zn vectors. Note that j�a;zn j = j�n�1j.Since an = Pz a;zn , we de�ne �an to be the set of vectors obtained forall ways of selecting a vector from �a;zn , for each z. Appendix B de�nesthe cross-sum operator and some of its properties. The cross-sum operator,which we denote with �, operates on two sets of vectors, A and B, andproduces a set of vectors that consists of all pairwise additions of vectorsfrom both sets. Using this operator we can de�ne �an more precisely as�an =Mz �a;zn : (3.8)Since all possible combinations of the a;zn vectors are in �an, the maxi-mal vector for any information state point will also be there; i.e., V an (b) =max2�an b � .This is exactly the approach of the enumeration-type algorithms; theyignore information states and simply generate every possible vector. Tocomplete the enumeration from above, we need to repeat this for each actionand so we de�ne �n =[a �an ;which is the complete enumeration of all possible vectors that could be in�n.



81This complete, or batch, enumeration algorithm as presented in Mona-han [87] gives a simple linear programming scheme for reducing the �n setto its parsimonious representation. Subsequent improvements to this batchenumerative scheme were merely ways to do this reduction (or pruning)phase more e�ciently. Eagle [39] added the domination checks discussedin Section 3.1.1 and Lark [131] devised a more e�cient linear programmingapproach which is the basis of the prune routine of Section 3.1.1.Thus the batch enumeration algorithm can be summarized succinctly as:�n = prune [a Mz �a;zn ! :This batch enumeration scheme has the computation complexity of beingexponential in the size of Z regardless of the size of �n. For pomdp problemswith more than 3 or 4 observations, this technique is impractical. However,we will see in the sections to follow that this same enumeration idea can beperformed incrementally to yield a much more e�ective algorithm.3.3.2 Incremental EnumerationAs discussed in Section 3.1.3, the incremental pruning (ip) algorithm con-cerns itself with constructing the �an sets. Since �an = prune(�an), fromEquation 3.8 we have �an = prune Mz �a;zn ! ;which shows a batch enumeration-type method for computing the �an setsfollowed by a pruning phase to yield �an.One improvement that can be made uses some properties of the cross-sum operator (see Appendix B) and moves the prune routine inside the



82cross-sum operator yielding�an = prune Mz prune ��a;zn �!= prune Mz �a;zn ! : (3.9)Note that although we can safely move the pruning step inside the cross-sumoperator, it is still required on the outside. The fact that any vector in �a;znthat gets pruned never needs to be considered anywhere else can actuallybe exploited in other algorithms (see Section 3.2.3). For the remainder ofthis section, we will always assume that we prune the �a;zn sets and alwaysdeal directly with �a;zn .The incremental pruning algorithm's insight is the simple, yet elegantidea of interleaving the prune routines with the cross-sum operators inEquation 3.9. This is possible due to properties of the cross-sum operator.Here we show the progression, starting with Equation 3.9�an = prune Mz �a;zn != prune��a;0n � �a;1n � �a;2n � : : :� �a;jZj�1n �= prune�: : :prune �prune ��a;0n � �a;1n �� �a;2n � : : :� �a;jZj�1n � :(3.10)Equation 3.10 is essentially the incremental pruning algorithm. Thealgorithm is summarized in Table 3.8 and an example of it working on asimple problem is given in Appendix F.1.The algorithm in Table 3.8 is fairly straightforward, but some explana-tion will be useful. The elements of the set 	 are sets of vectors, so 	 merely



83incrementalPrune(�n�1; a)	 := Szf�a;zn gwhile j	j > 1A := removeElement( 	 )B := removeElement( 	 )D := prune(A�B)	 := 	SfDgend whilereturn 	end incrementalPruneTable 3.8: Routine for the incremental pruning algorithm.serves to hold the �a;zn sets and the intermediate results of the cross-sum op-erations. The routine removeElement() simply extracts one of the vectorsets from 	. Note that a routine for the batch pruning algorithm is nearlyidentical to the routine shown in Table 3.8. The only change is to replacethe line D := prune(A�B) with D := A�B and add 	 := prune(	) justbefore returning 	.Although Equation 3.10 shows one particular grouping of the sets inthe cross-sum, there are many such groupings. To accomplish any othergrouping requires no changes in the algorithm, just a simple change in theremoveElement routine. In general no one grouping is preferable to anyother, but for given assumptions about the structure of the solution, someare preferable to others. This issue is explored further in Section 4.4.1.An interesting aspect of the algorithm given in Table 3.8 is that byremoving the prune calls, the algorithm becomes the batch enumerationalgorithm for constructing the �an sets.



843.3.3 Generalized Incremental PruningThe generalization of the incremental pruning algorithm discussed in thissection grew out of trying to re�ne the incremental pruning algorithm andwas �rst presented by Cassandra, Littman and Zhang [24]. The basic struc-ture of the incremental algorithm is the same; the main di�erence lies in theway the individual prune(A�B) operations are performed.In the normal application of the prune operation, there is nothing buta set of vectors to work on. However, in computing prune(A � B) wehave some intimate knowledge about the way in which the set being prunedis constructed. The generalized incremental pruning algorithm (gip) is atechnique that can exploit this knowledge.Before presenting the full gip algorithm, we present one motivating ex-ample of the approach. Consider the simple problem of computing prune(A�B) where A and B are both parsimonious representations. We are lookingfor the parsimonious representation of the cross-sum of these two sets, whichwe will refer to as D. We will use D = A � B, which is the full, possiblynon-parsimonious cross-sum. Recall, that to be parsimonious means thatfor every vector, � in the set, D, R(�;D) 6= ;.Let us �rst focus on a single vector, �+ � from the cross-sum. If we didthe full cross-sum and then pruned the set, it is possible that to determinewhether or not R(� + �;D) = ; we will have to compare it against all theother jDj � 1 vectors. In the pruning routine, this will translate into an lpwith roughly jDj = jAjjBj constraints. We note that comparing it to thismany is often not necessary with the prune operation, but in the worst case
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0 b(s  )0 1Figure 3.10: Partitions for pwlc sets A and B.consider what possible combinations of vectors will yield a maximal vectorwithin this region. The �rst thing that becomes clear is that over this region,for all � in B no �1+� or �2+� will be larger than �0+� in R(�0; A). Thenext thing that becomes clear is that �0 + �2 cannot be maximal anywhereover this region either.In two dimensions, it is visually easy to see which combinations from Aand B will comprise D: any two vectors whose regions overlap. Figure 3.11shows the �nal partitions imposed by A�B; notice how the region bound-aries of A � B are de�ned by the region boundaries of A and B. This canalso be made geometrically precise. Therefore, if we want to determine ifR(�+�;D) = ;, it is equivalent to check the whether R(�;A)\R(�;B) = ;.In rough terms of linear program size, the former will have jAjjBj constraintsand the latter will have jAj + jBj constraints. More precise and thoroughanalysis are provided in Section 4.4.5.Although this provides the main motivation for the gip algorithm, it isnot entirely accurate and hides many of the more subtle aspects. First, theprune routine is more e�cient than always checking R(� + �;D) = ; foreach vector. Second, this approach always requires jAj+ jBj constraints andthe prune routine will do many lps which are smaller than this, since it
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0 1 1 1 2 1 2 2A+BFigure 3.11: The �nal partition for A�B and its relationship to the initialpartitions of A and B.processes the vectors in a more e�cient manner.The real contribution of the gip algorithm is that it is able to incorporatethe same insights from the prune routine into this geometric intersectionregion-based view.We will be using the following notation in the presentation of the gipalgorithm: D = A�BD = prune(D)bD � DbD� = f�+ b�jb� 2 B; (�+ b�) 2 bDgbD� = fb�+ �jb� 2 A; (b�+ �) 2 bDg :The gip algorithm uses the same routine as ip except that the prune(A�B) line is replaced with a call to the routine genCrossSum(A;B). The rou-tine for this new cross-sum routine is given in Table 3.9. It is nearly identicalto the prune routine (Table 3.4) with the exception of some notation and



88genCrossSum(A;B)bD := ;eD := A� Bwhile eD 6= ; := removeElement( eD)b := findRegionPoint(;�)if b 6= nulltheneD := eD [ fg := bestVector( eD; b)eD := eD � fgbD := bD [ fgend ifend whileD := bDreturn Dend genCrossSumTable 3.9: Routine for the gip cross-sum genCrossSum.the line b := findRegionPoint(;�). We call this the generalized cross-sum (gcs) algorithm. Note that in the algorithm eD itself is a subset ofD which serves as the set holding those vectors in D which have not beenchecked.At any given iteration of the while loop, a vector  = �+� is selected. Itis important to note that the implementation of this algorithm now requireskeeping track of how each  vector was constructed. Any of the followingsets can be used in the call to findRegionPoint:1. � = D2. � = (f�g �B) [ (A� f�g)



893. � = bD4. � = bD� [ (A� f�g)5. � = (f�g �B) [ bD�:Using the �rst set is equivalent to using Monahan's original pruning algo-rithm on the cross-sum set. The second case corresponds to the motivatingexample we gave for gip and e�ectively is computing the intersection ofR(�;A) and R(�;B). The third case corresponds to the original ip algo-rithm where the prune routine is used to prune the set. The last two casescombine the ideas of the second and third cases. The best gip algorithmwould choose whichever � was smallest when a given  is checked. In Chap-ter 4 we will analyze and empirically evaluate a slightly less e�cient form ofgip which always chooses one of the last two sets. Nonetheless we will �ndthis version to be more e�ective than the normal ip algorithm.The correctness of using either of the last two cases is not intuitivelyobvious from simply looking at their de�nitions. What these cases amountto is a prune operation with some additional constraints. For example,suppose we want to �nd all the vectors in B which yield useful vectors whencombined with the vector � fromA. This corresponds to using the fourth setfrom above. From our gip motivating example, we know that we only needto examine the set B over the region R(�;A). The example then searchedthe entire set B, one vector at a time, comparing it to all the other vectorsin B. However, using the same insight that is used in the prune routine,we can gradually build up a set of the useful � 2 B and compare eachsubsequent vector only to the current approximation instead of the entire



90set.This e�ectively does a prune operation on the set B subject to the ad-ditional constraints imposed by R(�;A). Given a particular vector, � + �,to check in the gip algorithm, we see that R(�;A) = R(�+�;A�f�g). Ad-ditionally, if we are simply �ltering the set B (with additional constraints),then the current approximation bD is comprised of some number of vectorsfrom B and we iteratively compare all the vectors in B to bD. However, ifin this comparison, we simply shifted all the vectors in B upwards, then theresults will not change, since shifting all the vectors simulataneously doesnot change their region boundaries. If we view � as the amount we shiftthen the �ltering algorithm can be viewed as operating on the set f�g �B,where the current approximation bD has components � + b� for the b� thusfar found4. This is precisely the notion that the set bD� captures, and wesee that R(�; bD) = R(�+ �; bD�).In the discussion above, we would refer to A as the resticting set sinceit de�nes the sub-regions over which we look for useful vectors from B. InSections 4.3.2 and 4.4.4, we will discuss in more detail a variation of the gipalgorithm which always chooses one of these last two cases.The following two theorems show that all of the sets above are valid touse to construct the parsimonious representation of the cross-sum.Theorem 3.3.1 If R(;�) = ; then  62 D.Proof To prove this theorem, we use the fact that for all the cases we have4Although adding an arbitrary vector to this set does not shift the vectors upwardsequally at all points, the shifting does not change the partition boundaries, which is allthat matters for this search.



91� � D. If the region is empty over a subset of D, then it certainly will beempty over the entire D set. By de�nition,  2 D if and only if R(;D) 6= ;.� This theorem shows that all vectors discarded are useless vectors. Nextwe show that all vectors added to bD are in D.Theorem 3.3.2 If 9b 2 R(;�) then 9� 2 eD such that b 2 R(�; D).Proof Let b = b� + b� = argmax2 bD b � , which is simply the best vectorin our current approximation bD at information state b. Because we arechecking the vector  = � + �, we know that  62 bD, since every time weadd a vector to bD we remove it from eD. Let � = argmax2D b � , which isthe best vector at b among all possible vectors in A�B, then we know thatb � � � b �  for any other . If we can show that b � � > b � b then we knowthat � 62 bD and could not have been removed from eD since R(�;�) 6= ;for any subset � of D.We now show that b � � > b � b for each �.1. � = DSince b 2 R(;D), this implies  = � and since  is not in bD, b � � >b � b.2. � = (f�g �B) [ (A� f�g)By nature of this set we have 8� 6= � 2 Bb � (�+ �) > b � (�+ �)b � � > b � �



92and 8� 6= � 2 A b � (�+ �) > b � (�+ �)b � � > b � � :Therefore, b�(�+�) > b�(�+�) for all other vectors (�+�) 2 A�B and = �. As in the �rst case, showing  = � implies that b � � > b � b.3. � = bDSince  62 bD, if b 2 R(; bD) then b �  > b � b. Since b � � � b � , bythe transitive property, b � � > b � b.4. � = bD� [ (A� f�g)This breaks down into two cases: � = b� and � 6= b�. If � = b� thenb 2 bD�, which means b 2 � and we revert to the argument of theprevious case where b �  > b � b implied b � � > b � b.When � 6= b� we compare  against A � f�g and, since the regionR(;�) is non-empty, we know that, as in the second case, 8� 6= � 2 Athat b � (�+ �) > b � (�+ �)b � � > b � � :This implies that b � (�+ b�) > b � (b�+ b�) and since b � � � b � (�+ b�),by transitivity we get b � � > b � b.5. � = (f�g �B) [ bD�:This case follows from the previous case by symmetry.



93�Since each pass through the loop removed a vector from eD, the algorithmwill terminate. Each vector removed from eD is either discarded or added tobD and Theorems 3.3.1 and 3.3.2 show that only useful vectors are added tobD and all vectors discarded are useless; therefore bD = D.We note that although choosing � = D or � = (f�g � B) [ (A� f�g)results in a sound algorithm, there is not much need to ever choose thesewhen the other choices are available. We know that bD � D, so choosing bDwould always be better than choosing D. Likewise, the last two sets bothsatisfy bD� [ (A� f�g) � (f�g �B) [ (A� f�g)(f�g �B) [ bD� � (f�g �B) [ (A� f�g) ;making either a more preferable choice. However, without either of theselast two choices, there are situations where choosing (f�g �B) [ (A� f�g)would be preferable to choosing bD; speci�cally when j bDj > jAj+ jBj. This isimportant since one might not want to add the extra bookkeeping complexityrequired for implementing the most general form of the generalized cross-sum.



943.4 Other Exact AlgorithmsIn Section 3.3, we covered the previous enumeration-based algorithms so,in this section, we will focus on the algorithms more directly related tothe witness algorithm, which search over information-space regions. Wediscuss four algorithms; two developed by Sondik [117] and two developedby Cheng [26]. Although the witness and incremental pruning algorithmswere advances over the previous exact algorithms, they owe a great dealto the previous algorithmic approaches. More detailed discussion of thesealgorithms and their drawbacks can be found in other work [22, 74].3.4.1 Sondik's Two-PassThe witness, ip and gip algorithms compute the value function one action ata time and then merge the resulting sets. This approach allows them to usetechniques which would not be directly applicable if they tried to construct�n directly. Although the witness algorithm was the �rst to use the singleaction value function approach by design, Sondik [117] uses this idea tomotivate the design of the one-pass algorithm. The �rst pass sweeps throughthe information space to construct �an and the second pass is required tomerge these sets. Sondik refers to this as the one-pass algorithm appliedto the single action problem, but since the one-pass algorithm requires aslightly di�erent approach, we use the name two-pass when referring to thisalgorithm.Section 3.4.2 presents the one-pass algorithm, but very little attentionhas been paid to the two-pass algorithm. Section 4.9 presents some empiricalresults concerning this algorithm, and here we present the algorithm both



95for its own merits and as the �rst step in explaining the one-pass algorithm.Recall from Section 3.3.3 concerning the computation of the cross-sumof two sets, that we could determine if a vector � + � would be useful byde�ning the region R(�;A)TR(�;B) and checking to see if it was empty.From Equation 3.8 we see that all the vectors we need to consider in con-structing �an are simply elements of a cross-sum over all observations. Simplyextending the argument we see that to determine if the vectoran =Xz a;zn= a;0n + a;1n + a;2n + : : :is useful, it is enough to check if the region\z R(a;zn ;�a;zn ) = R(a;0n ;�a;0n )\R(a;1n ;�a;1n )\R(a;2n ;�a;2n )\ : : :is empty or not. Even more useful is the fact that\z R(a;zn ;�a;zn ) = R(an;�an) ;which simply de�nes the actual region for a given vector in �an. This rela-tionship is shown in Figure 3.12.Sondik uses this fact to search the information space by de�ning a regionfor a vector, and then �nding all the adjacent regions. Table 3.10 shows aroutine for computing �an using the two-pass algorithm. The two main setsof interest are: b� which holds the vectors we have found and whose regionswe have already explored; and � which holds vectors which we have found,but whose regions we have not yet explored. Note that implementing this
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97twoPass(�n�1; a)b� := ;b := any information state� := fan(b)gdo an := removeElement(�)b� := b� [ fangR := Tz R(a;zn ;�a;zn )for each � 2 N (an)L := setUpTwoPassLP(an; �; R)if feasibleLP(L) and � 62 b�then � := � [ f�gend for each �until � = ;return b�end twoPassTable 3.10: The two-pass algorithm for constructing �an.imposters (see Page 60), could be present in the �nal �an set. In fact, it isnecessary to include these imposter vectors, since not all adjacent regions areformed by neighbors as the counter-example of Appendix E shows. For thecases where adjacent regions to R(;�an) are not formed by neighbors, thereare neighbors of  which will be imposters. These imposters will have theirown neighbors, di�erent from , which will eventually lead to the adjacentregion's vector.It may be possible to avert this problem by moving just beyond theborder of a region. This would ensure that we actually get an informationpoint that lies in the interior of the adjacent region. However, there isthe potential for missing regions if we move too much beyond the region's



98border. We have not explored any sophisticated methods for how this mightbe accomplished, so we are left with the unsatisfactory result of the twoPassroutine possibly returning a non-parsimonious set.As we will see in Section 4.1.4 that the witness algorithm has a worstcase running time that is polynomial in the model size and the sizes of �n�1and �an. If not for the imposter vector problem, we could say the same forthing for the two-pass algorithm; in theory, there could be an exponentialnumber of imposters even when the size of �an was relatively small.3.4.2 Sondik's One-passThe one-pass algorithm5 is based on the same ideas as the two-pass algo-rithm, but constructs �n directly, thus foregoing the second pass required tomerge the �an sets. In the two-pass algorithm the region Tz R(a;zn ;�a;zn ) issu�cient to describe the actual region R(an;�an) of a vector. This region isuseful in the one-pass algorithm, however, it is not su�cient, since it mustconsider the e�ects of the other actions.We do know that R(an;�n) � R(an;�an) and so this region constraint be-comes the starting point for de�ning the regions that the one-pass algorithmimposes.When we are �nding the vector for a point b, we must construct a vec-tor for each action and see which is maximal. Let a�(b) be the maximalvector with a� being the best action. Restricting our attention to the regionR(a�n (b);�a�n ), if the a(b) for a 6= a� are always as shown in Figure 3.13,5The one-pass algorithm is presented in both Sondik's thesis [117] and a journal arti-cle [116]. However, as has been discovered independently by many researchers [89, 76], theconstraint set de�ned in the journal article is inadequate for �nding the optimal solution.The details are also described by Cassandra [22].
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(b’)Figure 3.16: The case where the further restriction is unnecessary.borders.Despite some of the shortcomings mentioned, Sondik's one-pass algo-rithm was the �rst exact algorithm and provided the inspiration for all ofthe subsequent algorithms.3.4.3 Cheng's Relaxed RegionIn his thesis [26], Cheng presents a variation of the one-pass algorithm whichavoids the overly restrictive regions. Cheng refers to this as the relaxedregion algorithm, since he simply removes some of the one-pass algorithmsconstraints. The constraints imposed by the relaxed region algorithm are\z R(a;zn ;�a;zn )\R(a�n ; fanj8ag) ;which just omits the last region restriction discussed in the section on theone-pass algorithm.As mentioned in the one-pass discussion, allowing the regions to get toolarge can sometimes mask regions that lie in the interior. To combat this,



103Cheng has to do more than �nd a single point along a region boundary, whichis all that was required for the one-pass algorithm. To ensure that the relaxedregion algorithm doesn't miss any interior regions, it must check every vertexof the de�ned region. Cheng uses a vertex enumeration algorithm [80] on theregions de�ned and checks each vertex to see if a previously undiscoveredvector is maximal there.The computational complexity of doing this enumeration is exponentialin either the dimension of the state space or the number of binding con-straints of the region, whichever is smaller. In the relaxed region algorithm,the number of binding constraints is related to the number of observationsand the size of �n�1. This exponentiality is a direct result of the complexityof the number of vertices in a convex polytope [81]. Although this is a worstcase complexity result, it does seem to be the limiting factor in practice andrarely can the relaxed region algorithm solve a problem with more than 4or 5 states.3.4.4 Cheng's Linear SupportFor Cheng, the relaxed region algorithm was primarily the gateway to amore sophisticated algorithm, and one which was the inspiration behindthe witness algorithm; the linear support algorithm. From the ideas of therelaxed region algorithm, we see that it is possible to de�ne overly optimisticregions; i.e., a vector's region in the approximation is larger than it will bewith respect to the �nal �n set.In all the previous approaches discussed in this section, a vector is com-pared against other \potential" vectors that could be constructed from �n�1.



104With the linear support algorithm, Cheng introduced the idea of graduallybuilding up �n and comparing any new found vector to the current vectorsalready discovered. If we let b� � �n be the set of vectors as we build �n,then for a given b and its vector a�(b), we can de�ne the region R(a�(b);b�).Because b� is a subset of �n, we know that this region must be a superset ofthe actual region.Unfortunately, the linear support algorithm still requires the samemethodof checking each vertex to ensure no regions are missed. As discussed forthe relaxed region, this is not practical for problems with more than a fewstates. However, the idea of comparing a vector to an evolving subset of thetrue value function representation is very useful and appears in the prune,the witness and the gip algorithms.



1053.5 ConclusionsAlthough there were many preliminary results and basic theory developmentfor pomdps prior to 1970 [38, 2, 120, 1, 40, 3, 106, 101, 36, 109, 114], the�rst exact algorithm for solving the general pomdp problem was developedby Sondik [117, 116] under the name of the \one-pass" algorithm. Althoughthere was subsequent research [129, 87, 39, 26, 132], the computational com-plexity of the problems themselves, the intricacies of the algorithm and thelack of computing power of the day all combined and seemed to limit theamount of exploration and number of researchers involved in further devel-oping the theory and algorithms for pomdps.More recently there has been a resurgence of interest in the pomdpmodel and whereas the majority of the previous work was in developing theessential theory, this recent interest has been spurred on by trying to applythese theories to some more realistic problems and focusing on the algorith-mic issues. The witness, incremental pruning and generalized incrementalpruning algorithms are results of this more recent algorithmic perspective.The majority of the e�ort into exact or near exact algorithms for solvingpomdps has been based upon value iteration. However, Sondik [118] pre-sented a policy iteration algorithm for pomdps, though the implementationof this algorithm presents many challenges and has not yet been shown to beuseful for more realistic sized problems. More recently Hansen [45] has revis-ited the policy iteration approach, resulting in a simpler and more e�ectivealgorithm. Although the dynamic programming updates discussed in thischapter are the basis of value iteration solutions, Hansen's policy iteration



106algorithm uses these dp updates in his policy improvement phase. Thus,more e�ective exact (or approximate) dp updates can translate directly intomore e�ective policy iteration algorithms.



Chapter 4Analysis of Exact AlgorithmsWe begin this chapter with a brief review of some existing complexity re-sults concerning the solution of pomdps in general and some speci�c resultsconcerning pomdp algorithms. We will see that four algorithms, two-pass,witness, ip and gip, fall into the same general complexity class. We thenundertake a detailed analysis of these four algorithms. Since we will also seethat the general single step dp problem of computing Vn(�) from Vn�1(�) ishard, we focus on the complexity of computing V an (�) from Vn�1(�). All of thealgorithms considered here are methods for constructing �an from �n�1 andhave essentially the same asymptotic worse case complexity when viewedsimply from the problem size. However, the more detailed analysis in thischapter shows that some algorithms are more e�cient than others.We approach the analysis from the number and sizes of the linear pro-grams that need to be solved. The dependence upon linear programmingis clear from the algorithm speci�cations, but we have also veri�ed this ona range of problems and found that 90% to 95% of the computation time107



108is spent in the linear programming routines1. Since detailed analysis of thelp algorithms and their interaction with the speci�c lps set up in tryingto solve a pomdp is quite complex, we simplify the analysis to incorporateonly the number of lps and the total number of constraints needed for eachalgorithm. We will see towards the end of this chapter that the empiricalevidence supports the validity of this analysis.Our analysis will proceed from the simplest routines upward to the fullalgorithms. We �rst derive formulas for the numbers and sizes of the lps foreach algorithm and then proceed to compare them. We ignore the numberof variables in the lps, since this corresponds to the number of states in thepomdp and is constant for a given problem across algorithms. For all ofthe lps, there is an additional constraint that con�nes the solutions to beprobability distributions, since the variable is the information state vector.We ignore the non-negativity constraints, since non-negativity is a naturalconstraint for lp solvers. However, we will include the simplex constraint,Ps b(s) = 1, since this explicitly needs to be stated in the lp and since itsomission would unfairly favor algorithms that required a lot of small lpsover algorithms that do fewer, but larger lps.We preface the remaining sections of this chapter by noting that dueto the computational complexity of solving a pomdp, exact algorithms bythemselves are not much use. However, this does not discredit the use orneed to look at these algorithms. Exact algorithms can often directly lead toapproximations or provide insight into the solutions which can be exploited1We used an e�cient commercial lp solver to ensure this was not an artifact of theimplementation.



109in other algorithms. Furthermore, some of the subproblems solved in thecourse of the exact algorithms can be used in approximation schemes [108,132].4.1 Computational Complexity of POMDPsBefore undertaking our more detailed analysis, we present the existing com-plexity results for solving pomdps in general, solving pomdps via valueiteration and the relative complexity of the existing algorithms.4.1.1 BackgroundBefore discussing the existing complexity results on mdps, we will verybriey introduce the basic ideas we will need from computational complexitytheory. This simpli�ed view will provide enough background to understandthe main complexity results as they pertain to mdps. Much more compre-hensive treatments of computational complexity theory are found in manytextbooks [66, 47, 124].Theoretical computer science has been useful in classifying the problemsaccording to their computational hardness. The class P represents the easyor tractable problems which can be solved in a polynomial amount of time.The class NP is a broader class, incorporating P, and includes problemsthat are typically accepted to be hard or intractable. Problems that areNP-complete are the hardest problems in the class NP and are problemswhich are assumed to take an exponential amount of time. This idea ofcompleteness extends to any of the problem classes; it is the set of problemsthat are the hardest to solve in the class. Although P � NP, it is not



110known whether P is a proper subset or not, though the general belief in thetheoretical computer science community is P 6= NP.There is even a broader class, PSPACE, which are the problems whichcan be solved in a polynomial amount of space. The class P is included inthis class, P � PSPACE, since any algorithm that runs in polynomial time,can only consume a polynomial amount of resources. Slightly less intuitive,is the fact that NP � PSPACE. To understand this requires a more formalde�nition of NP, which we will not give here. Even for this wider class,whether equality holds in either case is an open theoretical question. Evenin the unlikely case that P = NP, this will not necessary imply that P =PSPACE.Therefore, we adopt the commonly accepted viewpoint: problems in Pare ones that are considered solvable; NP-complete problems are consideredto require an exponential amount of time; and PSPACE-complete problemsare considered to be even harder than NP-complete problems.4.1.2 Complexity of Exact AlgorithmsCOMDPsWe can solve the in�nite horizon comdp problem by casting it a (reasonablysized) lp [78, 63] and solving. Since the complexity of linear programming isa well known P-complete problem, we can see that solving an in�nite horizoncomdp is easy from a complexity perspective. More generally, for both thein�nite and �nite horizon comdp problem, computing the optimal policy isa P-complete problem as shown by Papadimitriou and Tsitsiklis [95].



111POMDPsUnfortunately, the nice computational aspects of the problem disappear withthe introduction of partial observability. As was also shown by Papadim-itriou and Tsitsiklis [95], �nding the optimal policy for even a simpli�ed�nite horizon pomdp is PSPACE-complete. In their work, they consider apomdp where jZj < jSj, the observations are deterministic and where thehorizon length is T < jSj. Clearly, the more general pomdps discussed herecan be no easier to solve for the �nite horizon. Even under many otherforms of restrictions in model size, horizon length and type of policy, exactpomdp solutions are hard [20, 92].Also pointed out by Papadimitriou and Tsitsiklis is the unlikeliness ofeven being able to represent a �nite horizon policy with a polynomial-sizeddata structure. Thus, even if we were willing to expend exponential (ormore) time to compute the optimal policy, an optimal controller based uponthe resulting policy would be impractical to implement.The situation appears to be even worse for the in�nite horizon case.Papadimitriou and Tsitsiklis speculated that no �nite algorithm will be ableto exactly compute the in�nite horizon policy and others have suggestedthat the problem is undecidable.Single DP StepWith the result that �nding optimal �nite horizon solutions for pomdps ishard, even for small horizons, we immediately see that just one dp stage(i.e., horizon equals 1) is also hard. This results from the �n set of vectorsproduced from �n�1 possibly having size jAjj�n�1jjZj, which is exponential



112in the number of observations. This corresponds to every possible vector thatcould be constructed have some non-empty useful region. The conclusionfrom this is that we cannot have a polynomial-time algorithm for computing�n from �n�1.The question that arises �rst is whether or not there exist pomdp prob-lems can really exhibit this worst case behavior. Littman [72] shows justsuch a class of pomdps, which leads to the question of whether or not usefulpomdps (i..e, ones that need to be solved) exhibit this worst case behavior.While this question remains unanswered, predominantly due to the lack ofmany such models, we then are led to wondering how hard it might be tosolve pomdp problems which do not exhibit this worst case behavior; i.e.,j�nj is not exponential in jZj.This leads to considering a class of problems that are polynomial output-bounded, which simply says that the size of the answer is restricted to bepolynomial in the size of the input. Littman [72] has also shown that thistoo is a hard problem.4.1.3 Complexity of ApproximationsWe now briey divert ourselves from exact solutions to discuss some com-plexity results for approximate solutions. Considering the computationalchallenges presented by pomdps, Chapters 5 and 6 will explore developingapproximate solutions. Unfortunately, little can be said about theoreticalguarantees of the quality of their solutions. In the best scenario, we would beable to develop algorithms with guaranteed performance criteria in relationto the optimal answer. There is an entire sub-�eld of computer science which



113addresses approximation algorithms from this perspective. Some problemswhich are hard to solve exactly have a corresponding easy approximationalgorithm which can give a guarantee on the closeness of the approximation.Within this sub-�eld, researchers have also come across classes of prob-lems which are just as hard to approximate as they are to compute exactly.Unfortunately, pomdps are one such class of problems, even for the �nitehorizon case. Condon and Feigenbaum [30] have some results about thehardness of approximating some PSPACE-hard problems, which translatenearly directly into the hardness of approximating �nite horizon pomdpproblems. A thorough complexity analysis of pomdps and their hardness ofapproximation results can be found in the work by Goldsmith, Mundhenk,Lusena and Allender [44, 91, 92]. In this work, they show complexity resultsfor a broad range of pomdps under various restrictions, none of which havetractable algorithms for their solution.4.1.4 Complexity of POMDP AlgorithmsReturning to the realm of exact algorithms, and having left o� with theunpleasing result that performing even a single dp step is hard, we canattempt to narrow the problem further to see if there is any part of solvingpomdps which may be tractable.Recall that the algorithms, witness, ip, gip and two-pass, do not con-struct �n directly, but instead consider the sub-problem of constructing the�an sets and merging the results. The �rst way we could consider approach-ing the problem is to address the complexity of constructing �an from �n.Unfortunately, there is more bad news, since the sizes of the �an can be ex-



114ponential in the number of observations; i.e., as large as j�n�1jjZj. The factthat such worst case problems do exist is an immediate corollary of therebeing worst case problems for the full �n construction.As we did for the single dp step case, we could then restrict our at-tention to problems where the answer is not exponential in the size of theinputs, where here the inputs are S, A, Z and �n�1. This class of pomdpsare referred to as polynomial action output-bounded and present the �rstrestricted class of pomdp problems which are tractable. We will see as im-mediate results from the detailed analysis to follow that the witness, ip andgip algorithms can all solve this class of problems in polynomial time in theworst case. We will also see that the two-pass algorithm has a best casecomplexity that allows the solutions of these problems in polynomial time,though the worst case is exponential.Concerning the previously existing algorithms, the batch enumerationalgorithm of Section 3.3.1 and the linear support algorithm of Section 3.4.4,we have discussed how these are exponential time algorithms for construct-ing �n. This is not surprising, since any algorithm for constructing �n musthave a worst case exponential running time. However, even if we suitablyadjusted these algorithms to solve polynomial action output-bounded algo-rithms, they still exhibit exponential worst case performance. The batchenumeration still needs to enumerate an exponential number of vectors andthe linear support algorithm still needs to enumerate vertices of convex poly-topes. We note that the suitable adjustment of Sondik's one-pass algorithmfor attacking polynomial action output-bounded pomdps is exactly the two-pass algorithm, whose computational characteristics we discuss below in



115detail.4.2 The prune AlgorithmThe prune routine from Table 3.4 in Section 3.1.1 is the fundemental build-ing block for many of the algorithms we analyze, so we begin the analysishere. The prune routine as presented, starts with a single set of vectors,�, to be pruned and an initializes the set it constructs, b�, to be the emptyset. In truth, b� can be initialized with any number of useful vectors fromthe set �. This is discussed further in Section 4.7.1, but for now we assumeit is initialized to the empty set.For notational simplicity, we will let j�j = G and let j�j = V be the sizeof the �nal parsimonious set. Thus we will express the complexity in termsof the initial and �nal sizes of the sets.Total LPsThe total number of lps required is equal to the number of vectors in �.Without any prior knowledge, we must check every vector to see if it isuseful or not. Notationally this isPRUNELP(G; V ) = G :4.2.1 Total ConstraintsThere are at least three ways we could attempt to characterize the totalnumber of constraints required: worst case, best case and average case.These cases arise because the actual sizes of the lps that are solved depends



116upon the number of useless vectors and the order in which we process thevectors in the loop of the prune algorithm.Total Constraints - Worst caseThe worst case for the prune algorithm is when the sizes of the lps getas large as possible as quickly as possible. Another way to see this is thatthe worst case is when every useless vector must be compared against everyuseful vector. Thus the worst case is when the �rst V vectors chosen areuseful vectors. The remaining G� V useless vectors will then be comparedto all V vectors. The �rst lp has only the simplex constraint and as eachuseful vector is added, the number of constraints increases by one. Whenall useful vectors have been uncovered, all the subsequent lps for the uselessvectors will have a constraint for each of the V vectors plus the simplexconstraint yieldingPRUNEworst(G; V ) = VXi=1 i+ G�VXi=1 (V + 1)= V (V + 1)2 + (G� V )(V + 1)= (V + 1)�G� 12V � :Note that it is very unlikely that the vectors would be processed in such anunfavorable manor.Total Constraints - Best caseTo get a better feel for how loose or tight the worst case is, we look at theabsolute best case for the prune algorithm. This case is just the oppositeof the worst case and in some regards, even more unlikely to happen. In



117this case, the �rst lp contains only the simplex constraint and for any givenpoint returned, it must lead to a useful vector. However, after this, if thisone vector, by itself, dominates all of the useless vectors in G, then wecan eliminate all the useless vectors using an lp with only 2 constraints.Processing the remaining useful vectors afterwards yieldsPRUNEbest(G; V ) = 1 + G�VXi=1 2 + V�1Xi=1 (i+ 1)= 1 + 2(G� V ) + V (V � 1)2 + V � 1= 2G+ 12V (V � 3) :Total Constraints - Average caseAs mentioned, both the best and worst case analysis for the prune algorithmaccount for improbable orders of vector selection. In an attempt to get ameasure closer to reality, we suppose that the vector selection proceeds asfollows: at each iteration of the loop, we are equally likely to select any of theremaining vectors. Furthermore, we assume that if we select a useless vector,that it does not lead to an information state that would lead to �nding auseful vector. Note that in general, we could select a useless vector, whichcompared to the current approximation looks useful and the informationstate at which it looks useful will serve to �nd the true useful vector. Thisis not completely realistic either, since �nding a useful vector is more likelythan we assume here, since we assume useful vectors are found only byselecting them directly for checking against the current approximation.However, given this assumption we can de�ne the average number of



118constraints with the recursionC(i; g; v) = i+ 1 + g � vg C(i; g� 1; v) + vgC(i+ 1; g � 1; v � 1) ;where i is the number of useful vectors found so far, g the total number ofvectors left to check and v the number of the remaining vectors in g whichare useful. The base cases areC(i; 0; 0) = 0C(i; g; 0) = i+ 1 + C(i; g� 1; 0)C(i; x; x) = i+ 1 + C(i+ 1; x� 1; x� 1) :This recursion has the closed formC(i; g; v) = g �v2 + i+ 1�� v2 ;which can be veri�ed inductively. This makes the average number of con-straints PRUNEave(G; V ) = 12V (G� 1) +G :Note that since �nding useful vectors is more likely than we assume, thetrue average case is larger than this quantity. However, analyzing the trueaverage case requires intimate knowledge of the shape of the value functionand the other useless vectors. This would require sophisticated analysisdealing with probability distributions on pwlc value functions and vectors.The worst case provides an upper bound and this unrealistic average caseprovides a lower bound, which is more than su�cient for our purposes here.



1194.3 Cross-sum AlgorithmsIn this section we look at three ways in which the parsimonious representa-tion of the cross-sum of two sets can be computed. This will correspond tovariations available in the ip and gip algorithms. For all of this discussion,we will assume that the sets A and B are the two sets being cross-summed,where jAj = N and jBj = M and the �nal parsimonious representationto be computed is of size C. Without loss of generality, we will assumethat N � M , making A the larger set. Additionally, we assume that thesets A and B are themselves parsimonious, which constrains the size of theresulting set, N � C � NM .4.3.1 Normal Cross-sumWe de�ne the normal cross-sum (ncs) to be the algorithm that simplyenumerates all possible vectors in the cross-sum and then uses the pruneroutine to reduce it to its parsimonious set. This is the exact approach usedin the regular version of ip. As a result, the analysis for this is simply theanalysis for the pruning algorithm. We haveNCSLP(N;M;C) = PRUNELP(NM;C)= NM ;NCSworst(N;M;C) = PRUNEworst(NM;C)= (C + 1)�NM � 12C� ;NCSbest(N;M;C) = PRUNEbest(NM;C)= 2NM + 12C(C � 3) ;



120and NCSave(N;M;C) = PRUNEave(NM;C)= 12C(NM � 1) +NM :4.3.2 Restricted Region Cross-sumRecall from Section 3.3.3 that there were �ve di�erent sets to choose fromin the gip algorithm. Since the gip algorithm is essentially the ip algo-rithm with a more general cross-sum operation, we de�ned the cross-sumoperations of the gip algorithm as generalized cross-sums (gcs).Consider the gcs algorithm where instead of allowing the freedom tochoose from among the �ve sets shown on Page 88, we analyze the situationwhen we decide up-front which set we will use, and use that set for everyiteration of the cross-sum. We de�ne the restricted region (rr) cross-sum asthe gcs algorithm where one of either� = bD� [ (A� f�g)or � = (f�g � B) [ bD�is always chosen. Note that the variation of gcs which always chooses � = bDis simply the ncs algorithm.The analysis for both of the choices above is exactly the same; the onlydi�erence is in which set we choose to be the restricting set (see Page 90).For those two cases above, the former has A as the restrictor and the latterhas B as the restrictor. We will see that deciding to make the larger or



121smaller of A and B the restrictor set does have an inuence on the sizes ofthe lps to be solved. Later, on Page 124, we discuss the e�ects of the setordering in the rr cross-sum. For the analysis of rr we assume that wehave chosen the set � = bD� [ (A � f�g). Since we need to be sensitive towhich set is the restrictor, we de�ne F to be the size of the restricting setA and let the other set, B, have size L and do not impose any restrictionupon their relative sizes.We will see that the rr algorithm is just an instance of gcs and as suchrequires just as many lps and any other non-optimized variation of gcs.Thus the number of lps required is FL as discussed below in Section 4.3.3,We can simplify the analysis of the total number of constraints by view-ing the rr algorithm as simply the prune routine with an extra set of con-straints for each lp. The rr algorithm is essentially attempting to prune thevectors in B, but instead of looking at the entire information space simplex,is restricted to the region R(�;A). This is then repeated for each � 2 A,hence our use of the term restricting set for the set A.Using this insight, then for all cases we see that the total number ofconstraints for all cases isRR�(F; L; C) = FXi=1 [PRUNE�(L;Ci) + L(F � 1)] ; (4.1)where F is the size of the restrictor set, L the size of the other set and Ci arethe number vectors we �nd useful from B over the restricted region of theith vector from A. The asterisk in the subscript serves as a wild-card to bereplaced with either best, worst or ave. Note that PiCi = C, 8i; Ci � 1and C � max(F; L). The L(F � 1) term in the summation arises from the



122fact that for each region we must do L lps, and that we have an additionalF � 1 constraints to restrict the lp to only consider the region R(�;A).Total Constraints - Worst caseWe now plug in and show how to simplify the closed form for the worst casenumber of constraints for the rr algorithm.RRworst(F; L; C) = FXi=1 [PRUNEworst(L;Ci) + L(F � 1)]= FXi=1 PRUNEworst(L;Ci) + F (F � 1)L= FXi=1 �(Ci + 1)�L� 12Ci��+ F (F � 1)L= FXi=1 �LCi + L� 12C2i � 12Ci�+ F (F � 1)L= L FXi=1 Ci + FL � FXi=1 12C2i � FXi=1 12Ci + F (F � 1)L :Recalling thatPi Ci = C we getRRworst(F; L; C) = LC + FL� FXi=1 12C2i � 12C + F (F � 1)L :Although we do not necessarily know the values of the individual Ci terms,since this is a worst case analysis we can replace that term PFi=1 C2i withanything that is guaranteed to be smaller, since by too little we preserve theworst case criteria.If we have the general problem of minimizing Pni=1 x2i subject to theconstraint y =Pni=1 xi, then the minimum is achieved2 when 8i; xi = y=n.2Thanks to Hagit Shatkay for verifying this.



123For our case this means thatFXi=1 �CF �2 � FXi=1 C2i :Using this simpli�cation, we getRRworst(F; L; C) � LC + FL � 12 FXi=1 �CF �2 � 12C + F (F � 1)L� LC + FL � C22F � 12C + F (F � 1)L� F 2L+ LC � C2 �CF � 1� : (4.2)Note that this puts an upper bound on the worst-case complexity of the fullygeneral gcs algorithm, since the rr algorithm does not have the freedom tochoose a possibly smaller set to compare vectors against.Total Constraints - Best caseWe omit the full derivation of this case, but the simpli�cations made use ofthe same arguments as in the worst case scenario. Here we use the samesimpli�cation of replacingPFi=1 C2i withPFi=1(C=F )2, which is valid becausethis quantity is added here and not subtracted.RRbest(F; L; C) = FXi=1 �PRUNEbest(L;Ci) + L(F � 1)�= F 2L+ FL + C2 �CF � 3� :It is not obvious that is quantity is smaller than the worst case, but therelationships of the sizes of F and L to C and restriction on the maximumsize, C � LF , does indeed lead to a smaller quantity.



124Total Constraints - Average caseWe will not need the derivation of the average case here, though it can befound by substituting directly from Equation 4.1, Note that the substitutionof Ci = C=F is still reasonable, since if we are looking to �nd an averagecase, then assuming that the average case equally distributes the C vectorsamong the F regions would require exactly this substitution.Set ordering in RRFrom Equation 4.2 we see that the worst case number of constraints is greatlye�ected by the ordering of the sets in the cross-sum. The dominating term isF 2L (unless C > F 2) which hints to select the smallest set as the restrictingset. Even in the worst case where C is as large as possible, C = FL, thetotal constraints becomesF 2L+ FL2 � 12FL(L� 3) ;and we would still prefer to have the smaller set as the restrictor.We empirically ran millions of examples for varying values of F and L andusing the smaller set as the restricting set never results in more constraints.Although somewhat tedious, we believe that it can be proven that the worstcase for choosing the smallest set as the restrictor is always better than theworst case of choosing the larger set. Given that this is just worst case, andin actuality choosing the larger could be better, we have not expened thee�ort on the proof, however there are de�nitely cases where the best case forchoosing the larger set is better than the worst case for choosing the smallerset.



125Therefore, in the remainder of the discussion and for our empirical evalu-ations, the restricted region cross-sum will imply that we choose the smallestset as the restricting set. Using F =M , L = N and N �M we getRRworst(M;N;C) =M2N +NC � C2 � CM � 1�RRbest(M;N;C) =M2N +MN + C2 � CM � 3� :4.3.3 Generalized Cross-sumTotal LPsRegardless of how the choices for the � are made, all of the variationsdiscussed require eventually checking all NM vectors, ignoring the possibleuse of the ideas in Section 4.7.1. Therefore, for any version of the generalizedcross-sum, the total number of lps is the same:GCSLP(N;M;C) = PRUNELP(NM;C)= NM ;which is no di�erent from the ncs cross-sum's total lp requirements, sinceit is an instance of gcs.Total ConstraintsUnfortunately, the most general, and most e�cient, version of gcs is hardto directly analyze for the total number of constraints. The gcs algorithmprovides the freedom to choose whichever of the �ve sets are smaller. Do-ing this in general requires knowing the exact order vectors are chosen andthe results of all previous iterations, which are dependent upon the exact



126structure of the previous and resulting value functions as well as the imple-mentation speci�cs. Without this knowledge, we would need to put someprobability estimates on these quantities which would be a impossible with-out knowing the detailed structure of the problem instance. However, wehave examined two variations of gcs, ncs and rr, which both use a singleset for every iteration. Since the gcs algorithm has the freedom to choosebetween these sets (and others) the analysis for those two variations mustprovide an upper bound on the complexity of the gcs algorithm. Thus, wecan characterize the gcs algorithm withGCS�(N;M;C) = min (NCS�(N;M;C);RR�(M;N;C)) :We will see in Section 4.8.1 that for the worst case total constraintsthe RRworst(M;N;C) is almost always smaller than NCSworst(M;N;C).Keep in mind that this is merely an upper bound on the most general formof gcs.4.4 Incremental PruningWith the analysis of the various cross-sum algorithms in hand, we can nowembark upon analyzing the incremental pruning algorithms, since they aresimply repeated applications of the cross-sum operations. Note that our ref-erences to the cross-sum algorithms here are for computing the parsimoniousrepresentation of the cross-sum.4.4.1 Set Ordering in IPThe �rst issue that arises in the context of the incremental pruning algo-rithms is the set ordering. Recall from Equation 3.10 that the ip algorithm



127is given by interleaving prune operations in the expression�a;0n � �a;1n � �a;2n � : : :� �a;jZj�1n :However, since the cross-sum operation is both associative and commutative,we are free to order and group the individual �a;zn sets in any way desired.Note that this is also an issue with the gip variations, except that the pruneoperation is replaced with the more general gcs algorithm of Table 3.9.We have seen that the ordering of the sets could have an impact onthe number and sizes of the lps that need to be solved, especially in therestricted region cross-sum variation. Additionally, this problem seems tohave the same basic avor as the matrix chain multiplication problem [31],which is a problem where the proper parenthesization can have a profounde�ect on the computational requirements. As in matrix chain multiplication,we could postulate using dynamic programming to decide the best parenthe-sization, where we use the formulas for the various cross-sum operations tocompute the number and sizes of the lps. However, unlike the matrix mul-tiplication operator, the cross-sum operation is commutative, which meansthat we have to choose an ordering as well as a parenthesization. Anotherdi�erence is that in matrix multiplication, we know the size of the resultingmatrix, where in general we will not know the resulting size of the parsimo-nious representation.Recall from Table 3.8 that the ip algorithms maintain a set, 	, of setsof vectors and at any given point in time selects two sets, computes theparsimonious representation of the cross-sum and puts the result back into	. Among the more obvious choices for deciding which two sets to choose



128are � selecting the two smallest sets (ip-ss),� selecting the two largest sets (ip-ll) or� selecting the largest and the smallest sets (ip-sl).Somewhat surprisingly, even though we will not know the sizes of theresulting cross-sums, we can completely characterize the parenthesizationfor the ip-ll and ip-sl cases. To show this, assume that we have a set ofsets of vectors 	 = f�ij1 � i � ng where 8j > i; jGij < jGj j, i.e., the setsare indexed according to size. Then we have(�1 � (: : :� (�n�2 � (�n�1 � �n)) : : :)) (ip-ll)and ((: : :(((�n � �1)� �2)� �3)� : : : )� �n�1) (ip-sl) :The reason these orderings are completely determined is the fact thatjprune(�i � �j)j � max(j�ij; j�jj) :Whenever the largest set of the group is selected, we are assured that theresult will be as large as the chosen set, which means that we will select theresulting set on the next iteration.For the ip-ss case it is impossible to completely characterize the setselection ordering. Although the �rst cross-sum is guaranteed to select �1and �2, subsequent selections depend upon sizes of the resulting sets. Ifjprune(�1 � �2)j < j�4j, then the result of �1 � �2 will next be selected



129along with �3. If jprune(�1 � �2)j is larger than both �3 and �4, then thenext cross-sum computed will be �3 � �4.4.4.2 IP Analysis PreliminariesIn order to simplify the analysis, we must make some unrealistic assump-tions which will end up leading to very loose worst-case complexity results.We note that more complicated, but tighter upper bounds are possible byparameterizing the sizes of the cross-sum results. Let j�anj = Q, jZj = Z andassume 8z; j�a;zn j = j�n�1j = M . The latter assumption is somewhat rea-sonable and also conservative, since we do know that 8z; j�a;zn j = j�n�1j and8z; j�a;zn j � j�n�1j . Note that under these assumptions we have Q �M .As outlined in Section 4.4.1, the order which we select the sets doesmatter, however, for simplicity we will assume that the order is predeter-mined. The worst case for the ip algorithm is when the cross-sum setsget as large as possible as quickly as possible. Because the �nal set sizeis Q, none of the intermediate sets can be larger than this quantity, sincejprune(A� B)j � max(jAj; jBj). Thus, the worst case would be when the�rst cross-sum produces a set of size Q and we use this set in all the sub-sequent cross-sums. Note that this is very pessimistic, since it may be thatjAjjBj < Q, in which case it is impossible for their cross-sum to be as largeas Q. This shows that using the relative sizes of M and Q could yield atighter, though more complex upper bounds.Under the assumptions that the �rst cross-sum yields the largest possibleset and that all �a;zn are the same size, always choosing the resulting cross-sum set and another one of the �a;zn sets is equivalent to both the ip-ll and



130ip-sl variations.In particular, we can write the complexity asIP�(Q;M;Z) = CS�(M;M;Q) + ZXi=3 CS�(M;Q;Q) ;where CS�(M;Q;Q) is the complexity of a particular cross-sum operationsuch as NCS�(�; �; �) or RR�(�; �; �). This shows the �rst cross-sum of two setsof size M , followed by Z � 2 cross-sums with one of the �a;zn sets and theworst scenario of a size Q set. Using this, a conservative upper-bound canbe derived, though the algebra gets cumbersome. To further simplify, at theexpense of being even more conservative we assume that the �rst cross-sumis also done using M and Q sized sets and we get the simpler expressionIP�(Q;M;Z) = (Z � 1)CS�(M;Q;Q) : (4.3)Total LPsUsing Equation 4.3 we can substitute in either NCSLP(�; �; �) or RRLP(�; �; �),but as discussed in Section 4.3.3 all cross-sum variations will require the samenumber of lps (ignoring the issues to be discussed in Section 4.7.1). This isIPLP(Q;M;Z) = (Z � 1)GCSLP(M;Q;Q)= (Z � 1)MQ ; (4.4)which, using O-notation, is O(ZMQ).4.4.3 Normal Incremental PruningWe begin our analysis with the simplest variation of the the ip algorithm forconstructing �an, which always chooses � = bD for the cross-sum operations.



131As mentioned, choosing this is equivalent to prune(A�B). This is simplyusing the ncs cross-sums in the ip algorithm, so we de�ne this variation of ipas normal incremental pruning (ip-ncs). We assume that we have alreadyconstructed all the �a;zn sets and that they are parsimonious.Total Constraints - Worst caseThe regular ip variation uses the ncs algorithm, and we getIP-NCSworst(Q;M;Z) = (Z � 1)NCSworst(M;Q;Q)= (Z � 1)�(Q+ 1)(MQ� 12Q)�= (Z � 1)�M � 12� (Q+ 1)Q ; (4.5)which is O(ZMQ2).Total Constraints - Best caseIP-NCSbest(Q;M;Z) = (Z � 1)NCSbest(M;Q;Q)= (Z � 1)�2MQ+ 12Q(Q� 3)�= (Z � 1)�2M + 12(Q� 3)�Q ; (4.6)which is O(ZQ2), since Q �M .4.4.4 Restricted Region Incremental PruningRecall that gip is merely the ip algorithm where the generalized cross-sumalgorithm is used. As previously discussed, analyzing the gcs algorithmdirectly is di�cult since it depends upon keeping the history of the previousiterations to know which set would be chosen. However, we can bound



132the gcs total constraints by the minimum of the ncs and rr cross-sumvariations. In this section we analyze a variation of the ip algorithm whichalways uses rr for the cross-sum operations and refer to this variation asthe restricted region incremental pruning (ip-rr) algorithm. This will beused as the upper bound on the gip algorithm.Total Constraints - Worst caseIn the worst case we haveIP-RRworst(Q;M;Z) = (Z � 1)RRworst(M;Q;Q)= (Z � 1)�Q2 +M2Q� Q2 � QM � 1��= (Z � 1)��1� 12M �Q+M2 + 12�Q ; (4.7)which is O(ZM2Q+ ZQ2).Total Constraints - Best caseThe best case total constraints isIP-RRbest(Q;M;Z) = (Z � 1)RRbest(M;Q;Q)= (Z � 1)�M2Q+MQ+ Q2 � QM � 3��= (Z � 1)�M2 +M + 12 � QM � 3��Q ; (4.8)which asymptotically is O(ZM2Q+ ZQ2=M).4.4.5 Generalized Incremental PruningWithout being able to exactly characterize the generalization of the cross-sum operation (gcs), we cannot precisely analyze the fully general gip algo-



133rithm. However, as previously discussed, the minimum of ip-ncs and ip-rrprovides an upper bound on the gip algorithm.4.5 WitnessRecall from Section 3.2 and Table 3.7 that the witness algorithm is predom-inantly a loop over agenda items. For each iteration of the loop there areonly two possible outcomes; either an item from the agenda is discarded, orwe �nd a new vector to add to b�, which is the set of vectors of �an foundthus far. As in the incremental pruning analysis we let j�anj = Q, jZj = Zand j�a;zn j = j�n�1j = M for all observations z. When we add a vector to�an, we also add all its neighbors to the agenda, which amounts to addingZ(M � 1) items to the agenda. Thus the total number of agenda items thatmust be processed is QZ(M � 1).Total LPsSince each iteration of the witness algorithm's loop requires an lp, the totalnumber of lps required is the number of times the loop is executed. Sinceeach iteration either removes an agenda item or adds a vector to b�, the totalnumber of lps is the total number of agenda items plus one for each vectoradded to b�. This is given byWITNESSLP(Q;M;Z) = QZ(M � 1) + Q� 1 ; (4.9)where we only need Q � 1 lps for building up b�, since b� is initialized witha vector prior to the execution of the loop. Asymptotically, the witnessalgorithm requires O(ZMQ) lps.



134Total Constraints - Worst caseThe worst case analysis for the total number of constraints for the witnessalgorithm requires an approach similar to the analysis for the prune algo-rithm. There is a sequence of lps to be solved and the sizes of these lps aremonotonically non-decreasing. The worst case is where the lps get as largeas possible as quickly as possible. For this to happen in the witness algo-rithm requires completely constructing �an before removing any items fromthe agenda. Thus the �rst Q� 1 lps result in the addition of a vector to b�after which the agenda will contain all of the QZ(M � 1) possible agendaitems.Since b� is initialized with a vector, the �rst lp requires 2 constraints,comparing an agenda item against the initial vector added to b� and thesimplex constraint. Since each of the �rst Q� 1 lps are adding to b�, eachlp will have one more constraint than the previous, up until jb�j = Q � 1.Note that the lp that �nds the last useful vector will do so when jb�j = Q�1,thus the �rst lp done when jb�j = Q is actually done for the �rst agendaitem removed. Finally, to remove each item from the agenda requires an lpwith Q+ 1 constraints and we haveWITNESSworst(Q;M;Z) = Q�1Xi=1 (i+ 1) +QZ(M � 1)(Q+ 1)= 12Q(Q� 1) +Q� 1 +QZ(M � 1)(Q+ 1)= (Q� 1)�Q2 + 1�+QZ(M � 1)(Q+ 1) ;(4.10)which is O(ZMQ2). Note that similar to the prune algorithm, the proba-



135bility of this worst case result is relatively small.Total Constraints - Best caseInverting the worst case total constraint argument, the best case is wherethe sizes of the lps stay as small as possible for as long as possible. For thewitness algorithm, this is a little more complicated than the arguments usedfor the best case of the prune algorithm. Recall from the prune analysis onPage 116 that we assumed that all the useless vectors were removed beforewe found a second useful vector. A similar argument, applied to the witnessalgorithm, would say that we removed all the QZ(M�1) agenda items whilethere was only a single vector in b�. However, agenda items are only addedwhen we �nd vectors to add to b�, so unless the size of b� increases, we cannotprocess every item from the agenda.To capture the interaction between the size of b� and the number of itemson the agenda, for the best case we assume that we always �nd the nextvector to add to b� with the very last item currently on the agenda. Thusthe general progression is1. add a vector to b�,2. add the Z(M � 1) neighbors of the vector to the agenda,3. use an lp with jb�j + 1 constraints to remove each of Z(M � 1) � 1items from the agenda,4. use an lp with jb�j + 1 constraints to �nd a vector to add to b�, and�nally



1365. repeat.There are three things to slightly complicate this: the initial vector addedto b�, the �nal vector added to b� and, the most subtle complication, theagenda item used to �nd the next vector to add to b� is not immediatelyremoved from the agenda, which then requires another lp to remove thisitem. Algebraically this progression of events and all of these complicationscombined give the expressionWITNESSbest(Q;M;Z) = 2Z(M � 1) + Q�1Xi=1 (i+ 2) (Z(M � 1) + 1)= 2Z(M � 1) + (Z(M � 1) + 1) Q�1Xi=1 i+ Q�1Xi=1 2!= 2Z(M � 1) + (Z(M � 1) + 1)�12Q(Q� 1) + 2(Q� 1)�= 2Z(M � 1) + (Z(M � 1) + 1) (Q� 1)�Q2 + 2� :(4.11)Asymptotical is O(ZMQ2), which is no di�erent than its worst case.4.6 Two-PassWe analyze Sondik's two-pass algorithm because it has the potential to benearly as e�ective as the ip and witness algorithms, based upon a best caseanalysis. Unfortunately, its worst case analysis is signi�cantly worse, due tothe problem of the imposter vectors possibly causing jb�j > j�anj as discussedin Section 3.4.1.In the worst case, when every vector in �an that is not in �an is an imposter,there would be MZ�Q imposter vectors. This would make the two-pass al-gorithm exponential in the number of observations, which is much worse that



137the ip and witness algorithm which are polynomial in jSj, jZj, j�n�1j andj�anj. However, if the value function has few or no imposter vectors, then thealgorithm will not require an exponential amount of work and could proveto be competitive with the other algorithms. Since the two-pass algorithmhas previously received little attention, here we provide some analysis tohelp characterized its performance and later provide some empirical resultswhich show it to be a fairly e�ective solution procedure.Total LPs - Best caseAssuming there are no imposter vectors, the number of lps required by thetwo-pass algorithm isTWO-PASSLP(Q;M;Z) = QZ(M � 1) ; (4.12)or O(ZMQ). This results from having to check all the neighbors for eachvector in �an.Total Constraints - Best caseAgain, under the assumption that there are no imposter vectors, we getTWO-PASSbest(Q;M;Z) = QZ(M � 1) (Z(M � 1) + 1)= QZ2(M � 1)2 + QZ(M � 1) : (4.13)This results from each lp having Z(M � 1) + 1 constraints and yields theasymptotic result O(Z2M2Q).



1384.7 Miscellaneous IssuesThe previous analyses are based upon overly simpli�ed version of the algo-rithms and there are many optimizations which can have a dramatic e�ecton their empirical performance. In this section, we briey discuss some ofthese issues.4.7.1 Saving LPs with Information StatesAll of the algorithms analyzed here have the general form of gradually build-ing either a cross-sum result or the �an sets. Some number of lps are requiredto build this set up with some fraction of the lps leading to a vector of inter-est. In many of these cases, the total number of lps can be reduced by usinga set of information states to initialize these sets. Recall from Section 3.1.2that given a point, b, in information state space, generating an(b) 2 �an istrivial.For speci�c examples:� prune(�) - given a set of information states, we could �nd the maximalvector from �, for each point, before resorting to lps to check everyvector. Here we save an lp for every unique vector we �nd from theset of points.� ncs - this is just a prune call, so the same savings can be used here.� gcs - this is just a generalization of the prune routine, so using a setof points to initialize the sets being constructed can be just as e�ectiveas in the prune routine.



139� ip/gip - these are just the repeated application of the ncs or gip algo-rithms and can utilize a set of points as described for these algorithms.� witness - (also see Section 3.2.3) this algorithm uses an arbitraryinformation state to initialize the b� set. Similarly, any number ofpoints could be used to initialize this set. Since each vector addedto b� in the main witness loop requires one lp to discover, the morevectors initially put into b�, the more lps that are saved.The issue of where to get such a suitable set of information state pointsis discussed below, with it breaking down into three basic approaches. Thequestion of how this factors into the analysis of the various algorithms hingesupon what guarantees can be given concerning the possible number of max-imal vectors that could be found using such a set. Using these guarantees,we can adjust the analysis of the algorithms to incorporate these savings.However, this mainly leads to more complex formulas and derivations with-out adding much to the general conclusions drawn from the analysis. Sinceextremely detailed analysis of these algorithms is not currently useful orenlightening, we have chosen to omit these more complex derivations.Random PointsGenerating information states at random is a particularly appealing methodof generating a set of information points, since the number of points gener-ated can be easily adjusted according to the amount of resources available.The drawback of this approach is that no theoretical guarantees can bemade concerning the number of vectors that could be found using this ap-proach. With some positive probability, the entire set of random information



140points could yield the same maximal vector. Note that properly generat-ing a random information state, or more generally, a random probabilitydistribution uniformly over the probability space is bit more complicatedthan the obvious approach of generating a random vector and normalizing.Appendix C discusses the proper method for generating random probabilitydistributions.Simplex Corner PointsThe easiest set of information points to use are the simplex corners, whichprovides a few advantages over any other set of points that could be consid-ered. First, when using one of these points to �nd a maximal vector in a setof vectors, we do not need to compute the full dot product b � , since onlyone component of b is non-zero. Being able to reduce the computation to asimple component-wise comparison of the vectors makes this a particularlye�cient set of points to use.The other advantage is the guarantees that can be provided with the setof simplex corners. Suppose we have a non-parsimonious set � and we willapply the prune to yield � using the simplex corners for the initialization.If all simplex corners are checked and the same vector in � is maximal forall of them, then we are guaranteed that j�j = 1 and we can skip the loopover the j�j � 1 other vectors entirely. This follows from the convexity ofthe value function which � represents.Further, if j�j > 1, then using the simplex corner checking is guaranteedto �nd at least 2 maximal vectors from �. This gives a slightly betterguarantee than is available for a random set of points.



141Saving PointsThe most intriguing and useful method for generating a good set of infor-mation points, as suggested by Littman [71], is to associate an informationpoint with each vector maintained by the algorithms. We discuss how thisis useful below, but note that this results in a slightly more complex imple-mentation.As an example of this approach, recall that the �rst step in all of thealgorithms is to use �n�1 to construct the sets �a;zn . One option, availableto all the algorithms, is to prune this set to its parsimonious representationbefore applying any of the algorithms. The rationale for this approach isthat each useless vector removed from �a;zn can result in a signi�cant savingswhile using these sets in constructing �an. In the analyses, the size of the�a;zn sets were assumed to all be M , which appears as a major contributorto the number and sizes of the lps required by all the algorithms. Note thatthere is some amount of overhead required in pruning this set, and althoughthe pruning will be relatively e�cient in relation to the construction of the�an set, it is still a non-trivial addition of lps.Suppose that we decide to always perform this initial pruning of the�a;zn sets. The pruning operation will process each vector and either �ndan empty region or return an information point lying in the vector's region.Normally, this point is ignored and discarded, but by saving this point wecan use it in the individual operations of the algorithms to eliminate someof the required lps.For the incremental pruning algorithm we saw that for the individual



142cross-sum operations jprune(A � B)j � max(jAj; jBj). If all the parsimo-nious �a;zn sets are used in the ip algorithm, then inductively we get therelationship j�anj � maxz j�a;zn j ; (4.14)which must hold regardless of the speci�c algorithm used.We now focus on the problem of computing A�B where we have a saveda point for each of the R(�;A) and R(�;B) regions, for all � 2 A and � 2 B.These points in the region are equivalent to the points we could have acquiredin the pruning of the �a;zn sets. Furthermore, assume that jAj > jBj. For thencs algorithm, which is merely the prune algorithm, using the set of pointsassociated with A for the initialization of b� is guaranteed to �nd exactly jAjmaximal vectors; i.e., each point will yield a unique maximal vector from thefull cross-sum. This saves jAj lps and using the points associated with Bin addition to those points may yield even more savings, though we cannotguaranteed those additional points will have maximal vectors di�erent fromthe set found with the points for A.After initializing b� for this cross-sum pruning, the ncs (or gcs) routinewill proceed to process the remaining vectors in the full cross-sum, uncover-ing those with non-empty regions to be added to b�. Just as in the pruningof the �a;zn sets, we do not want to throw away the information points un-covered for the useful vectors, but want to save them so that we can applythe same optimization in later cross-sum operations that might involve theresults of A �B.The above description showed the basic idea behind using saved points to



143optimize the ip and gip algorithms. However, this idea also applies to theinitialization of the witness algorithm. The relationship of Equation 4.14means that taking the points associated with the largest �a;zn set will beguaranteed to produce j�a;zn j distinct vectors, thus saving that many lps.As with the cross-sum, using the points associated with the other �a;zn mayyield more vectors, but no guarantees can be made. Since the ip algorithmhas guaranteed savings for each cross-sum, and the witness algorithm onlyhas a guarantee on the �nal set size, it would seem that the saving of pointswould have a more dramatic e�ect on ip. We have done some preliminary ex-perimental exploration into this issue, which demonstrated the e�ectivenessof saving points, but we have not yet completely characterized the savingsor the di�ering e�ects on the various algorithms.The analysis of the algorithms can be adjusted to incorporate this ideaof saving points. De�ne PRUNE-SP(G; V; P ) to represent the complexity ofthe prune routine augmented with a set of points, such that for the givenset of points it is guaranteed to �nd at least P distinct vectors. We thenhave PRUNE-SPLP(G; V; P ) = G� PPRUNE-SPworst(G; V ) = V�PXi=1 (P + i) + G�VXi=1 (V + 1)PRUNE-SPbest(G; V ) = G�VXi=1 (P + 1) + V�PXi=1 (P + i) :Substituting these in for the complexity derivations for the ncs, gcs, ip andgip analysis will yield the complexity for the variations of the algorithmswhich incorporate saving points.



144The speci�c rr instance of gcs the equation to use for the number oflps and total constraints isRR-SP�(M;N;C) = MXi=1 [PRUNE-SP�(N;Ci; 1) +N(M � 1)] :This case is a bit di�erent from the others, since the region restriction meansthat we can only guarantee that we have one saved point lying in any region.In this case, there is some tension between the constraints saved by makingF � L and the number of lps saved by making F � L.As mentioned, this same idea applies to the witness algorithm, whichunder all the previous assumptions yieldsWITNESS-SPLP(Q;M;Z) = QZ(M � 1) + Q�MWITNESS-SPworst(Q;M;Z) = Q�MXi=1 (M + i) + QZ(M � 1)(Q+ 1) :This assumes that the largest �a;zn set is of size j�n�1j =M .Another possible variation of saving information points associates a pointwith each vector in �n�1. At some point in all of the algorithms, to determinethat a vector is a part of the true representation, an information point isproduced. If we save these points, then on the next dp iteration, even ifwe decide not to do the extra work required to prune the �a;zn�1 sets andgenerate points, we could use the set of points associated with the previousvalue function representation to initialize the various algorithms. This doesnot give any guarantees on the number of lps that will be saved, but ifthe general structure of the pwlc function does not change too much fromone iteration to the next, then the set of previous points might provide a



145reasonable amount of savings, with no extra computation, though a smallamount of additional storage space.4.7.2 Domination CheckingSection 3.1.1 discussed a simple, yet e�ective domination checking proce-dure to detect a useless vector without the need for an lp. Although it waspresented in the context of optimizing the prune routine, it can be incorpo-rated into all of the exact algorithms. Any time an lp is set up to comparea vector against a set of vectors (e.g., the findRegionPoint routine), wecan preface this with the simple domination check and forego the lp if thedomination check shows the vector to be useless.The problem with attempting to incorporate the domination checkinginto the analysis, is that there is no general way to know how many vectorsmay be removed from this simple check. One way to handle this in theanalysis is to de�ne some parameter representing the percentage of vectorswhich would be removed by the domination check.For example, let � = prune(�), where j�j = G and j�j = V and thepruning routine prefaces its main loop with a call to the domination checkingroutine. Let �G be the percentage of vectors remaining after the dominationcheck. Then we havePRUNE-DOMLP(G; V ) = �GPRUNE-DOMworst(G; V ) = VXi=1 i+ �G�VXi=1 (V + 1) :Doing this type of analysis for all the algorithms yields expressions whichshow the e�ects of the domination checks in terms of number and sizes of



146the lps. This sort of detailed analysis is omitted here, but could be usedto characterize the algorithms, and their variations, if future research canbetter characterize the � parameter for problems, perhaps by analyzingthe structure of speci�c pomdp instances. For varying values of �, somealgorithm variations may prove more e�ective than others.We note that the domination checking does require a certain amountof overhead. If the check removes no vectors, then the e�ort is completelywasted, however the time required by the lps dwarfs the time required bythe domination checks.4.8 Algorithm ComparisonsGiven the closed form expressions derived in the previous section, we nowhave the groundwork for comparison of the various algorithms.4.8.1 Cross-sum ComparisonsThe most general cross-sum algorithm (gcs) has the exibility to allowselection of the smallest comparison set, where the decision can be madeas the algorithms progresses. This allows choices based upon the speci�cresults of previous iterations of the main loop. However, this dependenceon the previous iterations made the gcs algorithm di�cult to analyze, sincethere is no a priori way to predict the results of these previous iterations.The approach we used was to present the rr variation of the gcs algo-rithm, which always chooses the same set. Additionally, the ncs cross-sumalgorithm is also a variation of the gcs algorithm except it uses a di�er-ent predetermined set for the comparison (see Section 3.3.3). Because the



147gcs algorithm has the freedom to choose and since we have analyzed twovariations which do not choose, the complexity of the gcs algorithm for agiven N , M and C is bounded above by the minimum of the ncs and rralgorithms.We will compare the ncs and rr cross-sum algorithms, and see thatfor nearly all values of N , M and C, the rr algorithm has fewer totalconstraints in the worst case. This result will allow us to use the worst casetotal constraints for the ip-rr algorithm as an upper bound on the worstcase complexity of the gip algorithm instead of having to use the minimumof the ip and ip-rr algorithms, which is slightly more cumbersome.We have seen that, without any of the possible optimizations, the totalnumber of lps required by both cross-sum variations is identical. Thuswe restrict this comparison to the total number of constraints, which isequivalent to comparing the average sizes of the lps.Worst Case ComparisonsComparing the worst cases of the two cross-sum algorithms is not completelyconclusive, since we have no way of characterizing how likely these are tobe achieved. However, since the gcs algorithm is bounded above by theminimum of the ncs and rr algorithms, the results of this analysis willallow us to almost always use the rr version as a bound on the worst casefor the gcs algorithm.Comparing the two cross-sum algorithms is equivalent to characterizingwhen the quantityNCSworst(N;M;C)� RRworst(M;N;C)



148or NMC +NM �M2N �NC � C2(M � 1)2M � Cis greater than or less than zero. When this quantity is greater than zero, therr cross-sum has fewer worst case constraints and is the preferred choice.With the assumption that N �M , we have the constraintsM � N � C �MN :We can also restrict M > 1, since the result of a cross-sum of a singlevector, �, and a parsimonious set, B is always f�g�B with no pruning steprequired. Under these constraints, it can be shown that the ncs algorithmhas a better worst case than the rr algorithm only in some very select cases.More speci�cally, these cases are:� if C = N =M ;� if C < 5;� if C = 5 and either{ N = 3, M = 2 or{ N = 3, M = 3 or{ N = 4, M = 4;� if C = 6 and N =M = 5.



149Asymptotic ComparisonThe better worst case bound for the rr algorithm for larger values of M , Nand C can also be seen from an asymptotic analysis. We have the quantitiesNCSworst(N;M;C) = NM(C + 1)� 12C(C + 1)RRworst(M;N;C) =M2N +NC � C2 � CM � 1� ;where the dominating quantity is O(NMC �C2=2) for ncs and O(M2N +C2=2M) for rr. With the constraints on the sizes, and since these twoquantities are not directly comparable, it helps to break these down into thetwo extreme cases C = �(N) and C = �(NM), this time using �-notation.In the case C = �(N), ncs becomes O(N2M) and rr becomes O(M2N+N2=2M). Since we have the constraint N �M , we see that rr has a betterasymptotic complexity than ncs. The case where N =M = C changes theanalysis and results in ncs and rr both being O(N3), though ncs actuallyrequires fewer constraints than rr. When C = �(NM) we get O(N2M2) forncs and O(N2M) for rr showing the clear preference for the rr algorithmwhen C is large.4.8.2 IP vs. GIP vs. WitnessTotal LPs ComparisonAsymptotically, the ip and witness algorithms are all O(QMZ) for the totalnumber of lps required as seen from Equations 4.4 and 4.9. However, whichalgorithms requires fewer total lps hinges upon the relationship betweenthe size of �n�1 and the size of the observation set Z , which are M and Zrespectively. Essentially, if M � Z the ip algorithms will do fewer lps.



150Total Constraint ComparisonWorst Case From Equations 4.5, 4.7 and 4.10 we get the following asymp-totic results IP-NCSworst(Q;M;Z) = O(ZMQ2)IP-RRworst(Q;M;Z) = O(ZQ2 + ZM2Q)WITNESSworst(Q;M;Z) = O(ZMQ2) ;Since we showed that rr was asymptotically better than ncs, it is notsurprising that ip-rr is asymptotically better than ip-ncs. However, wesee that the witness algorithm has the identical complexity to the ip-ncsalgorithm, showing that the ip-rr algorithm is asymptotically the best exactalgorithm for constructing �an from �n�1 in terms of the total constraintsrequired over all lps.Best Case To get some feel for the relative ranges on the total numberof constraints we show the asymptotic behavior for the best cases of thealgorithms. From Equations 4.6, 4.8 and 4.11 we getIP-NCSbest(Q;M;Z) = O(ZQ2)IP-RRbest(Q;M;Z) = O(ZM2Q+ ZQ2M )WITNESSbest(Q;M;Z) = O(ZMQ2) ;We see that the best cases for the ip variants are slight improvementsto the worst cases, while the witness algorithm's best case complexity isthe same as its worst case complexity. This hints that empirically the ipvariations could perform better than the worst case analysis would predict.



1514.8.3 Two PassAs discussed in Section 4.6, the worst case total constraints is exponentialin Z for the two-pass algorithm due to the problem with imposter vectors.However, assuming that the imposter vectors are not a problem, the bestcase analysis makes the two-pass algorithm competitive with the other al-gorithms. In particular, the number of total lps required is of the sameasymptotic complexity as the other algorithms, namely O(QMZ) (Equa-tion 4.12). The complexity for the best case total number of constraints isO(Z2M2Q) (Equation 4.13), which makes the two-pass algorithm polyno-mial in the parameters. However, this algorithm only has the potential toperform somewhere between the witness and ip algorithms.



1524.9 Exact Empirical ResultsAlthough the previous section's analysis helps to characterize the algorith-mic variations and shows the asymptotic relationships between them, thereis no better way to evaluate the the e�ectiveness of the algorithms thanan actual comparison of the algorithms in execution. Many simplifying as-sumptions were made in the analysis section, which although always on theconservative side, may not have the same e�ects upon all the algorithms.Additionally, there are many factors that were ignored completely in theanalysis; e.g. bookkeeping overhead, memory requirements, etc. Finally,there is a fair amount of overlap between the best and worst cases for thedi�erent algorithms. This section presents empirical results on a range ofproblems to serve as the evaluation of the previous analyses. We will useboth randomly generated pomdps and some small problems from the liter-ature for which exact solutions are possible.4.9.1 Random ProblemsThe complexity of solving pomdps means that few researchers or commercialenterprises have embraced the model. As a result, pomdp models are ascarce commodity, despite the fact that pomdp problems are ubiquitous.Most of the existing pomdp models in the literature are �ctitious domainswhich are either too small to glean useful conclusions when using them incomparisons, or too large to solve exactly. For instance, the majority ofpomdp research papers in the operations research journals to date haveexamples with only 2 or 3 observations. An enumeration algorithm such asdiscussed in Section 3.3.1 can be quite e�ective on such problems, despite



153having best case complexity exponential in the number of observations.In this section we explore randomly generated pomdp problems. Theserandom problems allow us to tailor the experiments to a speci�c number ofactions, states, observations or initial value function size. This will allow usto compare the exact algorithms by exploring the range for which they canpractically solve the problems. For completeness, the next section will showempirical results on a few of the available pomdp models that are withinthe computational range of the exact algorithms.Because our focus is to compare the individual algorithms for construct-ing �an from �n�1, it is not necessary to run value iteration for more thanone step, and there is also little need to include the construction of �n itself.Thus, we will predominantly be comparing the algorithms on the basis ofconstructing all the �an sets from a given pseudo-random initial set of vectorsrepresenting �n�1.We �rst discuss our method for generating random problems and thenpresent the empirical results using them.Random POMDPsAlthough one could imagine many de�nitions for random pomdps we adoptone that is very simple.De�nition 4.9.1 A random pomdp is a pomdp generated as follows:� For each state-action pair, set the state transition function to be arandom probability distribution chosen uniformly over all possible dis-tributions.



154� For each state-action pair, set the observation probabilities to be arandom distribution chosen uniformly over all the possible distributionsover the set of observations.� For each state-action pair, set the immediate rewards to be a real num-ber uniformly selected from a �xed interval. For all the problems pre-sented, the interval is [ 0 10 ].Note that only the probabilities and rewards are random, and not the actualsizes of the sets, or ranges of reward values, that comprise the pomdp. Wealso do not generate the discount factor randomly, but assume that it issome �xed quantity. In fact, focusing on a single dp step will make thediscount factor have negligible e�ect on the empirical result here and thuswe used the discount factor � = 1.At the heart of this de�nition is the generation of random probabilitydistributions. Appendix C shows that the naive algorithm for doing this isnot su�cient and presents the algorithm used in our empirical results forgenerating random distributions.Random PWLC FunctionsWe have not devised any suitably satisfying de�nition for a random pwlcvalue function. However, for any de�nition, the inclusion of useless vec-tors should be avoided, since they do not contribute to the function is anymeaningful way.Thus we used a simple scheme to generate a �xed-sized parsimoniouspwlc function by randomly generating vectors and throwing away useless



155or imposter vectors. This is repeated until a parsimonious set of the desiredsize is achieved. This su�ers frommany problems, the most prominent beingthat one relatively large vector, when added to a parsimonious set can yielda set much smaller than the original. This skews the pwlc function towardhaving large valued vectors. The practical concern of such a scheme isthat much e�ort can be wasted generating useless vectors. Empirically, thecomputational problems only present themselves when trying to generate alarge number of vectors for a problem with a small state space. For all theexamples presented here, the size of the initial random representation forthe input value function, �n�1, was 10.Defending Random ProblemsThere is often an expressed displeasure for random problems, since no onetruly needs random problems solved. In many classes of problems, randomproblems tend to have nicer properties than those that really need to besolved and are a poor basis for empirical comparison of algorithms; in oth-ers random problems are harder than the \usual" problems. This objectiontends to be less valid for the results presented here. By �xing the numberof actions, states, observations and the size of the initial set of vectors, theonly variable becomes the sizes of the �an sets. However, given a speci�cinput and output size, the running times of the algorithms are fairly pre-dictable based on the number of additions and multiplications that must beperformed. Thus, the actual values that are manipulated are of little conse-quence to the algorithms. Although this predictability would seem to negatethe need for our empirical results, they are nonetheless important since the



156analysis ignored many of the implmentation and overhead requirements ofthe algorithms.In fact, random problems tend to have very dense transition and observa-tion matrices, where real problems usually exhibit some type of sparseness.If the sparseness is exploited, this would make random problems harder tosolve than actual problems. Although not quantized, our experience hasbeen that random problems of a given size are much harder to solve than anequivalent sized problem that is based upon more realistic system dynamics.Having argued for random problems, we must also say that these algo-rithms are not completely immune to the concerns about random problems.All the algorithms have di�ering best and worst case complexity and it isunknown whether random problems are more likely to skew the algorithmsin this range di�erently than realistic problems. For this reason, followingthe random problem results, we present some empirical results on problemsthat are loosely based on realistic domains.Experimental Set-upA problem instance is a particular size random pomdp and a particularinitial value function. Although we generated many problem instances, everyalgorithm considered was run on every given problem instance.Because even small random problems can require a signi�cant amountof computation, we have had to impose an upper threshold on the runningtimes. Any algorithm which takes more time than this threshold is termi-nated, and the threshold value is used as its running time. This is necessary,because imposing a threshold is an arbitrary scheme and once the threshold



157is met, there is no way to know whether it would have �nished in the nextmillisecond, or the next millennium. By assuming it �nished at the thresholdvalue, we are adopting the most generous viewpoint. For our experiments,the particular threshold chosen was 1; 800 seconds.As mentioned, we would run a single value iteration dp step and monitorthe cpu execution time for the time spent in building the �an sets. Becausethere is no dependence on the number of actions for these algorithms whencomparing the construction of �an, we have �xed the number of actions to be4. Thus the execution time measures the time to construct four parsimonioussets from the initial set.All of the algorithms are part of the same base of code and share a largepercentage of the routines. This minimizes the amount of coding-dependente�ciency issues which might otherwise arise if completely separate imple-mentations were compared. While none of the code is highly optimized,some care was given to ensuring that any slight coding optimization of onealgorithm was equally considered for the other algorithms. There is stillmuch savings that could be obtained from a detailed analysis of the routinesfor this code.Because of machine precision issues and the way they interact with thevarious algorithms, it is possible for the algorithms to disagree about thesize of the �nal set for a given problem instance. While this disagreementis rare, it is important to ensure it does not happen, since the complexityof the di�erent algorithms depends upon the size of the resulting sets. Wemonitored the sizes of the answers for the various algorithms on each prob-lems instance and for the approximately 2; 000 random problems generated



158all produced exactly the same sized solutions.Because random problems of the same size can have varying complexityin terms of the sizes of the resulting �an sets, we have averaged the execu-tion times from a number of di�erent instances of each initial problem size.All the experiments were run on the same architecture, Sun Ultra-Sparc 1,using the same operating system, Solaris, and the time is measured in cpuseconds using features of the operating system to track execution time ofthe individual process, rather than wall-clock time.We have compared 4 algorithms: witness, ip-ncs, ip-rr and two-passand have varied the number of states and observations in our comparisons.Some of the other optimizations were implemented, and are signi�cant im-provements to the basic algorithms, but no results for these are presentedhere. For all these algorithms, we used the initialization using the simplexcorners discussed on Page 140.ResultsThe three-dimensional plots in Figures 4.2 and 4.1 show the total executiontimes for constructing the four �an sets as a surface over the axes representingthe number of states and observations. In these �gures the execution timefor each instance of a problem size is an average of 5 di�erent random prob-lems. The di�erences here are not immediately noticeable, possibly withthe exception of the witness algorithm, since these plots only tend to bringout the more dramatic di�erences. For this reason, we will look at sometwo-dimensional sections, which will also allow us to use a larger samplesize. In the following graphs and tables, the results are the average over 25



159di�erent problem instances.Figure 4.3 shows the amount of time required to construct the �an setswhen the state set size is �xed at jSj = 7 and the number of observationsvaries from 3 to 15. We see what appear to be di�erences over the variousalgorithms, however, while these line graphs do give a nice characterizationof performance, they mask the true relationship between the algorithms,since they hide the variances. Table 4.1 shows this same data in tabularform and shows the results of doing a simple two sample T -test. In thistable, the best time is highlighted with a dark box around it, while theentries with lighter boxes indicate times which are not deemed signi�cantlyworse than the best time; i.e., the non-boxed entries are signi�cantly worse.Since we have imposed a threshold on the execution time, there may bemore signi�cant di�erences than are shown in the tables.We see that the two-pass algorithm is always the best, the witness algo-rithm is always signi�cantly worse, and the two ip variants are sometimescompetitive, especially for the smaller problems.Figure 4.4 shows the results when the states vary from 3 to 15 and theobservations are �xed at 7 with the corresponding Table 4.2 showing whichdi�erences are signi�cant. We see that for varying numbers of observations,the two-pass and ip-rr algorithms start to dominate, with the two passshowing some signi�cant di�erences.Finally, Figure 4.5 and Table 4.3 shows the results when the the numberof states and number of observations are varied simultaneously so that jSj =jZj at all times. Although visually, the di�erences between the algorithmsis not as great, we see that the two-pass algorithm is the best, though this
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Obs. IpRr IpNcs TwoPass Witness3 0.729 0.591 0.589 1.3154 1.784 1.681 1.292 3.5345 4.391 4.880 3.052 11.0696 7.667 9.187 5.360 22.2537 19.278 29.527 13.361 91.5788 26.003 42.387 16.958 122.5029 43.928 82.499 28.896 320.85010 72.610 132.690 39.928 435.04811 159.196 323.672 78.634 702.68512 269.402 521.814 123.418 1051.65713 396.131 738.549 159.073 1219.62814 589.646 925.986 271.939 1332.10815 902.789 1174.707 367.210 1438.178Table 4.1: Total execution time for constructing all �an sets for the randompomdp problems with jSj = 7. T -test with p = 0:95.
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States. IpRr IpNcs TwoPass Witness3 2.591 2.446 0.877 2.0424 5.538 5.908 2.537 7.7005 7.826 8.815 4.198 15.0826 9.129 10.609 5.107 19.2867 19.278 29.527 13.361 91.5788 30.347 58.092 21.988 219.1559 38.673 70.628 29.674 279.32210 46.397 96.711 36.866 390.92311 83.852 232.861 62.318 677.32812 167.415 375.261 114.244 904.38813 159.863 475.466 120.452 1079.73414 259.331 772.531 176.225 1230.41515 353.122 866.636 239.121 1576.024Table 4.2: Total execution time for constructing all �an sets for the randompomdp problems with jZj = 7. T -test with p = 0:95.



166States/Obs. IpRr IpNcs TwoPass Witness3 0.328 0.268 0.181 0.3434 1.014 0.901 0.523 1.1635 2.870 2.875 1.675 4.5456 5.737 6.563 3.586 12.0367 19.278 29.527 13.361 91.5788 62.840 126.947 40.211 513.4189 239.923 606.104 136.525 1291.95010 803.128 1194.624 384.270 1565.50411 1484.407 1711.493 834.105 1798.57712 1563.258 1652.665 1266.022 1689.08613 1605.054 1797.613 1280.929 1803.34514 1835.662 1821.193 1703.427 1803.32315 1681.873 1671.918 1602.791 1670.595Table 4.3: Total execution time for constructing all �an sets for the randompomdp problems with jSj = jZj. T -test with p = 0:95.is masked as the execution times of the algorithms reach the saturationpoint of 1; 800 seconds. Notice how quickly all the algorithms reach thissaturation point when the problems sizes scale in both the observations andobservations simultaneously.Although the running time is what is ultimately of interest, our analysisfocused on the numbers and sizes of the lps. Figures 4.6 through 4.8 showthe relationship between the algorithms in terms of the number of lps solvedfor the three cases whose run times were shown above. Again, this is thenumber of lps required just in building the �an sets. As expected fromthe analysis, the witness algorithm requires more lps that the ip variants.Although it isn't an asymptotic di�erence, the extra Q lps (see Page 133)
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168seems to be showing itself in these �gures.Perhaps most interesting is the large number of lps required by thetwo-pass algorithm. We have already seen that the two-pass algorithm isamong the fastest in these problems, yet seems to be doing far more lps thanthe competitors. A partial explanation comes from looking at Figures 4.9through 4.11 which show the total number of constraints required. Despiterequiring many more lps, the two pass algorithm is competitive in termsof total constraints, which means that the average lp size is much smallerthan the other algorithm. It is unknown whether, in general, many smalllps are preferable to fewer large lps and it may be highly dependent uponthe actual constraint coe�cients.Although we have predominantly presented this empirical data pictori-ally, Appendix I.1 has the full numerical results with a T -test comparisonand also includes data for the total running time, including the merging ofthe �a sets.Size Relationship between �an and �nRecall from the theoretical analysis of Section 4.1.2 that the worst casecomplexity for constructing �n from �n�1 is intractable. However, for thepolynomial action-output bounded problems the witness and incrementalpruning algorithms are tractable. Thus, there are problems where the �ansets are exponentially larger than the �n set. The interesting empiricalquestion here is in exploring the relative sizes of the �an and �n sets. Usingthe experiments from the previous section and monitoring the size of the
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175�nal set, �n as well as the individual �an sets, we computed the ratioPa j�anjj�njFor the experiments that were the basis of the three-dimensional plotsin Figures 4.2 and 4.1, the average ratio was 2:559. Although there werea total of 845 individual pomdp problems3, these statistics are based upononly 602 data points, since the runs which timed-out did not allow access tothe �nal value function sizes. The variance for this case was 2:294 and themaximum ratio was 16:725.We computed the same statistics for the empirical results shown in theline graphs and tables. In this case, based upon 687 data points, the meanwas 2:438, the variance was 1:393 and the maximum ratio was 19:25. Thus,the worst case relationship between the sizes of �an and �n does not seem tooccur on these random problems.4.9.2 Small ProblemsThe purpose of presenting the algorithms on a set of small problems fromthe literature is two-fold: �rst, we want to alleviate any of the possibleobjections to the random problems of the previous section; second, we wantto compare these algorithms in the more realistic setting of value iteration.Experimental Set-upFor these algorithms we also imposed a threshold on the running time, buthere used 3; 600 seconds. For a given problem instance, value iteration runs3We ran 5 experiments for each problem size. The states and observations varied from3 to 15 resulting in 13� 13� 5 = 845 experiments.



176all the algorithms with the execution time for each step of value iterationbeing monitored. If all algorithms completely solved the in�nite horizonproblem4 then those results were reported. However, if all of the algorithmsdid not terminate, we used the number of value iteration steps of the al-gorithm that made the least progress for our point of comparison. Sincewe monitored the time for each iteration, we could report the time an algo-rithm took for that minimum number of iterations, even if it had progressedfurther.We used 9 small problems which are listed in Table 4.4. This tableshows the name of the domain, the sizes of the model for the domain, andthe number of value iteration stages completed in the allocated time, thesize of the �nal value function representation, �f , and a reference to wherethis problem �rst appeared in the literature. Note that the saci problemis a single aircraft identi�cation problem similar to the iff domain which isdescribed in Appendix H.4.We only executed each algorithm on each problem once. Since theseare speci�c problem instances, all the algorithms operate deterministically.The only source of variance is in the functioning of the operating system.Because these algorithms are purely computational we expect, and our manyexperiences with these implementations show, that these variations are veryminor. Therefore, for the tables presented in this section, the boxed entriesin the tables serve only to highlight the best entry and are not indicative ofstatistical signi�cance.4We used a very conservative measure of the Bellman error between two successiveiterations' value functions and stopped value iteration when it was below the threshold10�9.



177Problem States Actions Obs. Stages jVf j Reference4x3 11 4 6 9 1375 [96]4x4 16 4 2 374 20 [23]cheese 11 4 7 373 14 [85]paint 4 4 2 23 90 [62]shuttle 8 3 5 8 991 [28]tiger 2 3 2 19 61 [23]network 7 4 2 18 578 [24]nonlin 7 3 6 404 5 [96]saci 12 6 5 4 258 [24]Table 4.4: Small problem sizes, parameters and references.Table 4.5 shows the result of the four principle algorithms on these prob-lems. This table shows the total execution time in seconds for value iterationfor the number of stages indicated in Table 4.4. However, our analysis fo-cused upon the complexity of constructing the �an sets and compared thealgorithms from this perspective. In fact, the execution time spent build-ing and pruning the �a;zn sets and the time spent merging the �an sets into�n should be nearly identical5 for all of the algorithms, modulo some smallvariance due to operating system unpredictabilities.This common amount of execution time tends to mask the true savingsavailable from the various algorithms. For this reason, we also kept track ofthe amount of execution time spent only in constructing the �an sets fromthe �a;zn sets and this is shown in Table 4.6.The most obvious result is that for none of the problems is the witness al-gorithm the best, though there are domains where it is competitive with theip variations. However, there are also domains where the witness algorithm5The prune routine's running time depends upon the order in which the vectors areprocessed. Since each algorithm produces the set di�erently, di�erent orderings of vectorsare given to the prune routine.



178

4x3 4x4 cheese paint shuttle tiger network nonlin saciip-rr 271.16 120.08 38.44 475.65 108.95 92.60 293.40 3.01 30.35ip-ncs 685.35 200.45 40.63 378.23 158.81 74.37 494.89 2.91 42.60two-pass 487.25 284.81 55.51 329.70 277.56 54.10 679.83 10.57 161.49witness 2467.07 378.22 64.96 559.53 1567.13 68.50 2895.79 10.57 71.82Table 4.5: Execution time in seconds for constructing �n.
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4x3 4x4 cheese paint shuttle tiger network nonlin saciip-rr 33.00 0.26 13.16 453.01 21.02 84.51 115.31 0.12 19.92ip-ncs 444.14 82.05 15.41 355.38 71.28 66.35 325.82 0.12 31.88two-pass 216.19 163.86 30.24 307.76 164.03 45.12 502.23 7.50 125.03witness 2221.37 259.02 39.96 538.17 1479.11 60.78 2726.67 7.68 61.43Table 4.6: Execution time in seconds for constructing all the �an sets.



180is orders of magnitude slower.Although the ip-rr algorithm gives the best times in 6 of the 9 algo-rithms, there are instances where it is not signi�cantly better than ip-ncsand even instances where ip-ncs is just as good. Thus the more generalgip algorithm would be at least as good as the minimum of these two andperhaps even faster.There are instances where the two-pass algorithm gives better timesthan both ip versions, though both of these domains happen to have only2 observations. Recall from the analysis that the two-pass algorithm isthe only one with a complexity that has a Z2 term; i.e., quadratic in thesize of the observation set. Overall the two-pass algorithm is reasonablycompetitive with the other algorithms, which means that the troublesomeimposter vectors may only be a theoretical worry.Our analyses earlier in the chapter focused upon the complexity of thealgorithms in terms of numbers and sizes of the lps that were solved, whichwe argued should be closely correlated with the execution time. Tables 4.7and 4.8 show the number of lps and total constraints used in constructingthe �an sets from the �a;zn sets. Aside from the 4x4 problem, only in the4x3 domain does the ip-rr algorithm do signi�cantly fewer total lps thanip-ncs, and in the cheese domain ip-rr requires nearly twice as many lpsas ip-ncs.The most glaring numbers in these tables are the zeroes for the 4x4and nonlin domains for the ip variants. This comes from the initializationprocedure that uses the simplex corners to initialize the �an sets. Recall fromPage 140 that when this initialization yields a single vector, the actual size



181of the set must be 1.Although the ip-ncs and ip-rr variants do equivalent numbers of lpson many of the problems, this does not translate into doing a similar num-ber of constraints. As an example, the most interesting result is for thenetwork problem where ip-ncs does 24; 948 lps and ip-rr does 24; 017.Although roughly the same, the disparity in the number of constraint islarge: 5; 194; 613 to 764; 836. This translates into the disparity in the exe-cution time where ip-ncs requires more than twice the time.
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4x3 4x4 cheese paint shuttle tiger network nonlin saciip-rr 4,094 0 4,424 78,079 2,796 19,802 24,017 0 2,661ip-ncs 14,082 13,334 2,580 79,693 3,248 20,242 24,948 0 3,514two-pass 185,207 133,244 9,596 345,386 162,942 85,364 515,654 2,392 117,340witness 177,704 142,129 10,702 316,517 142,507 62,528 506,543 2,392 20,076Table 4.7: Total lps for constructing all the �an sets.
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4x3 4x4 cheese paint shuttle tiger network nonlin saciip-rr 129,708 0 11,060 6,072,200 91,748 893,608 764,836 0 63,758ip-ncs 3,813,050 99,950 10,320 10,094,731 765,084 1,085,400 5,194,613 0 201,229two-pass 9,923,058 1,331,584 28,040 52,372,798 10,873,016 7,432,708 35,890,936 7,166 5,570,868witness 84,483,806 1,400,181 47,958 37,368,848 78,422,690 3,643,184 147,942,760 9,558 1,918,561Table 4.8: Total constraints for constructing all the �an sets.



184Note that the algorithms actually proceed much further than 19 stageson the tiger problem. However, due to disparities in the manner whichthe machine precision interacts with the various algorithms, the sizes of therepresentations start to diverge beyond this point. Since the running timesare sensitive to this quantity, execution time comparisons past the 19 stageare not meaningful.4.9.3 Other AlgorithmsWe discussed the existing algorithms that predated the witness algorithmsuch as Cheng's linear support and Sondik/Monahan's enumeration schemewith the Lark/White pruning idea (see Sections 3.4.4 and 3.3.1). We showedthat these are both, in the worst case, exponential in one of the relevantquantities. Speci�cally, the linear support algorithm is exponential in thesize of the state space and the enumeration algorithm is exponential in thesize of the observation set. In this section we briey compare witness to thesetwo algorithms and show that the empirical performance exactly matchesthis analysis. These empirical results �rst appeared in Littman et al [74].Ideally, Sondik's one-pass algorithm should be included in this compari-son, but the previous empirical and analytical results on the two-pass algo-rithm led us not to undertake the complications with this implementation.We attempted to get Sondik's original code, but no copies seem to exist [119].Also, Cheng's linear support algorithm is our own implementation where ev-ery e�ort at e�ciency was made. Here too, the ideal scenario would be to usethe author's code directly, but this too seem to be no longer available [27].We present our results as three-dimensional plots in Figure 4.12, where



185the z-axis is the execution time in seconds and the x and y-axes show thee�ects of varying the numbers of states and observations.As can be seen prominently in the �gures, the linear support algorithmhas an explosive increase in execution time as the number of states increasesand the enumeration algorithm has a similar problem, except that it issensitive to the number of observations.The plots of Figure 4.12 range over only 9 states and observations, sincethe other algorithms had already reached their saturation point. Howeverthe witness algorithm had not, so we ran some extra experiments out to 15states and observations and combined them with the earlier results to yielda better picture of the witness algorithm's complexity, which we show inFigure 4.13.The experimental set-up here is the same as for the random problemsdiscussed on Page 156, except� the execution time is measuring time to construct �n instead of �an;� the number of experiments averaged is 20 instead of 5; and� the maximum execution allowed is 7; 200 instead of 1; 800.
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1884.10 ConclusionsThe orginal research in pomdps and their algorithms was centered in theoperations reseach community, where their focus was on developing the un-derlying mathematical theory. With the more recent interest in pomdpsfrom computer scientists, the issues of computational complexity and algo-rithmic development have come to focus. This perspective has resulted inbetter exact pomdp algorithms, but has also highlighted the limitations ofsuch algorithms. Despite the theoretical limitations, there is still a place fore�ective exact algorithms, both from the algorithmic development viewpointand as a basis for approximations. Additionally, empirical comparisons arecrucial for algorithmic development, since worst-case complexity analysisdoes not always tell the whole story.Prior to the mid-1980's, the empirical comparisons of pomdp algorithmswere of very limited scope. The lack of realistic problems, combined with therestricted computing power of the day forced researchers to limit their exper-iments to problems with a handful of states and observations. Cheng [26]revisted the pomdp problem with some new algorithms and some of themost extensive empirical comparisons to date, but the problem sizes werestill quite small and did not expose the real weakness with his schemes,which require enumerating all vertices of a convex polytope. He demon-strated that his linear support algorithm was more e�ective than Sondik'sone-pass algorithm, but his conclusions only extend to the small state-setproblems examined in his thesis. Although Sondik's one-pass algorithm hassome theoretical complexity problems that need to be worked out, there is



189still an open question regarding the empirical e�ectiveness of this algorithm.With the development of the witness algorithm, more extensive compar-isons were undertaken [74] using a broader range of problem sizes. This hascontinued through the development and implementation of the incremen-tal pruning and generalized incremental pruning algorithms [140, 24]. Thischapter has presented both detailed analysis and empirical evaluations ofthe exact algorithms; a combination which has proven quite fruitful for theinsight and development of this research, which has resulted in the currentbest exact pomdp algorithms, both in theory and in practice.



Chapter 5Reinforcement LearningIn this chapter we will look at some applications of reinforcement learning(rl) algorithms [6, 53]. These techniques are a way to solve large, oftencontinuous, state-space mdps. Since a pomdp can be recast as a continuousstate space mdp, these techniques provide a way to compute approximatesolutions, although the algorithms that will ultimately result from this rlapproach have no formal guarantees on the quality of their solutions. Asdiscussed in Section 4.1.3 on the computational complexity of approxima-tions, it is just as hard to �nd guaranteed approximate solutions for pomdpsas it is to �nd the optimal solution.This chapter focuses on one particular approach, but there is much morework to be done in the area of applying reinforcement learning to partiallyobservable domains. In the reinforcement learning literature these types ofproblems are referred to as ones with hidden state, incomplete perception,perceptual aliasing or non-Markovian environments. Also, in the rl par-lance, our method would be referred to as a direct method, since we attamptto build the value function directly from experience. In an indirect method,190



191the experience is used to construct a model, and the value function/policyis derived from the model.Recently, Bertsekas and Tsitsiklis have used the name neuro-dynamicprogramming (ndp) in their attempt to connect the rl area to its mathemat-ical basis in dynamic programming, function approximation and iterativestochastic approximations [11]. In this work refer to this class of techniquesrl/ndp algorithms to reect both their rl origins and the contributions ofBertsekas and Tsitsiklis.rl/ndp is a framework for approximations in problems where solvingdirectly would be intractable. For this thesis we will use it to derive ap-proximate value functions (approximations in value space), though it is notinfeasible to use these techniques to compute an approximate policies di-rectly. There are two main ideas that distinguish the rl/ndp framework:�rst, to combat the curse of dimensionality [7], a function approximator isused; second, it uses simulated experiences to generate trajectories throughthe state-space, thereby avoiding explicit computations for all possible statesand focusing the computational e�ort on the more likely parts of the statespace.For large problems the dimensionality of the state space is so large, oreven continuous, that an explicit table look-up representation is not feasible.In the rl/ndp framework, a function approximator with a parameter spaceof lower dimensionality is used and is updated based upon simulated experi-ences. The updating of this function approximator typically uses some sortof gradient decent in parameter space, though more sophisticated optimiza-tion techniques are possible.



192The rl/ndp framework is very general and allows any type of functionapproximator as well as many ways to generate and use the simulated ex-periences. This exibility can be a drawback, since at this time there is notenough experience with these techniques to provide guidance for any partic-ular problem or class of problems. On the other hand, since we are dealingwith approximations, how well speci�c instances of an rl/ndp scheme workwill depend on the speci�cs of the problems at hand. Di�erent problemswill require di�erent choices, so the freedom in the rl/ndp framework isrich enough to allow a wide range of problems to be addressed.The key to successfully applying rl/ndp techniques is to have some ideaof the nature or structure of the problem being addressed. This will allowcareful consideration of the options available and allow the rl/ndp instanceto be tailored to best suit the application. However, this is often easiersaid than done and until there is more research into the the theory andapplications of these techniques, this remains more of an art than a science.The developed theory for rl/ndp concentrates predominantly on �nitestate spaces. Many of these ideas can be applied and extended to continuousstate space problems, though the underlying theory is still in its early stages.For the problems we address, we have a continuous state space, so the the-oretical guarantees we have are quite limited, thus we will rely heavily onempirical comparisons.We begin by developing the basic rl/ndp framework and then showsome speci�c instances that can be applied to yield approximate solutionsto pomdp problems. We conclude this chapter with some empirical resultsapplied to a suite of pomdp problems. We will be focusing on in�nite hori-



193zon, discounted problems and because of our focus on approximations wewill use V �(�) for the optimal solution and eV (�) for an approximation ofV �(�). Since we will focus only on stationary policies, we will use �(s) asthe policy for state s rather than the decision rule d(s).5.1 RL/NDP FrameworkAt the one extreme we have the basic mdp dynamic programming basedalgorithms, such as value and policy iteration, which require an explicitmodel and an exact table look-up representation for the value function.The rl/ndp techniques are the other extreme of the dp spectrum using anapproximate representation of the value function and using samples of theprocess instead of the full explicit model.It is an involved process to systematically move from one extreme to theother and the book Neuro-dynamic Programming by Bertsekas and Tsit-siklis [11] shows this development in detail, as well and discussing manyperipheral issues that arise along the way. In this section we follow Bert-sekas and Tsitsiklis' exposition, but in much less detail and rigor, strivingto give an overview with enough motivation for the techniques pursued forthe pomdp problems considered here.The development of the rl/ndp framework and the corresponding theoryfocuses on mdps where the state space is �nite. As the development pro-gresses, the theoretical guarantees become scarcer and the �nal frameworkdeveloped has no explicit restriction to �nite state spaces. Although thereare few theoretical guarantees for applying rl/ndp techniques in a contin-uous state space, we will see that some reasonable results are achievable.



194Nonetheless, in our development of the rl/ndp framework we will make the�nite state space assumption and all results referred to will implicitly bewith respect to �nite state spaces.5.1.1 RL/NDP OutlineBefore getting into the details of deriving the rl/ndp framework from itsfoundations in dynamic programming, we �rst provide a short outline whichwill serve as a road-map for the following subsections.Asynchronous DP The basic value and policy iteration algorithms com-pletely update the values or policy, iterating over the entire state space ina systematic order. The �rst step we take is to convert these algorithms toasynchronous versions where arbitrary ordering of the updates are allowed.This paves the way for simulation-based methods, where we do not enu-merate the states, but simply sample from trajectories through the statespace.Function Approximation Most of the motivation for using simulationsis that the state space is so large that we cannot or do not want to enumerateall states. When the state space is this large, we will not want to representa value function over this entire space. Thus, the next step is to look atfunction approximation architectures for representing the value function.These function approximators are parameterized with a parameter vectorwhich is of lower dimensionality than the state space and are such that oncethe parameters are �xed, evaluating the value of a state is trivial. Withthe explicit value function, we can update the values directly, but with the



195function approximation, the problem becomes one of �tting the parametersof the approximator so that the values given by the approximator closelymatch those of the desired value. This becomes a non-linear unconstrainedminimization problem, which is generally di�cult to solve for a globallyoptimal solution. Thus a local iterative method is employed, though we mustthen sacri�ce global optimality of the solution. These iterative methods areespecially suited to simulation-based algorithms where sequences of samplesare generated.Stochastic Approximation Algorithms These local iterative methodsare deterministic algorithms, assuming that a full data set of input-outputpairs with the true values is available. Because we do not know the optimalvalue function to start and we cannot explicitly compute the full one-stepvalue, we view the simulated experiences as samples from the full dynamicprogramming updates. We must then extend the iterative parameter adjust-ment algorithms to handle the case where there are stochastic samples whichyields the general form for stochastic iterative approximation algorithms.Simulation-based DP The stochastic iterative algorithms are exactlywhat is needed for the simulation-based methods with function approxima-tors, but there are a few issues that arise when simulations are used to dodynamic programming even with an explicit table look-up value functionrepresentation. These issues are applicable to the function approximatorcase, but are best introduced without the added complications of functionapproximation.



196Simulation-based DP with Function Approximation Having dis-cussed the issues that arise with simulation-based DP with an exact valuefunction representation, we are then ready to take the �nal step and replacethe exact representation with a function approximator.5.1.2 Asynchronous DPThe �rst step along the path to the full rl/ndp framework is to start withthe basic dp-based value and policy iteration algorithms and adapt themso as to remove the speci�c dependence on a �xed ordering of states. Wewant to be able to select a state at random, do some value or policy up-date for this state and then return to select another state at random. Wewill ultimately be using simulations to select states, which will raise someconcerns about the randomness of the states chosen, but we defer this issueuntil Section 5.1.5.The value iteration algorithm from Section 2.2.3 has the following com-ponent update rule as its basis:V (s) := maxa "r(s; a) + �Xs02S �(s; a; s0)V (s0)# :It will prove convenient here to use a more succinct operator notation so thatwe have V (s) := (TV )(s) where the operator T transforms one value func-tion into another such that component s of the transformed value functionis (TV )(s) = maxa "r(s; a) + �Xs0 �(s; a; s0)V (s0)# :With this operator notation, one step of the value iteration algorithm canbe written compactly as V := TV .



197If we simply embed the update V (s) := (TV )(s) in a loop where sis selected randomly, we get the asynchronous value iteration algorithm.Although not necessarily an intuitive result, this algorithm will actuallyconverge to the optimal value function, given that every state is selectedin�nitely often [8]. Note that this still requires a full model for the single-step value computation in the sum on s0 and that we still need to explicitlystore a value for each state. Although the \in�nitely often" restriction mayappear troublesome, even in practice, selecting each state often enough willyield a fairly good approximation to the optimal value function, though itis sensitive to the sampling process.We can similarly adapt the policy iteration algorithm to an asynchronousversion, but �rst we must alter the policy evaluation step presented in Sec-tion 2.2.4. As previously presented, the value of a given policy is computedby solving a system of equations. For large state spaces, such a procedurecould be impractical, if not infeasible, and the common way large systemsof equations are solved is through an iterative procedure.The value iteration algorithm is an iterative procedure that can easilybe adapted to solve the system of equations resulting from the policy valueequations given by Equation 2.6. The only alteration of vi is the removalof the maximization over actions, so that the action chosen at each stateupdate is simply the action speci�ed by the current policy for that state. Ifwe de�ne the operator T� such that component s is(T�V )(s) = r(s; �(s)) + �Xs0 �(s; �(s); s0)V (s0) ; (5.1)then the �xed-policy value iteration algorithm repeatedly calculates V :=



198T�V and convergence to the value of policy �.Since we can replace value iteration with its asynchronous variation,we get an asynchronous method for doing the policy evaluation step of pi.However, this in itself isn't enough for an asynchronous policy iterationalgorithm, since we must also consider the policy improvement step. Thebasis of the policy improvement step is�(s) := argmaxa "r(s; a) + �Xs0 �(s; a; s0)V (s0)# ;where, in normal policy iteration, we iterate over all states s to compute theimproved policy. For an asynchronous policy update we want to remove therestriction of having to iterate over all states.The full asynchronous policy iteration algorithm is given in Table 5.1.In words, it says that we can arbitrarily select a state and then arbitrarilyselect whether to update its value, V (s), or the policy for that state, �(s).Using the full model for the one-step calculation and exactly representing thevalue function, this algorithm will converge to the optimal value function andpolicy, if each state has its value and policy action updated in�nitely oftenand the initial value function and policy satisfy the condition T�0V0 � V0.Here V0 is the initial value function, �0 the initial policy and T�0 is theone-step value iteration operator with �xed policy given by Equation 5.1The most interesting aspect of the asynchronous policy iteration algo-rithm is that by selecting appropriate orderings of states and ordering ofvalue/policy updates, many variations of algorithms can be constructed,including Gauss-Seidel value iteration, normal policy iteration, modi�edpolicy iteration [103] and others. For example, always following a policy



199asychPolicyIteration(�; �)� := any decision ruleV := appropriate to satisfy T�V � Vdo s := Select state randomlyif Update ValueV (s) := (TV )(s)else�(s) := argmaxa [r(s; a) + �Ps0 �(s; a; s0)V (s0)]while Not Donereturn �end asychPolicyIterationTable 5.1: Code fragment for the asynchronous version of the policy iterationalgorithm.update with a value update for the same chosen state and selecting statesat random, would yield the asynchronous value iteration algorithm.These asynchronous algorithms will allow us to do dp with states gener-ated through simulation where we update the value/policy as desired. Wewill later discuss the speci�c orderings and implications of interleaving thepolicy and value updates. However, note that while these asynchronous al-gorithms allow for arbitrarily selecting states, it is still required to have thefull model and to enumerate and represent all possible next states.When combined with function approximation, asycnronous value itera-tion takes the form of actor-critic schemes typically discussed in the rein-forcement learning literature. The policy evaluation steps are viewed as acritic, judging the value of the policy that the actor is executing.



2005.1.3 Function ApproximationThe next step required to handle large state spaces is to avoid explicitlystoring a value for each state. For this, a parameterized function approxi-mator is used, where the dimensionality of the parameters is less than thatof the state space. Additionally, it is assumed that once the parameters havebeen �xed, evaluating the value for a state is trivial.Two of the major choices that must be made in developing an rl/ndpframework are determining the function approximator and an update rulefor adjusting its parameters. These two choices are tightly coupled, thoughfor the function approximators we consider here, the update rule takes onthe same basic character of a steepest decent gradient method. This sec-tion discusses the update rule used in general and the later sections derivethe speci�c update rules for the individual function approximators used forpomdps.The dynamic programming approach adjusts a state's value to make itcloser to the optimal value, but with a function approximator we must adjustthe parameters such that the the values given by the approximator are closeto the desired values. Fitting the parameters to a speci�c function is anoptimization problem; for the cases we consider it is a general non-linearleast squares optimization problem.Although we are ultimately interested in using simulation and immediateexperiences to learn the optimal value function, we will start by describingthe simpler problem of �tting an approximator to some known, �xed set ofdata, where each data point consists of an input (a state) and the desired



201output (the optimal value of the state). Although we will not know theoptimal values for given inputs, it serves to illustrate the basic technique,and we will later show how this can be extended to be used in the rl/ndpframework.Batch GradientIn the more typical supervised learning applications in machine learning, afunction is computed from a �xed set of training data consisting of a set ofinput-output pairs. If the set of input-output pairs are given byf(b1; V �(b1)); (b2; V �(b2)); : : : ; (bM ; V �(bM))g ;and the parameters of the function approximator are given by a set �, wede�ne eV (�; b) as the value the approximator gives for input b and parameters�. The most often used optimization criteria for �tting an approximator toa function is to minimize the squared error,e = 12 X1�m�M e2m ;where we de�ne em = V �(bm)� eV (�; bm).Since for general non-linear problems, performing this minimization isdi�cult, an iterative method is often applied. A common technique uses aform of iterative gradient decent where the parameter vector is continuallyupdated according to �n+1 := �n + �ndn ;where �n is a positive step-size and dn is the descent direction. A commonchoice for dn, and the only one we consider here, is the steepest descent



202where dn = �re where the gradient is with respect to the parameters ofthe function approximator. This givesdn = �re = � X1�m�Mremem= � X1�m�Mr�V �(bm)� eV (�n; bm)� em= X1�m�MreV (�n; bm)em :This method is commonly referred to as the batch gradient method, sincethe decent direction is computed using the entire training set. This iterativeprocedure will convergence in parameter space, but the only guarantee aboutthe point it converges to is that it is a stationary point of the error function;i.e., where the derivative is zero.Incremental GradientComputing the descent direction over the entire data set is often undesirable,such as when the data set is large or, in the simulation context, since thesimulated trajectories are not usually considered part of a �xed data set,but a steady ow of data. For both large data sets and simulation-basedapproaches, a commonly used technique, called incremental gradient, is touse only one item of the data set to compute the descent direction.The pure incremental gradient method also assumes there is a �xed train-ing set, but instead of using a sweep over the training pairs to generate asingle descent direction, the parameters of the function approximator areadjusted after each input-output pair is processed during this sweep.To show this more precisely, let the index n be the number of times wehave iterated over the entire training set andm be the index of the particular



203training set pair being processed. Then the parameter update rule becomes� �n;m+1 := �n;m + �ndn;m if m < M�n+1;0 := �n;m + �ndn;m if m =M :This variation always sweeps through the training set pairs in the sameorder, but another variation randomly orders the training set after each pass.For the incremental gradient method, the descent direction becomesdn;m = reV (�n;m; bm)em :Note that this technique can not properly be called a steepest descentmethod, since the gradient direction may actually be di�erent from the truesteepest descent direction.This incremental variation of the gradient method can also be shownto converge by casting it as a regular gradient method with independenterrors [11]. However, this incremental gradient method is still not exibleenough for the purposes of simulation-based dynamic programming for thefollowing reasons:� There is no properly viewed �xed data set.� We do not have access to the true optimal values for a given b.� The assumption of independence of the errors does not hold for therandomness generated by a Markov process.The next section shows how the incremental gradient approach is a spe-ci�c instance of a more general class of algorithms. Within this more generalcontext, we will be able to rectify these problems with the incremental gra-dient method.



2045.1.4 Stochastic Approximation AlgorithmsThe incremental gradient algorithm can be viewed a special case of a moregeneral class of algorithms called iterative stochastic approximation algo-rithms. These algorithms form the basis of simulation-based dynamic pro-gramming (e.g., Q-learning [126], TD(�) [121]) as well as for simulation-based gradient methods.These iterative stochastic algorithms will allow us to remove the explicitsummation over next states, by allowing us to take samples of the nextstates, which is exactly what will be required in the simulation context. We�rst present general deterministic iterative algorithms and see that valueiteration is a speci�c instance of these. We then present stochastic versionsof these iterative algorithms which serve as the basis for both simulation-based dp algorithms and incremental gradient methods. Finally, we showsome speci�c instance of these for doing simulation-based dp where themethod used to sample the process dictates the exact form of the iterationused.Deterministic Iterative AlgorithmsTo derive the general form of an iterative stochastic approximation algo-rithm, we start by considering the simply case of trying to iteratively solvea system of equations v = Hv ; (5.2)where the variables of interest are given by the vector v and H can be viewedas a coe�cient matrix, or more generally, as an operator on the value vector.



205For example, if we have the system of equations Av = b, then the operatorHis such that Hv = (A+I)v�b where I is the identity matrix. Alternatively,if we replace H with T�, we get the system of equations for solving for thevalue of an mdp policy �.Consider the simple deterministic iterationv := Hv :In general, if the operator H has certain monotonicity or contraction prop-erties, this iteration can be shown to converge to the solution of v = Hv.When we use the dp operator, H = T�, we have v := T�v which is preciselythe �xed-policy value iteration scheme for doing the policy evaluation stepin pi. It can be shown that T� and T both have the necessary contractionproperties when the discount factor is 0 � � < 1. We note that there are aclass of mdps where the transition probabilities impose a similar property onthe dp operator even when � = 1. For simplicity, we restrict our attentionto discounted problems.If we have an iteration based upon individual component updatingv(s) := (Hv)(s) ;and H = T , then randomly sampling the states and using this iterationis equivalent to the �xed policy, asynchronous value iteration algorithm.Alternatively, this could be viewed as asynchronous policy iteration wherethere are no policy updates.With a simple algebraic conversion, we can convert Equation 5.2 into an



206equivalent small step-size, �, version given byv = (1� �)v+ �Hv ;and de�ne an iteration based upon this asv := (1� �)v + �Hv (5.3)with its single component version beingv(s) := (1� �)v(s) + �(Hv)(s) :This iteration is also valid and will converge when H has the necessary prop-erties, though it is less useful than the normal iteration when the iterationinvolves a deterministic quantity. However, we will shortly be convertingthis to a stochastic version, where the small-step size will help reduce thealgorithms sensitivity to the noise. Before introducing noise, we touch upona few issues concerning the step-size.Step-size SelectionAlthough not often used in practice, there are two assumptions regardingthe step-size that are required for any theoretical convergence guarantees.Let n be the nth iteration of the algorithm and �n be the step-size used onthat iteration, then the assumptions are1Xn=0 �n =1 (5.4)and 1Xn=0 �2n <1 : (5.5)



207The �rst assumption is needed to ensure that regardless of the initial value,all possible values are reachable. If this assumption is violated, then the iter-ation can only move a �xed distance from the starting values. If the actualanswer is further away from the initial value function than this distance,there is no way the algorithm could converge to it. The second assump-tion is required to ensure that the step-size goes to zero, which is needed ifconvergence to anything can be expected.These step-size reductions are usually not adhered to in practice. Thestep-size has an important e�ect in the empirical convergence rate of many ofthe algorithms, so step-size adjustment schedules which give good empiricalresults are preferred to the more theoretically motivated restrictions. Inaddition, there is a reluctance of reducing the step-size to zero, since manyrl/ndp algorithms want to allow adaptation to changing environments. Wenote that rl/ndp techniques only have convergence guarantees on stationaryenvironments, but are nevertheless applied in dynamic environments withreasonable results.Adding NoiseThe step size variation is introduced because it becomes a more desirableiteration when we do not know H precisely or Hv is di�cult to compute.For these cases, we prefer to sample Hv, as will be the case when we simulatetrajectories through the state space.Suppose we introduce a noise random variable w with zero mean. Thethe iteration above becomesv := (1� �)v + � (Hv + w) ; (5.6)



208where individual Hv+w are noisy samples of Hv. This is the general formof a stochastic approximation algorithm.The speci�c instances we will be concerned with here assume that wehave a random variable s and a function f(v; s) such that E[f(v; s)] = Hv.We view f(v; s) as a sample of Hv which will depend upon s, which isa random quantity which will be driven by the simulation of trajectoriesthrough the state space.We can rewrite Equation 5.3 asv := (1� �)v + �E [f(v; s)] ; (5.7)where here E[f(v; s)] = Tv. This is still a deterministic iteration and as-sumes we can compute this expectation exactly, which requires fully com-puting the one-step dp operator as in vi.If we cannot compute the expectation, we could take a set of samples ofTv, compute the sample mean and use this in the iteration. Because therewill be some sampling error, or noise in the computation of the expectation,this would become a stochastic approximation algorithm. However, as thesample size increases, the noise diminishes, the sample mean approaches thetrue mean and we progress closer and closer to the deterministic iteration.If we let the sample size be 1 we getv := (1� �)v+ �f(v; s) ; (5.8)which is an iteration based upon a single sample, which is more generallyknown as a Robbins-Monro stochastic approximation algorithm and is aspeci�c instance of the more general stochastic approximation algorithms.



209These single sample stochastic approximation schemes will be the centralapproximation algorithm used for the rl/ndp techniques.Gradient Descent as an Iterative ApproximationAlthough we focused our discussion of the iterative algorithms for the casewhen H = T or H = T� , if we let Hv = v � rf(v), then Equation 5.3becomes the batch gradient algorithm by letting v be the parameter vector� and f(�) being the error function, e. Thus, the batch gradient descentalgorithm is a speci�c instance of a deterministic iterative algorithm withsmall step-size.Consider the incremental gradient descent algorithm where we do notcompute the full gradient re. If we view the incremental updates as simplynoise corrupted samples of re, then the incremental gradient algorithmis nothing more than an instance of an iterative stochastic approximationalgorithm based upon the equation v = v �re.ConvergenceThe convergence proofs for the stochastic approximation algorithms arequite complicated and we refer the reader to Bertsekas and Tsitsiklis [11] fora comprehensive treatment. However, in this work they show convergencefor the cases of interest to the techniques described here; iterations basedupon the dynamic programming operators and based upon gradient descentdirections. However, there are many technical conditions which must holdfor these to be valid. Under the right conditions, all of the following havebeen shown:



2101. when H is a a contraction mapping as is the case for the dp operator;2. when Hv = v � rf(v) which is when the updates are based upondescent directions as in the gradient descent algorithms; and3. when the noise w is not independent from one iteration to the next,which occurs when samples are generated from a Markov process.The �rst convergence result is only useful for simulation-based dynamicprogramming techniques where a full explicit value function over all statescan be maintained. The second and third convergence results are of the oneof most interest here, since we will ultimately be concerned with functionapproximators and sampling from a Markov process. The convergence re-sults for the dependent noise case is speci�c to Markov noise and requiresthe most assumptions for the convergence properties to hold.5.1.5 Simulation-based DPThe asynchronous dp methods require the sampling of the states to havecertain properties, such as sampling each state in�nitely often. In practice,this is not achievable and there is a need for a good sampling technique. Herewe will use simulated trajectories through the state space as the samplingmechanism for the asynchronous dp methods. In this section we assumethat we can explicitly represent the entire value function, since this will bea simpler context to discuss the issues that arise when using simulations togenerate the states. This will leave us one step away from the full rl/ndpframework where the �nal step will be to add function approximation.



211Sampling the ProcessLet us �rst visit the case where we have a �xed policy � and are simplyinterested in using simulation-based, �xed policy, asynchronous value iter-ation. The iterative stochastic algorithm of Equation 5.6 where H = T�provides us with the algorithmv(s) := (1� �)v(s) + � ((T�v) (s) + w) :The only unspeci�ed item is what to use for the individual samples(T�v)(s) + w. In this case, since (T�v)(s) is the true in�nite horizon valueof state s, one candidate sampling method would be to repeatedly start atstate s, simulate the process, compute the discounted sum of rewards duringthis simulation and use all these samples to compute a sample mean. Thiswould be equivalent to the noise-corrupted version of Equation 5.7 wherethe sample mean replaces the expected value. However, as mentioned, wewill only concern ourselves with the single sample, Robbins-Monro variationshown in Equation 5.8, thus a sample would be a single trajectory startingfrom state s.The �rst problem is that for all practical purposes will not be able to sim-ulate an in�nite trajectory. However, if the mdp has the property that it isalways guaranteed to enter a state where no more costs will be accumulated,then upon entering this state (i.e., zero-cost absorbing state), the simulationcan be stopped and that sample used. Problems with this type of structureare often referred to as stochastic shortest path problems. For general in-�nite horizon mdps, we may never be able to reach a zero-cost absorbingstate. Although any discounted in�nite horizon mdp can be converted into



212a stochastic shortest path version [11], this is not usually desirable.When zero-cost absorbing states are not available, some form of trunca-tion of the trajectory is required. For any given discount factor, we can makethe error due to truncating the trajectory as small as desired. By makingthe trajectory appropriately long, the error is negligible and we can assumewe are using the entire trajectory. Unfortunately, for discount factors closeto 1, this could be an extremely long trajectory.Often the trajectory is truncated to a point that is computationallyconvenient rather than as a result of trying to get the error below somethreshold. The parameter here is the length of the trajectory to use, andwe note that even when we have an mdp with zero-cost absorbing states, wemay want to apply this truncating technique. In the extreme case, we canconsider truncating the trajectory to length 1, which is actually the case weconsider in the speci�c pomdp algorithms presented later.Another technique is to \discount" the e�ects of the rewards along thetrajectory as the distance from the beginning of the trajectory increases.Although this seems similar to the discount factor we already have for themdp, it is something entirely di�erent. This parameter is serving to adjustthe sample and not the optimal value function. We do not use such atechnique in this work, but mention that this sample discounting parameter,�, is basis of the TD(�) approach [121]. Using the entire trajectory withoutany sample discounting is equivalent to TD(1).Simulating a long trajectory starting from a single state and getting asingle sample turns out to be very data ine�cient. The trajectory visitsmany states along the path and we can view the sub-trajectory that starts



213from any of theses states as a sample trajectory from those intermediatestates. A more data e�cient technique would be to update the values ofeach state visited by the trajectory. The full TD(�) approach combinesupdating every state along the trajectory with the discounting of the sample.There are some technical details concerning this combination of updatingand sampling which needs to be considered, but which we ignore here.The approach we focus on here is to use a series of simulated trajectories,update all states along the trajectory, but only use a single transition as thebasis for our sample. This can also be viewed as TD(�) with � = 0.Despite the myriad of options available for sampling the process, anychoice of these used in the stochastic approximation algorithm will convergeto the proper value function for that policy, under the right set of technicalconditions.Simulation-based Policy IterationThe previous section shows that we can use simulation in a �xed-policy valueiteration scheme and converge to the proper value function. This can formthe basis of a simulation-based policy iteration algorithm, where the policyis evaluated using the simulation-based techniques of the previous section,then the policy evaluation phase is followed by a policy improvement step.Unfortunately, the policy improvement step seems to involve an explicitenumeration over all of the next states, which is contrary to the argumentsfor using simulation-based techniques.One approach is to, again, use samples of the next states to computethe one-step improved policy. To do this we introduce the Q-functions for a



214policy, which represent the value of taking the immediate action a in a states and following policy, �, thereafter. They are given byV a� (s) = r(s; a) + �Xs0 �(s; a; s0)V�(s0) ;and are precisely the quantity we need to compute in a policy improvementstep. With the Q-functions we can then use simulation steps to computethese Q-functions and then do the policy improvement with�(s) := argmaxa V a� (s) :The problem with this approach is that in order for the new policyto actually be an improved policy, we must have the true Q-function val-ues for each state-action pair. To do this would require evaluating the Q-functions for each state-action pair, in�nitely often. Since this is practicallyunachievable, there is no way to guarantee that the new policy will be animprovement. Thus, a simulation-based policy iteration scheme of this sortis sensitive to the initial states chosen, since the initial states dictate thepaths the trajectories take.Simulation-based Value IterationThe previous section outlined a policy iteration scheme which used a fullsimulation-based evaluation to �nd the value of a policy and then a fullsimulation-based scheme to update the policy via the Q-functions. Similarto asynchronous value iteration, we can consider a class of simulation-basedasynchronous algorithms where we can alternate between simulations forpolicy improvement and simulations for policy evaluation.



215Unfortunately, depending upon the relative ordering of the policy im-provement and policy evaluation updates and the particular scheme usedfor the evaluation updates, this algorithm can diverge even for the simplecase of having an exact value function representation and assuming that allstates are updated in�nitely often.The one case that does have some convergence guarantees is referred toby Bertsekas and Tsitsiklis as optimistic policy iteration and always followsan evaluation step with a policy updating step. Recall, from Page 198 thatfor the non-simulation asynchronous policy iteration, following an evalua-tion step with a policy update step was equivalent to asynchronous valueiteration. Thus, optimistic policy iteration is nearly the same as simulation-based asynchronous value iteration. However, if the evaluations are basedon anything other than single transition samples (i.e., TD(�) for � >> 0),then convergence cannot generally be guaranteed.Q-learningIn the pomdp rl/ndp algorithms presented later, we will only consider usingapproximations to the optimal Q-functions. Additionally, we will focus ourattention on a form of asynchronous value iteration using the Q-functionrepresentation of the value function. The optimal Q-functions satisfyV �;a(s) = r(s; a) + �Xs0 �(s; a; s0)maxa0 V �;a0(s0) ; (5.9)and the normal value iteration algorithm can be rephrased in terms of Q-functions as V a(s) := r(s; a) + �Xs0 �(s; a; s0)maxa0 V a0(s0) ;



216where we must iterate over time, states and actions. Note that the normalvi algorithm also iterations over actions, only the intermediate Q-functionsare not explicitly stored. The results of asynchronous value iteration holdfor an asynchronous vi with Q-functions, so as long as each state-action pairis updated in�nitely often, these values converge to the optimal values.We can convert this to its small step-size versionV a(s) := (1� �)V a(s) + � r(s; a) + �Xs0 �(s; a; s0)maxa0 V a0(s0)! ;and �nally derive the single sample, Robbins-Monro stochastic approxima-tion algorithm (based upon Equation 5.9), yieldingV a(s) := (1� �)V a(s) + ��r + �maxa0 V a0(s0)� : (5.10)Here the particular sample transition is from state s to s0 for action a wherethe immediate reward r is received. When the samples are generated fromsimulations, using Equation 5.10 results in exactly Watkins' Q-learning algo-rithm [126]. Using the convergence results of the stochastic approximationalgorithms, we immediately get the convergence of Q-learning.The experiments we will use for our rl/ndp pomdp algorithms are basedprecisely on simulation-based value iteration, using Q-functions to representthe value function. The only di�erences are that we use approximationsto the Q-functions and we have a continuous state space. Recall, that thisalso requires the step-size parameter to satisfy the properties given in Equa-tions 5.4 and 5.5.In practice, without the ability to update every state-action pair in-�nitely often, the speci�cs of the sampling have a major impact on the



217empirical performance of the algorithm. In particular, the starting statesand the action selection de�ne the trajectories that will be taken. If certainstates are not visited, or certain actions are not tried in some states, then ad-vantageous actions and important parts of the state space will be missed. Forthis reason, the Q-learning algorithm often employs an exploration strategy,where the currently best action selection is supplemented with exploratoryactions to ensure advantageous alternatives are not missed.5.1.6 Simulation-based DP with Function ApproximationWe now come to the last step in constructing the full rl/ndp framework:adding a function approximator. The simulation-based dynamic program-ming techniques of the previous section were presented in the context ofexact value function representation and predominantly have pleasing the-oretical convergence results. Additionally, we have seen that incrementalgradient methods for solving a least squares optimization problem also havesome pleasing convergence guarantees. Unfortunately, combining functionapproximation and simulation-based dynamic programming do not gener-ally lead to pleasing convergence results. However, they are often combinedin practice with impressive results [122, 32].Additionally, though there is little theoretical basis for the simulation-based dp algorithm for the case of continuous state spaces, with functionapproximation, there is no inherent limitations on the state space size andwe proceed here assuming we are in the pomdp realm of continuous statespaces.We have seen the incremental gradient algorithm as a stochastic approx-



218imation algorithm: � := (1� �)� + � (�� re):= � � �r12e2:= � + �reV (�; b)e ; (5.11)where here we have removed the subscript m on e to show that we no longerconsider having an explicit data set. Note that our rl/ndp approaches topomdps use this as the basis for their parameter update rule.Where we previously de�ned e = V �(b)� eV (�; b), which is the true error,we can view (somewhat incorrectly) r+�eV (�; b0) as a sample of V �(b) basedupon a transition from state b to state b0 with reward r received. This is acommonly used update rule, and one we explore in our experiments, exceptit has a tenuous formal basis. However, it is closely related to an approachwhich does have a more formal basis.Residual Gradient MethodThe optimal value function for an mdp satis�es V � = TV � and is in factthe only value function that satis�es this relationship: i.e., it is a unique�x-point of the operator T 1. The Bellman residual at any point in the thevalue iteration algorithm is de�ned to be TV � V . Since the vi algorithmconverges, the Bellman residual is guaranteed to be monotonically decreasingas the algorithm progresses, �nally becoming zero when the optimal valuefunction is achieved. Thus, an alternative view of attempting to �nd theoptimal value function, is attempting to make the Bellman residual as small1This is true for both comdp and pomdp problems.



219as possible.With a function approximator, the current Bellman residual can be de-�ned as r + �Xb0  (b; a; b0)eV (�; b0)� eV (�; b) :Thus, we can use a gradient descent algorithm to minimize this quantityby letting e be the Bellman residual and using Equation 5.11, which yields� := �� �r12e2= � � �r12e2= � � �ree= � � �r r + �Xb0  (b; a; b0)eV (�; b0)� eV (�; b)!e : (5.12)There is a problem using this within the rl/ndp framework since thereis the explicit summations over states. We will adjust this to incorporatesampling below, but �rst discuss the implications of this iteration in relationto the proposed update scheme of Equation 5.11.In the derivation of the gradient of the error term when we assumedwe had a �xed data set with optimal output values, we made the followingsimpli�cation: r�V �(b)� eV (�; b)� = �reV (�; b) :This same assumption is used in the algorithm based upon the update ofEquation 5.11.The assumption that the derivative of V �(b) = 0 is correct when it rep-resents the output portion of a training instance. However, for the rl/ndp



220methods based on the Bellman residual, when we replace V �(b) with theone-step value using the approximation for the next states, this assumptionis no longer valid, since eV (b0) is also a function of the current parameters.This is easily seen in Equation 5.12 where the function approximator appearstwice in the gradient term.When the training output is the true value, the only way to reduce theerror in the approximation is by adjusting the parameters in the directionof the training output, V �(b). When the Bellman residual is used in placeof the training output, there are two ways to reduce the error; adjust thecurrent estimate or adjust the current one-step look-ahead estimate.Although many successful rl/ndp methods use the zero derivative as-sumption of Equation 5.11, called direct gradient methods by Baird, theyhave inferior theoretical convergence properties to the methods, called resid-ual gradient, which do not make this assumption [5, 11]. There are simpleexamples that can be constructed where the direct method diverges.Incorporation of the extra gradient term gives the residual gradient al-gorithm a more solid theoretical basis, but complicates the replacementsof the explicit summations with samples. In the direct gradient version ofEquation 5.11, we could use a single transition sample getting b, a, b0 and r.The obvious, though incorrect, incorporation of a sample in Equation 5.12would insert the sample in place of the two explicit summations and wewould have� = �� �r�r + �eV (�; b0)� eV (�; b)��r + �eV (�; b0)� eV (�; b)� :In order to guarantee convergence of a stochastic iteration based upon



221Equation 5.12 we need the expected value of the entire adjustment to beequal to the result of replacing the samples with their expected values; i.e.,we requireE hr�r + �eV (�; b0)� eV (�; b)��r + �eV (�; b0)� eV (�; b)�i= E hr�r + �eV (�; b0)� eV (�; b)�iE h�r + �eV (�; b0)� eV (�; b)�i :Because we need the expectation of the product of two random variables tobe same as the product of the expectations, we need the random variablesto be independent, which is not achieved by using the same sample in bothplaces. This requires sampling the transition from state b twice. Thus, thecorrect update rule would be� = � � �r�r + �eV (�; b00)� eV (�; b)��r + �eV (�; b0)� eV (�; b)� ;where b0 and b00 are two independently sampled next states for the initialstate b.This two-sample version is referred to as the residual gradient, and asmentioned has better theoretical convergence guarantees. However, thismethod is slow to converge, whereas the direct gradient, if it converges,converges faster [5]. Baird proposed using a weighting between the twomethods to get the advantages of both methods. Because the residual anddirect gradients are similar, this descent direction is given by� := � � � ��r�eV (�n; b00)�reV (�n; b)� e ;where � is the weighting factor.



2225.2 Function Approximators for POMDPsIn this section we look at a number of available choices for representingan approximate value function over belief space for a pomdp. We givesome background and derive the required parameter update rules for thesefunction approximators.The basic direct gradient update formula used is from Equation 5.11,which was � := � + �reV (�; b)e ;where simulated experiences of transitioning from state b to state b0 andreceiving reward r would yield:e = r + �eV (�; b0)� eV (�; b) :5.2.1 Value vs. Q-functionsRegardless of the particular choice for a function approximator, there is alsoa choice of whether to use a single set of parameters, eV (�; b), or a separateset of parameters for each action, eV (�a; b), which would be approximationsto the Q-functions with eV (�; b) = maxa eV (�a; b) :The main disadvantage of the single function approximator approach isthat it requires an explicit model in order to convert the value function intoa policy. Naturally, this is only a problem if the policy is not �xed and wewould like to take the best action according to our current approximation.Although the experiments here have access to the full model, we would



223like to avoid doing an explicit summation over all possible next states andrely only on simulation steps to generate next states. By maintaining aseparate function approximator for each action, a policy is readily availableby evaluating each function approximator and taking the action that givesthe best value.There are twomain problems with maintaining separate function approx-imators for each action. If the number of actions is large, then the spacerequirements could become prohibitive. A related problem is the speed ofconvergence. With a single function approximator, all simulated experiencescontribute to adjusting a single value function, but with separate functionapproximators, only a percentage of the experiences go toward each functionapproximator. This means that it could require more simulated experiencesto get reasonable Q-function approximations than would be required for thesingle eV (�; b) approximator.For updating approximations of Q-functions we incorporate the actiontaken, a, into our experience, so the direct gradient update rule becomes�a := �a + �reV (�a; b)e ;with error term e = r + �eV (�; b0)� eV (�a; b)= r + ��maxa0 eV (�a0 ; b0)�� eV (�a; b) :5.2.2 PWLC RepresentationAs for any learning algorithm, there is a need to have some bias in orderto perform well. Given that we know the optimal in�nite horizon value



224function is convex and possibly p.w.l. and convex, we can use this to biasthe structure of the value functions. Here we consider two instances of apwlc representation, one where we assume there is one and only one linearsegment for each Q-function and one where multiple vectors are allowed.Linear Q-functionsUsing a single vector for each action we have a series of function approx-imators eV a(b) = a � b, and eV (�a; b) = maxa(b � a) with parameter set� = faj8a 2 Ag. When a simulation step is taken and action a performed,the gradient, reV a(b) is comprised of the partial derivatives@ eV a(b)@as = @@as Xs0 b(s0)as0= @@as b(s)as= b(s) ;where as is the sth component of vector a.Thus, the function approximator parameter adjustments for the individ-ual components are as := as + �as ; (5.13)where �as = �reV a(b)e= �b(s)�r + �eV (�; b0)� eV a(b)�= �b(s)�r + �maxa0 hb0 � a0i� b � a(b)� :



225The update rule in Equation 5.13 is referred to as the linear-Q (lin-q)update rule for pomdps. Work by Chrisman [28] in trying to simultaneouslylearn and act in pomdps used a similar, though slightly incorrect, updaterule. This is discussed more extensively in work by Littman, Cassandra andKaelbling [68].k-PWLC RepresentationThe natural extension to the linear Q-function representation is to allow ageneral pwlc representation with multiple vectors for each eV a(b). Withmore vectors in the pwlc approximation, the value function has the abilityto closely represent a much wider range of value functions.A pwlc value function is not smooth, which presents some di�culty,since this lack of smoothness transfers to the error function. Taking thederivative of a non-smooth function requires segmenting the function intopieces, each of which is smooth. For a function where there are �xed discon-tinuities, this is only a minor inconvenience, however, the places where thiserror function is discontinuous vary as the parameters of the value functionchanges.One alternative is to ignore the dependence of the discontinuity on theparameters, and simply take the derivative of the function at the point ofinterest. For a pwlc value function, doing this results in a very simpleupdate rule; it is essentially the lin-q update rule applied to the maximalvector in the representation of eV a(b).The problem with this approach is the lack of any changes to vectorswhich are not maximal. Because of this, any vector which is dominated by



226all of the other vectors will never be updated, unless it becomes undominatedfrom adjustments to the other vectors. We call these vectors sunken andthis is especially problematic if the value function is initialized with a setof random vectors. Any vectors which start o� dominated may never havetheir components updated, which wastes some of the representational powerof this approach.The best way to prevent sunken vectors is to make sure the initial valuefunction consists of vectors that are not completely dominated by the others.However, this provides only minor relief, since there are still no guaranteesthat vectors will not become sunken. Nevertheless, we will use the approachin some of our empircal comparisons.When initializing a k-pwlc function aproximator to random values, thespeci�c initialization used when there are k vectors and N states breaksdown into two cases: when k � N and when k > N . For the former, wesimply set bN=kc unique components of each vector to have the maximalvalue in the random initial range. This ensures a non-empty region for eachvector to start. For the case when k > N , we simply set a unique componentfor each of N vectors to the maximal value and allow the remaining k �Nvectors to have random ranges, possibly having them start out as sunkenvectors. However, it does guarantee that at least N vectors start o� witha non-empty region, though there are no guarantees that these vectors willnot become sunken as the value function is adjusted.



2275.2.3 The Lk NormWe saw that extending the lin-q update rule for more than one vector peraction was problematic, since gradient descent methods are best applied tocontinuous functions where the derivative can be taken. To combat this,the spova algorithm of Parr and Russell [96] uses the Lk norm, which is asmooth approximation for the max operator.The Lk norm is a continuous function with the nice property that thesimple maximization of a regular pwlc function is its limiting case. If wehave a set of vectors � = f1; 2; : : : ; Lg, then we de�ne the Lk norm valuefunction for a belief state b withV (�; b) = ks X1�l�L (b � l)k :To ensure the kth root is not a complex number, this requires all of the lcomponents to be positive, which translates into having all positive rewardsin the pomdp model, i.e., 8a; s; r(s; a)� 0.As k !1, the Lk norm value function approachesV (�; b) = maxl2� b � l ;which is simply a pwlc function.In the spova algorithm, this approximator is used to represent theeV (�; b) function, though here we will explore using it using Q-functions.For our purposes, we will only consider k > 1.The gradient of this representation2 with respect to the ls parameters,2There is a typographical error in the gradient formula as it appears in Parr and



228letting V (�; b) be eV (�; b) or eV a(b), is@V (�; b)@ls = @@ls 0@ ks X1�j�L (b � j)k1A= 1k 0@ X1�j�L �b � j�k1A 1�kk @@ls X1�j�L �b � j�k= 1k 0@ X1�j�L �b � j�k1A 1�kk X1�j�L @@ls �b � j�k= 1k 0@ X1�j�L �b � j�k1A 1�kk X1�j�L k �b � j�k�1 @@ls b � j= 1k 0@ X1�j�L �b � j�k1A 1�kk k�b � l�k�1 b(s)= 0@ X1�j�L �b � j�k1A1�kk �b � l�k�1 b(s)= b(s) �b � l�k�1V (�; b)k�1 :Note that as k!1, the denominator approaches (b � l)k�1 and the spovaupdate rule approaches the lin-q update rule. The two main di�cultieswith the spova algorithm is in selecting and adjusting the exponent k anddeciding the number of vectors, L, to use in the approximation.The reported results for spova [96] used a heuristic schedule for theexponent, starting k around 1:2 and increasing it linearly until it reached8:0. A problem with adjusting the exponent is that changing the exponentRussell's [96] original paper. The gradient formula in that paper appears with both theterm in the numerator and denominator being raised to the kth power instead of thek � 1st power.
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Figure 5.1: An Lk norm value function with varying values for the exponentk.changes both the shape and range of the function. Although the change inshape is the desired property, making it more \pwlc", the change in theranges of the value function could force the algorithm to need more traininginstances as it tries to recover the proper range of values. For instance,Figure 5.1 shows an Lk norm value function, using the identical set �, butvarying the exponent k. If the changes are gradual enough, then the e�ectsmight not be so detrimental, but still a certain amount of the updating e�ortmust be put into adjusting the ranges of the values as well as the generalshape of the function.Scaling after Adjusting the ExponentA possible solution to this problem is to explicitly raise the value function tocompensate for the adjustment of the exponent before more gradient updatesare done. Suppose we have a heuristic exponent adjustment schedule thatperiodically raises the exponent by �. Raising the exponent will lower thevalue function as well as changing its shape. If we suppose that the value



230function was in the right range, then we would like to take the value functionwith the new exponent, k+�, and raise it to be in the same range it previouslywas.Since the value function's shape changes it become hard to de�ne exactlyhow much and at which points the value function should be raised. However,a simple scheme is to simply try to make the new values match the old valuesat the simplex corners. This is just a speci�c instance of a more generalscheme where we could try to make it match at any set of points. Below wederive the necessary change in the l vectors for this instance.Let es be the simplex corner corresponding to the information statewhere the entire probability mass is in state s. Prior to adjusting the expo-nent we have V (�; es) = 0@ X1�l�L�ls�k1A 1k ;where ls is the sth component of the vector l. Adjusting the exponent by� yields a new value at the point es ofbV (�; es) = 0@ X1�l�L�ls�k+�1A 1k+� :We assume that whatever adjustment we want to make is distributed equallyamong the L vectors. Thus we are interested in �nding � such thatV (�; es) = 0@ X1�l�L�ls + ��k+�1A 1k+� :This being hard to solve for � directly, consider the simpler problem of trying



231to �nd �, in V (�; es) = 24 X1�l�L��ls�k+� + ��35 1k+� ;which is simply assuming that the terms in the sum should all be adjustedby the same amount. From this we see thatV k+�(�; es) = X1�l�L�ls�k+� + L�V k+�(�; es) = bV k+�(�; es) + L�� = V k+�(�; es)� bV k+�(�; es)L :Now we assume that the contribution of � quantity is equally distributedamong all L vectors. This means we want each term to satisfy�ls�k+� + � = �ls + ��k+�� = ��ls�k+� + �� 1k+� � ls� =  �ls�k+� + V k+�(�; es)� bV k+�(�; es)L ! 1k+� � ls :Therefore, the procedure for scaling the value function when adjustingthe exponent by � is:1. compute the current value function, V (�; es), at all the simplex cornerses;2. adjust the exponent by �;3. compute the new value function, bV (�; es) at all the simplex cornerses;



2324. for all jSj component of all L vectors set their new value with theassignmentls :=  �ls�k+� + V k+�(�; es)� bV k+�(�; es)L ! 1k+� :Gradient Descent on the ExponentAn alternative approach is to view the exponent as just another parameterof the function approximator, making the approximator eV (�; k; b), and usea gradient update rule for it. Then, instead of updating just the vectors,the exponent is also adjusted.To derive the partial derivative of V (�; k; b) with respect to k, we notethat @g(x)h(x)@x = g(x)h(x)�h(x)g(x) @g(x)@x + @h(x)@x ln g(x)� ; (5.14)where for our purposes x = k, g(x) = P1�l�L �b � l�k = V (�; k; b)k andh(x) = 1=k.@V (�; k; b)@k = V (�; k; b)� 1kV (�; k; b)k 0@ @@k X1�l�L�b � l�k1A+ � @@k 1k� ln V (�; k; b)k�= V (�; k; b)� 1kV (�; k; b)k X1�l�L� @@k �b � l�k�� 1k2 ln V (�; k; b)k�= V (�; k; b)� 1kV (�; k; b)k X1�l�L� @@k �b � l�k�� 1k ln V (�; k; b)� :



233Then again using the identity from Equation 5.14 where h(x) = k andg(x) = b � l, we have@@k �b � l�k = �b � l�k ln�b � l� ;which makes the entire partial derivative@V (�; k; b)@k = V (�; k; b)k � 1V (�; k; b)k X1�l�L�b � l�k ln�b � l�� ln V (�; k; b)� (5.15)Another complication that arises in considering adjusting the Lk norm'sexponent through a gradient descent rule is the requirement of a separatelearning rate for the exponent. Although using the same learning rate asfor adjusting the l components is possible, the nature of the di�erencesbetween the two quantities suggests that best results will be achieved withseparate learning rates.



2345.3 RL/NDP Empirical ResultsThis section presents empirical results using some of the pomdp functionapproximators on a range of problems. The vast number of options andparameters available in the rl/ndp framework precluded trying all combi-nations and also complicates the interpretation of the resulting data. Ourmain focus here is comparing the function approximators with some minorexploration into comparing some of the parameters. The next sub-sectiondiscusses the basic structure of the experiments.5.3.1 Experimental Set-upFor all the function approximators considered here, we explore only usingQ-functions. Although this approach is not desirable for problems with alarge set of actions, the problems considered here all have a relatively smallaction set.We use the incremental gradient method with the update rules shown inSection 5.2. This can be viewed as an optimistic policy iteration algorithmusing TD(0) value updates. A training instance consists of some number oftrajectories, either 1; 000 or 10; 000, truncated to 100 steps, which resultsin 100; 000 or 1; 000; 000 speci�c training steps. However, problems wherethere are zero-cost absorbing would normally result in fewer steps, sincethe full 100 steps per trajectory may not be reached. For the absorbingstate problems, the minimum number of additional trajectories were usedto bring the number of training steps up to at least 100; 000 or 1; 000; 000steps. Thus, for those problems there could be up to 99 more training stepsthan the non-absorbing state problems.



235Step Size Training Steps Interval0:1 [ 0 25; 000 ]0:01 [ 25; 001 50; 000 ]0:001 [ 50; 001 75; 000 ]0:0001 [ 75; 0011 )Table 5.2: Step-size adjustment schedule for 100; 000 training step rl/ndpexperiments.Regardless of the number of trajectories used, the parameter trainingphase is followed by an evaluation of the resulting value function using10; 000 trajectories of 100 steps and averaging the discounted reward re-ceived for each trajectory. Naturally, no exploratory actions are taken in theevaluation phase. Also, no additional trajectories for the zero-cost absorbingstate problems are needed in the evaluation phase, since each trajectory isa single sample of the discounted reward, no matter how many actual stepsare in the trajectory.For each trajectory, the starting state is chosen to be consistent witha problem-speci�c initial information state. The initial information statereects some prior probabilities on the state for the various problems.The basic structure of the algorithm follows the Q-learning approach,where the best action according to the current Q-functions is usually taken,but with probability 0:25 a random exploratory action is used. Addition-ally, the step-size increment, or learning rate has the general form of beingdecreased over time and the speci�c schedule used for the 100; 000 trainingstep experiments is given in Table 5.2 with Table 5.3 giving the schedule forthe 1; 000; 000 step experiments.Because the k-pwlc algorithm has more vectors and only one vector is



236Step Size Training Steps Interval0:1 [ 0 250; 000 ]0:01 [ 250; 001 500; 000 ]0:001 [ 500; 001 750; 000 ]0:0001 [ 750; 0011 )Table 5.3: Step-size adjustment schedule for 1; 000; 000 training step rl/ndpexperiments. Step Size Training Steps Interval0:1 [ 0 75; 000 ]0:01 [ 75; 001 150; 000 ]0:001 [ 150; 001 225; 000 ]0:0001 [ 225; 0011 )Table 5.4: Step-size adjustment schedule for 300; 000 training step 3-pwlcexperiments.updated per step, the amount of experience that goes into adjusting eachvector can be 1=k-th as much as the lin-q algorithm. To compensate, weran the k-pwlc algorithms with k more training steps than their lin-qcounterparts. However, this may result in some single vector being updatedmore than would be in the lin-q experiments. These longer training phasesnecessitate an adjusted step-size schedule, and Tables 5.4 through 5.7 showthe schedule used for the k-pwlc experiments.Step Size Training Steps Interval0:1 [ 0 750; 000 ]0:01 [ 750; 001 1; 500; 000 ]0:001 [ 1; 500; 001 2; 250; 000 ]0:0001 [ 2; 250; 0011 )Table 5.5: Step-size adjustment schedule for 3; 000; 000 training step 3-pwlcexperiments.



237Step Size Training Steps Interval0:1 [ 0 175; 000 ]0:01 [ 175; 001 350; 000 ]0:001 [ 350; 001 525; 000 ]0:0001 [ 525; 0011 )Table 5.6: Step-size adjustment schedule for 700; 000 training step 7-pwlcexperiments. Step Size Training Steps Interval0:1 [ 0 1; 750; 000 ]0:01 [ 1; 750; 001 3; 500; 000 ]0:001 [ 3; 500; 001 5; 250; 000 ]0:0001 [ 5; 250; 0011 )Table 5.7: Step-size adjustment schedule for 7; 000; 000 training step 7-pwlcexperiments.Since there often is randomness3 in the initial value functions and al-ways randomness in the simulated trajectories, performing the training andevaluation phase will yield di�erent results from one instance to another.To alleviate this, we repeated each experiment 10 times, where an experi-ment consists of a certain number of training steps and a 10; 000 trajectoryevaluation phase as discussed previously. This set-up introduces some com-plications in doing a statistical analysis on the data since there are nowtwo sources of randomness contributing to the evaluation: the randomnessin the training and the randomness in the evaluation. We have pooled all10 � 10; 000 evaluation trajectories into a single batch of 100; 000 samplesand compared the algorithms on the basis of these batches. While this isnot precisely correct, it does provide some insight into the performance ofthese algorithms.3It is not random when the Q-functions are used for initialization.



2385.3.2 Small ProblemsIn this section we explore the lin-q and k-pwlc schemes on the same set ofsmall problems used in Section 4.9.2 and shown in Table 4.4. The purposeof using a set of small examples is to have some domains where we cancompare these rl/ndp approaches to the optimal answers. For the k-pwlcalgorithm we used the initialization technique discussed in Section 5.2.2.The true in�nite horizon optimal values for these small problems areactually larger than are shown. Since we used truncated trajectories, weare imposing a limit on the total discounted reward that can accumulate.For this reason, instead of calculating the optimal values, we evaluated theoptimal controller using the same simulation set-up as the other algorithms.Because there is no randomness in producing the optimal answer, we onlyrequired evaluating the optimal answer once. Because the optimal answerreported is based upon simulation, the randomness of the simulation doesnot preclude another algorithm from performing better on a particular prob-lem instance. The initial value function vectors were chosen to have randomvectors where their components were randomly set to values in the interval[�20;+20].Table 5.8 shows the results for these small problems where the best entryfor a problem is boxed. The lighter boxed entries indicate that these are notsigni�cantly worse than the best answer, where signi�cance was determinedby a simple two-sample T -test with p = 0:995.As can be seen from this table, even for the 100; 000 training step experi-ments, the lin-q algorithm does exceedingly well. On some of the problems,
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Alg. Steps 4x3 4x4 cheese paint shuttle tiger network nonlin sacilin-q 1� 105 1.860 3.542 3.464 3.267 32.657 19.222 288.465 7.072 13.9611� 106 1.868 3.708 3.465 3.268 32.690 19.285 290.040 7.158 14.7873-pwlc 3� 105 1.866 3.709 3.464 3.270 32.678 19.277 287.328 7.158 13.4093� 106 1.802 3.709 3.398 3.213 32.663 19.254 291.343 7.158 14.7627-pwlc 7� 105 1.861 3.709 3.463 3.271 32.655 19.307 289.585 7.158 14.5557� 106 1.832 3.710 3.388 3.181 32.656 19.261 290.933 7.158 14.760Optimal N/A N/A 3.712 3.464 3.279 32.700 19.181 290.998 7.158 N/ATable 5.8: lin-q and k-pwlc comparison on the suite of small problems using various numbers of training steps.Initial vector range [ �20 + 20 ]. (mean). T -test with p = 0:995.
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31 2Figure 5.2: hallway domain, a 57 state robot navigation domain.training lin-q for longer improves the solution to near optimal behavior forthose where the optimal controller could be computed. Since there is noroom for improvement, any advantage by using multiple vectors, the 3-pwlcand 7-pwlc versions, would not be brought out by these problems.5.3.3 Larger ProblemsThe results from the small problems establishes the potential for using theserl/ndp techniques, and the next step is an attempt to apply them to prob-lems which are larger and which cannot be exactly solved. We �rst appliedthese algorithms to the two robot navigation domains shown in Figures 5.2and 5.3 which have 57 and 89 states respectively. These domains are de-scribed in more detail elsewhere [68], but are similar to the navigation do-mains described in Appendix H.5. The starred locations are the goal loca-tions which yields a +1 reward and resets the state to a random non-goalstate. For both of these problems, the initial state is equally likely to be anyof the non-goal locations and the discount factor used is 0:95.We �rst ran lin-q and used the same initial random range of [�20;+20]with the same training set-up of 100; 000 steps and evaluation with 10; 000trajectories of length 100. The �rst di�culty we encounter is in gaugingthe performance of the resulting policies, since the optimal answer is not
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Figure 5.3: hallway-2 domain, a 89 state robot navigation domain.known. To this end, we ran an omniscient control strategy (omni) whichcan peek at the underlying state and perform the optimal action for thetrue underlying state, where the optimal action is computed by solving forthe problem as if it was completely observable. Note that this omniscientcontroller can perform much better than the optimal partially observablecontrol strategy, but does provide an upper bound on the performance thatis achievable. In addition, we have included two other results to help gaugethe performance.� Heuristic - this is the performance of the best heuristic solution,which are to be discussed in the next chapter. However, we havehand-picked the best heuristic, and there is no current motivated wayto know a priori which heuristic should be chosen for a given problem.Statistical comparisons between the best heuristic and these rl/ndpschemes can be found in Section 6.8 following the empirical results forthe heuristics.� Human - we developed a graphical simulation environment of these



242Alg. Initial Steps hallway hallway-2lin-q [ �20 + 20 ] 1� 105 0.059 0.033[ �20 + 20 ] 1� 106 0.506 0.060Heuristic | | 0.823 0.378Human | | 0.865 0.300omni | | 1.519 1.189Table 5.9: lin-q on larger domains with random initialization.domains which display the information state probabilities as varyingshades of grey. A human4 used this to select actions.The results are shown in Table 5.9 where we see that there is still muchroom for improvement. The 100; 000 step experiments result in very poorperformance, though more training steps helps to improve the solution. Itmay be that even longer training runs would continue to improve the results,but somewhat discouraging to think that more than 1; 000; 000 training stepsare required.As the table shows, the quality of the answers is far from what is achiev-able by using simple heuristics. There are a few problems that contributeto this.� With random initial vectors, early stages of the training are wasted asthe actions cause very undirected trajectories that only occasionallylead to the goal and a positive reinforcement.� The optimal answers values are in a much narrower range than theinitial random value range, so it requires extensive training to movethe values into the correct range.4Thanks to Michael Littman for his patience in performing this task.



243� With a larger state space than the small problems of the previoussection, additional training trajectories are needed as a larger statespace is explored.The next few sub-sections address these issues.5.3.4 Biasing the TrainingIn and attempt to assess the items listed above, we used a more motivatedinitialization scheme for the individual vectors in the lin-q Q-functions. Aswith any machine learning task, bias plays an important role in the qualityof the solution, and we do not expect our task to be any di�erent.Recall from Equation 2.9 in Section 2.2.3 that a comdp has associatedvalue functions for each action called Q-functions. Since there is an under-lying comdp in a pomdp we would expect the optimal comdp Q-functionsto be somewhere in the correct value range for the optimal values of thepomdp. This makes the Q-functions a disciplined way to initializes the lin-q vectors which gives an approximate range on the values and potentially away to seed the vectors with a reasonable initial policy.The natural question to answer is how well a control job the Q-functionsthemselves would do without any adjustments. This control strategy isdiscussed about in more detail in Section 6.3 of the next chapter on heuristicsunder the name q-mdp. We defer the details and discussion of this controlheuristic to the next chapter, but will include the results from this heuristicto gauge whether the lin-q updating of these vectors is doing any usefulwork.Table 5.10 shows the results of using the Q-functions to initialize the



244Alg. Initial Steps hallway hallway-2q-mdp | | 0.344 0.097lin-q [ �20 + 20 ] 1� 105 0.059 0.033[ �20 + 20 ] 1� 106 0.506 0.060Q-func 1� 105 0.910 0.218Q-func. 1� 106 0.946 0.468Heuristic | | 0.823 0.378Human | | 0.865 0.300omni | | 1.519 1.189Table 5.10: lin-q on larger domains comparing random initialization andQ-functions.lin-q vectors and compares it to the optimal, best heuristic and the q-mdp control heuristic. As shown, in both domains the lin-q algorithmsigni�cantly improves upon the initial vectors and with enough trainingsteps, surpasses both the human and best heuristic performance.Using the Q-function for initialization yields very good performance,but it does not tell us if the bene�ts come from having a good early controlstrategy in the training or by starting the initial values in a more reason-able range. In an attempt to pry these two issues apart we ran the sameexperiments again using random initial vectors, but restricting the range ofthe value to those in the range of the Q-function values, which is [ 1:0 2:5 ].Table 5.11 shows these results along with the previous results and wesee that simply restricting the range helps a signi�cant amount, but that itis not the sole contributor to the increase in performance. Although withenough training experience we can get high quality solutions starting withthe restricted-range random vectors, using the Q-functions is quite helpful inreducing the number of training steps required and as a motivated method



245Alg. Initial Steps hallway hallway-2q-mdp | | 0.344 0.097lin-q [ �20 + 20 ] 1� 105 0.059 0.033[ �20 + 20 ] 1� 106 0.506 0.060Q-func 1� 105 0.910 0.218Q-func. 1� 106 0.946 0.468[ 1:0 2:5 ] 1� 105 0.755 0.099[ 1:0 2:5 ] 1� 106 0.944 0.422Heuristic | | 0.823 0.378Human | | 0.865 0.300omni | | 1.519 1.189Table 5.11: lin-q on larger domains comparing various initial vector values.for choosing the a useful initial range.Finally, we want to see how the the potentially more expressive k-pwlcrepresentations do on these domains, both to see if they are at all usefuland also to see whether or not they can result in improved performance overlin-q. The full results on these two domains are shown in Table 5.12.Here we see that not only are the k-pwlc representations useful, butthey give signi�cantly better results than those attained with the lin-qrepresentation. Again, the dark boxes highlight the best value and lighterboxes show entries which are not signi�cantly di�erent as determined witha two-sample T -test with p = 0:995. Curiously though, the best resultsare obtained using the restricted-range random vector initialization and notthe Q-functions. Although we have not explored why this is the case, wespeculate that the Q-functions could be forcing the function toward someinferior local minimum in the error space, where the random vectors tendto be located near a better minimum.



246Alg. Initial Steps hallway hallway-2q-mdp | | 0.344 0.097lin-q [ �20 + 20 ] 1� 105 0.059 0.033[ �20 + 20 ] 1� 106 0.506 0.060Q-func 1� 105 0.910 0.218Q-func. 1� 106 0.946 0.468[ 1:0 2:5 ] 1� 105 0.755 0.099[ 1:0 2:5 ] 1� 106 0.944 0.4223-pwlc [ �20 + 20 ] 3� 105 0.031 0.042[ �20 + 20 ] 3� 106 0.618 0.149Q-func 3� 105 0.944 0.414Q-func. 3� 106 0.946 0.477[ 1:0 2:5 ] 3� 105 0.956 0.172[ 1:0 2:5 ] 3� 106 1.007 0.5017-pwlc [ �20 + 20 ] 7� 105 0.024 0.053[ �20 + 20 ] 7� 106 0.717 0.174Q-func 7� 105 0.942 0.466Q-func. 7� 106 0.951 0.481[ 1:0 2:5 ] 7� 105 0.942 0.466[ 1:0 2:5 ] 7� 106 1.008 0.510Heuristic | | 0.823 0.378Human | | 0.865 0.300omni | | 1.519 1.189Table 5.12: lin-q and k-pwlc comparisons on 57 and 89 state pomdpproblems using various initializations and number of training steps. T -testwith p = 0:995



2475.3.5 Other DomainsThe small domains and the hallway and hallway-2 domains show thepotential for the lin-q and k-pwlc algorithms, but are still a very limitedclass of problems, which may have special structure, allowing these algo-rithms to do particularly well. In an e�ort to explore these algorithms ona broader class of larger problems we have implemented simulators for avariety of domains. We �rst give a brief overview of these domains and thengive the empirical results.Domain DescriptionsThe domains used fall into 5 classes:� robot navigation domains (Appendix H.5) which include cit, mit,sunysb, pentagon, fourth;� single aircraft identi�cation or iff (Appendix H.4);� large baseball domain or baseball (Appendix H.1);� machine maintenance or machine (Appendix H.3);� slotted aloha network protocol (Appendix H.2) including aloha-10and aloha-30;The details of the domains are given in the appendices indicated above,but the overall problem sizes are given in Table 5.13. For all these domainsa discount factor of 0:99 was used.For the 5 robot navigation problems, the transition and observation prob-abilities are derived from the probabilities shown in Appendix H.5 with the



248Name States Actions Obs.cit 281 4 28mit 201 4 28sunysb 297 4 28pentagon 209 4 28fourth 1; 049 4 28iff 104 4 22baseball 7; 681 6 9machine 256 4 16aloha-10 30 9 3aloha-30 90 29 3Table 5.13: Various pomdp problem names and sizes.Tables H.10 and H.11. The layout of these domains is identical to thoseshown in Figures 6.1 (cit), 6.2 (mit), 6.3 (sunsb), 6.4 (pentagon) and 6.5(fourth) of the next chapter, with a single starting state and a single goalstate. Although these navigation problems have potentially 65 observations,for these 5 domains the undetermined observation has zero probability fromall states, making these e�ectively 28 observation problems.For many of the domains, the problem was scalable along a particulardimension.� The iff problem discretized the distances of the approaching aircraftinto 10 locations.� The baseball problem is adjustable by the number of innings, thoughwe used only a single inning game.� The machine problem, the problem is adjustable by the number ofinternal components for the machine. We used 4 for our example,



249which results in 256 states, since each component has four possiblestates of condition it can be in.� The aloha problems, the problem is adjustable by the maximal num-ber of back-logged packets allowed. We used the values 10 and 30 forthe aloha-10 and aloha-30 domains respectively.Empirical ResultsThis larger suite of problems was run with initialization of both randomvectors and the problems' corresponding Q-functions. We also ran both100; 000 and 1; 000; 000 step variations where the number of steps for thek-pwlc schemes were adjusted accordingly. The range of values used forthe random initialization was [ �20 + 20 ] for all but the 5 robot naviga-tion problems, where here the components of the vectors were set randomlywithin the range [ 0:5 1:0 ].Tables 5.15 and 5.14 show the complete results for all the variationstried, the results from the best heuristic of the next chapter, as well as theomniscient and q-mdp heuristics. A two sample T -test with p = 0:995 wasused and is the basis for the boxed entries in the table; all boxed entries arenot signi�cantly di�erent than the best entry.Focusing on the robot navigation problems of Table 5.14 �rst, we see astrong sensitivity of the rl/ndp algorithms to the initial vectors used. Inparticular, for the 100; 000 step experiments the lin-q representation doesmiserably unless the Q-functions are used. We see that for the most part, athe lin-q representation su�ces for doing well. The one exception, mit, isa diabolically symmetric environment and the 7-pwlc representation does
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Alg. Init. Steps cit mit sunysb pent. fourthq-mdp | | 0.832 0.812 0.759 0.821 0.590lin-q Rand. 1� 105 -0.012 0.081 -0.026 0.060 -0.025Rand. 1� 106 0.821 0.834 0.610 0.803 -0.008Q-func. 1� 105 0.827 0.841 0.771 0.819 0.593Q-func. 1� 106 0.828 0.846 0.755 0.818 0.5963-pwlc Rand. 3� 105 0.821 0.830 0.273 0.790 -0.002Rand. 3� 106 0.828 0.854 0.753 0.800 0.071Q-func. 3� 105 0.828 0.848 0.756 0.815 0.595Q-func. 3� 106 0.829 0.850 0.763 0.814 0.5887-pwlc Rand. 7� 105 0.813 0.853 0.711 0.790 -0.012Rand. 7� 106 0.825 0.868 0.757 0.805 0.557Q-func. 7� 105 0.828 0.848 0.758 0.815 0.594Q-func. 7� 106 0.827 0.857 0.766 0.814 0.591Heur. | | 0.834 0.863 0.764 0.822 0.592omni | | 0.845 0.894 0.809 0.836 0.625Table 5.14: The lin-q and k-pwlc algorithms on some robot navigationproblems. T -test with p = 0:995.



251signi�cantly better than the rest, though curiously, by starting with randominitial vectors. Again, similar to the hallway and hallway-2 problems,this could be attributable to local minima.Although the k-pwlc variations do well on some domains with randominitialization, the larger and more complex domains also seem to requireQ-function initialization for good performance. Increasing the amount oftraining also helps when starting from random vectors, but especially onthe larger fourth domain, initializing with the Q-functions is required forgood performance. In fact, only for the mit and sunysb domains do theserl/ndp schemes provide signi�cant improvement over the q-mdp method.Based upon the omniscient controller, we see that there was little room forimprovement on these domains anyway, though it is encouraging to knowthat these rl/ndp algorithms preserve the high quality performance of theQ-functions.For the other domains in Table 5.15, we have some mixed results. For theiff domain, The 1; 000; 000 step 7-pwlc with random initial vectors providesthe best performance. For the baseball domain, a 3-pwlc variation isbest, and for the remainder, the simpler lin-q representation does best.However, notice that in all of these domains the rl/ndp techniques yieldfairly reasonable results.
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Alg. Init. Steps iff bb mach. aloha10 aloha30q-mdp | | 4.496 0.101 59.693 127.429 851.035lin-q Rand. 1� 105 8.136 0.217 13.463 75.128 666.820Rand. 1� 106 6.971 0.096 4.500 73.004 602.963Q-func. 1� 105 8.010 0.043 59.839 121.474 825.365Q-func. 1� 106 8.504 0.063 58.230 123.871 811.7693-pwlc Rand. 3� 105 7.875 0.196 6.328 69.511 628.338Rand. 3� 106 8.630 0.481 7.913 70.139 630.400Q-func. 3� 105 8.247 0.072 59.028 121.751 808.669Q-func. 3� 106 8.441 0.265 50.954 111.760 581.5297-pwlc Rand. 7� 105 8.361 0.464 3.299 70.350 642.026Rand. 7� 106 8.828 N/A 8.053 69.293 659.705Q-func. 7� 105 8.045 0.067 57.022 119.510 799.756Q-func. 7� 106 8.218 0.328 42.972 119.316 626.691Heur. | | 8.389 0.668 59.693 127.429 852.773omni | | 10.079 0.658 66.236 145.572 937.143Table 5.15: The lin-q and k-pwlc algorithms on the suite of larger prob-lems. (mean) T -test with p = 0:995.



2535.4 Related WorkThe majority of work in reinforcement learning has used comdps as its basis,since the theory is better developed and the mathematical foundation moresolid. However, there has always been interest in attacking the problemof partial observability. An early attempt to deal with partial observabilitywas by Whitehead and Ballard [134], but it is only e�ective when the partialobservability takes a special form, since it attempts to avoid the states whichappear confusing.The work by Lin and Mitchell [67] used recurrent neural networks tocope with partial observability. Knowing that good policies is these do-mains will require some type of memory, they present three architecturesfor maintaining this memory. In one architecture, they simply give the re-current network the current action and observations, hoping the memory ofthe network will capture the needed structure. In another instance, a �nitehistory of the process is given to the recurrent network. Their last archi-tecture uses an indirect method, which has one network learning a modeland providing the current state estimate to another network which attemptsto learn the value function. Similar to the choice we had for our functionapproximators, they discuss the issue of using a single monolithic networkor a single network for each action. They provide detailed comparisons onthese di�erent architectures and the structures of problems for which eachmay do best. However, all the problems presented there are relatively small,and no attempt is made to exploit properties of the optimal value function.It would be interesting to explore adding some bias on the value function to



254these connectionist schemes, since there have been a number of impressiveapplication using neural network function approximators [122, 32].Schmidhuber [110] has also looked at applying recurrent neural networksto deal with the problem of hidden state. Some later work by Wieringand Schmidhuber [135] deals with the non-Markovian nature of the pomdpcontrol problem by breaking it down into a sequence of Markovian tasks.This greatly restricts the type of policies that are considered and requiressome initial knowledge about how many tasks might be needed.Chrisman [28] presented an indirect method where a predictive modelof the pomdp is maintained and updated based upon experience. Here thepredictive model is in the form of a hidden Markov model, rather than arecurrent network, and there is a rule to add states to the model when ityields poor predictions. Like the lin-q algorithm, the value function consistsof a single vector per action and the update rule is similar to lin-q, thoughnot identical. The di�erences are discussed, highlighted and empiricallycompared in work by Littman, Cassandra and Kaelbling [68].Ring [104] combines the use of a recurrent neural network for the predic-tive model with rules for adjusting the model when a richer representation isneeded. This is more of a hierarchical approach and allows handling of hid-den state with a varying amout of representational complexity, dependingupon the need for additional bits of information.McCallum has worked extensively on applying rl to problems with hid-den state [85, 86, 83, 84]. The end result of his e�orts is a �nite memoryapproach, where the amount of history required to make a decision can vary.The idea is to only add more history information if it will increase the util-



255ity of the policy. This is similar to Ring's work, though McCallum uses atree-based representation instead of recurrent neural networks.Some preliminary research in applying Q-learning directly to pomdps hasbeen undertaken by D'Ambrosio and Fung [33] using a table-based functionapproximator which maintains an entry for each belief state visited.Crites [32] has successfully applied rl to the problem of elevator controlusing teams of reinforcement learning agents. Although not explicitly han-dling partial observability, the elevator control domain does have elementsof hidden state; e.g., the actual number of persons waiting to board an el-evator. Despite ignoring this, his system performs quite well in the face ofpartial observability. Additionally, he does some experiments varying theamount of partial observability and sees that his system is fairly robustto this. However, the form of the partial observability explored is heavilydomain dependent and it is hard to say whether his techniques would beequally robust toward other forms of partial observability or in other do-mains. However, this successful use of teams of rl agents holds promise fordealing with partial observability directly.There is alos some work in dealing with reinforcement learning in contin-uous spaces [93] and future advances in continuous state space rl algorithmswould have direct applicability to pomdp problems.5.5 ConclusionsIn this chapter we have overviewed one general scheme for reinforcementlearning (or neuro-dynamic programming) and then presented some in-stances for pomdps that exploit knowledge of the shape of the value function.



256We have shown that these technique do improve solutions and overall, com-bined with the work of others, suggest that rl/ndp techniques have a greatpotential as a basis for approximate algorithms for solving large pomdps.There is still much research to be done in this area, especially in combiningrl/ndp with feature-based approaches.



Chapter 6Heuristic ApproximationsAlthough the rl/ndpframework has a mathematical basis and some niceunderlying theory, it can be a signi�cant amount of machinery to wield, itcould require extensive training and it is not a trivial task to get the rightset of parameters. The natural question arises as to whether or not sim-pler, though perhaps less mathematically motivated, techniques could beemployed to choose actions in the face of uncertainty. In this section we ex-plore some simpler control rules which require no training of a value function,but of which little can be said theoretically. We empirically explore thesemethods on a range of domains. We note that there are intriguing, thoughunexplored, possibilities for combining these heuristics with an rl/ndp ap-proach, where the heuristics are treated as features of the environment [25].For all of the methods discussed, we are assuming that we can modelthe domain as a pomdp and that an explicit information state can be main-tained at each step. Most of these heuristics �rst appeared in research byCassandra, Kaelbling and Kurien [21].There is a class of techniques in control theory called certainty equivalent257



258controllers (cec) which are closely related to the approach of some of theseheuristics [9]. The controllers make the assumption that the state transitionfunctions are deterministic, and control proceeds accordingly, even thoughthis assumption is violated. Also from control theory are the ideas of open-loop and closed-loop controllers. The open loop controllers decide the entiresequence of actions to execute before even taking the �rst action and receiveno feedback from the environment as it executes the sequence. When theworld is not deterministic, these controller are e�ectively assuming the sys-tem is completely unobservable. The techniques here are closed-loop, sincethere is a constant feedback signal in the observations received.6.1 Most Likely State (MLS)By itself, using a pomdp model and tracking the information state yields asigni�cant amount of information about the system. The information stateis the best state estimate we could hope to �nd and for the task of behavingoptimally, it is a su�cient statistic [120] for the entire past history of theprocess. The state with the most probability mass in the information stateat a given state, truly is the state that the system is most likely to be in.Assuming we track the information state, the simplest heuristic is to act asif we were in that most likely state. If two or more states are equally likely,we could simply choose one arbitrarily.With this simple idea, all that is left is deciding which action to executein state s, when 8s0 6= s; b(s) > b(s0). Since adding partially observabil-ity makes the problem hard, we can ignore the partially observability anddetermine what would be the best action to take for state s if the system



259was completely observable. Thus, this heuristic makes two assumptions: thesystem is in the most likely state and that future actions will be based uponthe underlying system state.Recall from Section 2.3 that a pomdp is nothing more than an mdp thatlacks direct state information. Therefore, removing the partially observabil-ity is simply treating the problem as a comdp by ignoring the Z and Oportions of the model. Since solving comdps is relatively easy, this presentsno real obstacle and the methods of Sections 2.2.3 or 2.2.4 can be applied.Let �CO : S ! A be the optimal in�nite-horizon comdp policy for a pomdp.We de�ne the control heuristic policy most likely state (mls) as�MLS(b) = �CO(argmaxs b(s)) :Note that the comdp policy not only assumes that we know our currentstate, but that we will also know all of the future current states.6.2 Action VotingA potential problem with the mls control strategy is its complete neglectof all but a single state. Consider a simple three-state, two-action pomdpwhere the optimal comdp policy is given by�CO(s0) = a0 (6.1)�CO(s1) = a0 (6.2)�CO(s2) = a1 (6.3)and suppose the current information state is b = [ 0:3 0:3 0:4 ]. The mlsscheme will choose action a1 despite the fact that we are more likely to be



260in a state where action a0 is the best action.This motivates the action voting (av) control strategy, which assigns aprobability distribution over the actions instead of over the states. Again,we solve the pomdp as if it were a comdp and de�newa(b) =Xs b(s)I(�CO(s); a) ; (6.4)where I is an indicator function as de�ned in Equation 2.15. Then the avcontrol strategy becomes�AV(b) = argmaxa wa(b) :This basic voting idea was �rst used by Simmons and Koenig [113],but they used a planning algorithm based upon a model with determinis-tic transitions to compute the best action for each state instead of solvingthe underlying comdp. For many of the robot navigation domains to bediscussed later, these yield essentially the same policies, but in general theycan be very di�erent.6.3 Q-MDPThe av control strategy is not always the best solution either. The de�ciencyin the av scheme lies in it insensitivity to the di�erences in the actions'values. Recall from Section 2.2.1 that each policy has an associated valuefunction, V�(�) de�ned over the set of states. Additionally, for each action,there is a related function, V a� (�), which de�nes the value of immediatelytaking action a and following the policy � thereafter.



261Consider again a simple three-state, two-action pomdp whose optimalpolicy has V �;a0CO (s0) = 5 V �;a1CO (s0) = 4V �;a0CO (s1) = 5 V �;a1CO (s1) = 4V �;a0CO (s2) = 0 V �;a1CO (s2) = 10as its value functions. This would yield the policy�CO(s0) = a0�CO(s1) = a0�CO(s2) = a1and with the information state b = [ 0:3 0:3 0:4 ] the av method wouldselect action a0 since it has a probability of 0:6 of being the best action.However, notice that for the states s0 and s1, the alternative action a1does not have a much worse value than action a0. In contrast, there isa signi�cant di�erence between the two actions in state s2. In terms ofa expectation with respect to the information state, action a0 will yield avalue of (0:3)(5)+ (0:3)(5)+ (0:4)(0) = 3, whereas action a1 has a value of(0:3)(4)+ (0:3)(4)+ (0:4)(10) = 6:4. Thus, action a1 has an expected valuethat is more than twice that of action a1.This example leads directly to the q-mdp control heuristic. This nameis derived from the fact that the single action value functions V a(s) havehistorically been called Q-functions. The q-mdp control strategy begins,similarly to the mls and av strategies, by solving the underlying comdp.However, in the q-mdp method we are interested in the Q-functions of theoptimal policy rather than the policy itself. The q-mdp control strategy is



262given by �Q�MDP(b) = argmaxa  Xs b(s)V �;a(s)! :One interesting aspect of this control strategy, is that if the system wereto become completely observable after the current action choice (i.e., un-certainty existed for only a single step), the q-mdp method would yield theoptimal strategy.However, this is also a problem with the q-mdp method, since it assumesthat whatever uncertainty exists will disappear after executing one action.Thus, if an action is available which is fairly neutral in terms of rewards, ithas the tendency to choose this action, since it is expecting to be able todo quite well after this step. If this action also does not do much to dis-ambiguate the state, then it leaves the system in the same qualitative stateas before (confused, but expecting to be unconfused after the next action)and the q-mdp method will choose this same neutral action. Assuming thisaction does little to change the state or reap rewards, the q-mdp strategyfall victim to its fallacious assumption.6.4 Dual Mode ControlA problem with the previous strategies is their application in situationswhere there is a lot of uncertainty in the information state. At this pointthe q-mdp, as well as the mls and av strategies can begin to make arbitrarychoices, especially if the di�erences between the probabilities or values areminimal. In addition, the assumptions they have about complete observ-ability steer them away from actions which have no reward value, but that



263may give informational value by reducing the uncertainty in the informa-tion state. These two problems can combine to cause these comdp-basedschemes to degrade into a constant cycle of random action selection, neverreceiving much reward and never doing much to disambiguate the currentstate.There is a general concept, known as dual control, from the researchon adaptive control [4, 60] that concerns itself with the tradeo� betweenthe control objective and the parameter estimation objective. With adaptivecontrol, on the one hand, there is the objective function which we would liketo optimize, but since there is uncertainty in the state or the model, there isthe sometimes conicting objective of trying to estimate the state. In rein-forcement learning there is the same problem where it is commonly referredto as the exploitation vs. exploration problem [53]. Systems that explicitlyattempt to trade o� these two objectives would generally be considered dualcontrollers.For the case of a pomdp controller, we know the model, so there isnot a problem learning the model parameters and the quantity we want toestimate is the current state. Although the information state would seem tosolve the state estimation problem, it only does so in a limited way. It givesus a probability distribution over the set of states, but that is not alwaysadequate. The mls scheme solves the state estimation problem by alwaysselecting the most likely state, but it is possible that there are many stateswith roughly the same probability. If these states require di�erent actions,then as long as the probabilities of these states remain roughly the same, thesystem will perform essentially randomly. THe mls heuristic has no explicit



264way to steer the information state into situations where one action choicehas a higher chance of being better than another.In this section we describe a class of techniques that could be classi�edas dual control schemes, since they have two control objectives. The �rstobjective is to take actions that will yield the highest rewards. The secondobjective is to reduce the entropy of the information state. The entropy isa measure of a probability distribution that reects how spiked or spreadout the probability mass is, essentially capturing the amount of uncertaintywith a single number. If f(�) is a discrete probability mass function, theentropy of a de�ned asH(f) = �Xx log(f(x))f(x) : (6.5)For the discrete information-state case, the entropy is minimized at zerowhen all the probability mass is on a single state; i.e., there is completecertainty about the current state. The entropy is maximized for the uniformdistribution; i.e., 8s; b(s) = 1=jSj.The idea behind trying to explicitly reduce the entropy in the informationstate is to drive the system into a state where the action choice has a higherprobability of being the correct choice. In an entropy reduction scheme ofthis sort, we will want to know which action will result in the informationstate with the lowest entropy. To do this we de�ne the expected state entropyof an action and information state to beSH(b; a) =Xz �(b; a; z)H(baz) : (6.6)Recall from our motivation for the av control strategy that simply look-ing at the distribution on the states does not always tell the whole story. In



265selecting a control action, it can be more important to look at the functionwa(b) in deciding on a proper action. Thus we can de�ne the action en-tropy of an information state as H(wa(b)) and likewise the expected actionentropy as AH(b; a) =Xz �(b; a; z)H(wa(baz)) : (6.7)Both Equations 6.6 and 6.7 de�ne a very myopic view of reducing theentropy; It only considers the next step. We could de�ne an n-step entropyreduction scheme which looks multiple steps into the future and considers thelonger term entropy. However, since the branching factor of this look-aheadis the number of observations, this method quickly becomes computationallyexpensive, though clever heuristic pruning or sampling techniques could beused. We will only consider a single step look-ahead for our de�nitions ofexpected entropy.The simplest scheme involving the entropy reduction concept is to de-�ne an entropy threshold, � and have two controlling strategies; one forwhen the entropy is on each side of the threshold. When the entropy is be-low this threshold, we can employ a control scheme that tries to maximizethe rewards received; e.g., mls or q-mdp. When the entropy is above thethreshold, we can use either�(b) = argmina SH(b; a) ;or is equivalent expected action entropy counterpart, to �nd the action withthe lowest expected resulting entropy.It will be convenient to de�ne the normalized entropy of a discrete prob-



266ability mass function, f(x) asH(f) = H(f)H(u) ; (6.8)where u is a function representing the uniform distribution over the domainof f ; i.e., 8x; u(x) = 1=jSj. Since the highest entropy is achieved for theuniform distribution, the normalized entropy will always have the range0 � H(f) � 1.Formally, we now de�ne the dual mode control (dm) as�DM�X(b) = � argmina SH(b; a) if H(b) > ��X(b) otherwiseand its related action entropy counterpart as�ADM�X(b) = � argminaAH(b; a) if H(wa(b)) > ��X(b) otherwise.The X subscript can be replaced by any other heuristic yielding an entireclass of heuristics which will be referred to as dm-x and adm-x; e.g., dm-q-mdp, adm-mls.6.5 Weighted Entropy ControlThe main problem with the dual-control entropy-reduction schemes of theprevious section lies in the complete insensitivity to rewards when the en-tropy is above the threshold �. It could be that the action that leads tothe lowest expected entropy is considerably worse, in terms of reward, thanany of the other actions we might choose based upon a high entropy infor-mation state. For a somewhat extreme example, if the very costly actionof self-destructing is available and highly reliable, then when the entropy



267becomes high, this action would be taken with the dual mode control, sincethere may be little or no entropy in the outcome; e.g., with probability 1the system is in the state of being destroyed.What is missing in the entropy reduction scheme is something that re-lates the rewards of the model to the entropy of the information state. Thereis no concept of how much the entropy in an information state is worth interms of the rewards of the model. The heuristic described in this section isan attempt to relate the entropy to the rewards to give some rough measureof the value of information. It also attempts to overcome the problem withthe q-mdp method; assuming the uncertainty will go away after one step.Considering the information state probabilities, when the normalizedentropy is zero, then there is no uncertainty in the state. If this certaintypersists for the remaining steps, then optimal behavior can be achieved byusing the actions speci�ed for the underlying comdp. At the other extreme,when the normalized entropy is near 1, we have complete uncertainty aboutthe state. If this situation persists, then the future observations are nothelping to reduce the uncertainty. When there are no observations, or theobservations give no hint about the underlying states, we have a completelyunobservable mdp (cumdp). If we solve an mdp assuming complete unob-servability, using V aCU to denote the related Q-functions, we arrive at a lowerbound on the values for a pomdp. Thus, the comdp and cumdp solutionsprovide upper and lower bounds on a pomdp�s optimal value function.Motivated by these arguments, the expressionH(b)(b � V aCU) + (1�H(b))(b � V aCO)



268gives a value for performing action a in an information state based upon thenormalized entropy and the upper and lower bounds on the pomdp valuefunction. Unfortunately, there are some problems with using this expression.The most critical problem is that computing VCU exactly is hard1. However,there are many ways in which lower bounds can be computed [75, 46] whichcan be used in place of VCU . We de�ne VL to be any value function whichis a lower bound for the pomdp value function.Another problem to address is the relative quality of the upper andlower bounds. If one is a fairly loose bound and the other somewhat better,then the simple normalization of the entropy would lead to values skewedtowards the loose bound. To compensate for this and allow some bias aboutthe relative quality of the bounds, we introduce the parameter k and de�ne~H(f) = H(f)k = �H(f)H(u)�k ; (6.9)as a normalized and scaled entropy. This leads to establishing the value ofan action for an information state, which we de�ne as the weighted entropy(we) heuristic, withV aWE(b) = ~H(b)(b � V aL ) + (1� ~H(b))(b � V aCO) :The control strategy would be �WE(b) = argmaxa V aWE(b). The naturalextension of this heuristic for the case where we consider the action entropyis V aAWE(b) = ~H(wa(b))(b � V aL ) + (1� ~H(wa(b)))(b � V aCO) :1Computing the optimal solution to a cumdp is NP-complete [95, 90] as are computingweak approximations to cumdp [20].



2696.6 Approximate Value IterationAn intriguing heuristic uses the exact algorithms discussed in Chapter 3 andvalue iteration to get approximate solutions which can be used to controla pomdp. Although this can be approached in a much more disciplinedway, in this thesis we use an ad-hoc approximate value iteration scheme(approx-vi) to generate a set of vectors and evaluate the resulting set ofvectors as an approximate version of the value function.There are two approaches to doing approximate value iteration on anin�nite-horizon mdp problem:� Do each dp stage exactly, but stop after some �nite number of stages,i.e., use a �nite-horizon solution as the approximation to the in�nite-horizon problem;� Do each dp stage approximately and stop when some comparison cri-teria on successive stages is met.For the �rst case, actual bounds can be placed on the quality of the so-lution for both �nite [9] and continuous space comdps [108], making themapplicable to the pomdp problems. For the second case, one can also putbounds on the approximation, where the error and the discount factor pro-vide a limit on how wrong the values can be [26, 102, 140].We do not undertake a disciplined approach to this problem, but ourimplementation makes doing some form of an approximate dp stage read-ily available. In order to better quantify the e�ects of our approximations,we would need to more closely analyze both the algorithms and our imple-



270mentation in terms of where the approximations are being made and howthe errors can be propagated. Nevertheless, we will use the undisciplinedapprox-vi approach which does both approximate dp stages and truncatesthe number of stages.The approximation level has an impact on the size of the resulting sets,which in-turn has an a�ect on the running times of the algorithms. Thead-hoc approach stems from trying various approximation levels until thevalue function representation sizes were manageable enough to allow valueiteration to proceed a signi�cant number of stages. The approx-vi schemeis mainly provided as simply another lower bound on the optimal solution,though it also hints at the e�ectiveness of the exact algorithms when ad-justed to allow approximations. Doing this is a more disciplined manner isan interesting area of future research.



2716.7 Heuristics Empirical ResultsIn this section we present three sets of empirical comparisons of the heuristicsdiscussed in the previous sections. We begin by evaluating the performanceof these heuristics on some extremely small toy problems. The purpose ofthis comparison is to establish some relationship between the heuristics andthe optimal answers. The di�culty of computing optimal answers requiresthese problems to be small.Our next empirical evaluation is driven by a real application and ad-dresses the usefulness of the pomdp model and heuristics for moderatelysized problems. The task is one of making navigation decisions in a fullyautonomous robot and the pomdp model and these heuristics were used tocontrol an actual robot. Our main focus here is to show that some of thesesimple heuristics perform quite reasonably in these particular kinds of do-mains, which demonstrates the usefulness of the pomdp model despite thenegative results from the computational complexity vantage.The conclusions about the heuristics we establish in the robot navigationdomain are only applicable to that class of problems. Based on these results,we can say nothing about how the heuristics might perform in other settings.The structure of this class of problems may make them more amenable toheuristic solution than other domains. For instance, the robot navigationdomains exhibit some nice locality structure in the transitions, and this mayaid the heuristics or bias the results toward a particular heuristic.Our �nal empirical evaluation of the heuristics is on a few moderatelysized synthetic domains constructed for the purpose of these experiments.



272However, we have based these models on realistic problems and have tried tosample from a wide array of domains to avoid biasing the results in a speci�cdirection. As with any empirical comparison where there is no access to theoptimal answer, care must be exercised in choosing the problem set.Additionally, in the absence of the optimal solution, to establish somemeasure of performance, we have included the results from an omniscient(omni) controller which is able to see the actual state of the process atall times. For the problems where optimal solutions are not known, thisprovides an upper bound on the quality of the solution. Note however thatthe omni controller can be much better than even an optimal controller,since the optimal controller is still limited by the partial observability of thedomain. When heuristics perform much worst than the omniscient controllerit is di�cult to know how sub-optimal they are, but when they come close tothe omniscient controller, we know that they must also be close to optimal.Nevertheless, although we can derive some conclusions from these results,until a richer set of pomdp models are available and a more comprehensiveevaluation is completed, caution must be exercised concerning how theseclaims might be extended to pomdp problems in general.We follow with a section containing some discussion and empirical com-parisons for those heuristics where there were tunable parameters; dm, adm,we and awe. We briey present some results and discussion about howchanges in these parameters a�ect the quality of the control. In the com-parisons of these parameterizable heuristics against the other heuristics thatprecedes this parameter exploration, the results we show for these heuristicsreect the best performance over all parameter setting tried.



273We then present a brief section comparing these heuristic solutions tothe rl/ndp results of the previous chapter and then proved some discussionof related work.6.7.1 Experimental Set-upA simulator for the environments was used to generate state transitions,observations and immediate rewards. Each pomdp model had a problem-speci�c initial information state and the starting state was chosen to beconsistent with this distribution. For all, except the robot-navigation ex-periments, a single trial consisted of a truncated trajectory of 100 simulatedsteps starting from the initial state. The immediate rewards, appropriatelydiscounted, were added to yield a sample of the total reward. This wasrepeated for 10; 000 independent trials and the results reported are the av-erages over all trials. For the robot navigation experiments discussed inSection 6.7.3 the trajectory length was 300 steps and the results are theaverages of 250 trajectories. The discount factor is 0:99 for all problemsexcept for the suite of small problems discussed in Section 6.7.2 where it is0:95.The execution time for evaluating the heuristics varied from problem toproblem based upon the size of the problem, the relative e�ciency of thecode for simulating the domain and the particular heuristic used. Since thereis no training period or any extensive calculations required for any of theheuristics, the execution time is simply the time necessary to simulate 10; 000trajectories, where the belief state is updated and the heuristic selects anaction for each step. For problems without absorbing states, this amounts



274to 1; 000; 000 steps in the simulator and for problems with absorbing states,this will typically be less. Note that unlike the rl/ndp training phase, thereis no need to ensure that the absorbing state problems execute the samenumber of total steps as other problems since a single evaluation instance isa full trajectory.6.7.2 Small ProblemsTo provide some initial basis for the validity of the heuristics and to presentsome cases where we can actually compare the heuristics against the optimalsolutions, we ran the evaluation on the small problems that were the basisfor some of the comparisons of the exact algorithms in Section 4.9.2 and therl/ndp algorithms in Section 5.3.2.Table 6.1 shows the performance of the various heuristics on these smallproblems and compares them to the performance of the optimal controller,where available. The boxed entries are used to display the results from atwo-sample T -test with p = 0:995, where the non-boxed entries are signi�-cantly worse than the best value. Notice that for some of these problems,the omniscient controller can be far superior to the optimal controller. It isalso possible for the optimal controller to yield a lower value than some ofthe heuristics, since the optimal controller was used in simulation. Addition-ally, because the trajectories are truncated, the true in�nite-horizon optimalvalues are higher than what the optimal controller gives for its evaluationvalues.Note that in Section 6.7.5 we will explore the we, dm-mls, dm-q-mdp,adm-mls and adm-q-mdp heuristics over a range of parameter settings, but
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Heur. 4x3 4x4 cheese paint shuttle tiger network nonlin sacimls 1.736 3.702 3.380 -1.754 32.618 -892.485 108.527 6.299 -31.762q-mdp 1.867 3.708 3.461 2.277 32.755 19.753 285.097 6.295 7.567av 1.747 3.659 3.464 -9.603 32.687 -894.403 131.776 6.278 -44.634we 1.819 3.720 3.349 0.435 32.715 19.641 210.211 6.306 -4.139awe 1.857 3.713 3.358 -0.093 32.787 19.531 252.733 6.292 8.500dm-mls 1.772 3.717 3.464 3.106 | 19.843 42.294 6.678 -48.345adm-mls 1.760 | 3.443 2.017 | 19.745 42.827 6.694 |dm-qmdp 1.812 3.708 3.466 3.127 | 19.690 187.911 6.688 -56.146adm-qmdp | | 3.467 2.023 | 19.636 187.746 6.686 |approxvi 1.883 3.702 3.468 3.250 32.678 18.422 290.624 7.158 14.817optimal N/A 3.712 3.464 3.279 32.700 19.181 290.998 7.158 N/Aomni 2.466 4.654 3.910 12.678 32.650 198.816 490.997 12.577 16.904Table 6.1: The heuristic algorithms on the suite of small problems. T -test with p = 0:995.



276Table 6.1 shows the best answer among all the parameter settings for thosealgorithms. For the dual-mode controllers, the entries marked with a \|" indicate that the information state's entropy never exceeded any of thethresholds we tried (the smallest being 0:1). This means that no actionswere taken in an attempt to reduce the entropy; e.g., the dm-mls heuris-tic performed exactly the same as the plain mls scheme for the shuttleproblem. Section 6.7.5 will discuss these \|" entries in more detail.An interesting result from Table 6.1 is that the approx-vi scheme isnever worse than any of the other heuristics and signi�cantly better that allon the nonlin and saci domains. This shows the potential for using theexact algorithms of Chapter 3 in approximation schemes, but the drawbackhere is that the approx-vi controller is the result of signi�cantly morecomputation that the other heuristics. Some amount of time is needed to runthe approximate value iteration to produce the answer. The heuristics needto solve the underlying comdp �rst, but this time requirement is extremelysmall compared to executing value iteration approximately. This table alsoshows that there are domains where all of these heuristics are useful controlstrategies, sometimes approaching optimal behavior.There is an interesting reason why the q-mdp method does better thanthe mls or av schemes on the paint and tiger problems. Recall, thatthe q-mdp method is the optimal control strategy if the uncertainty aboutthe state would be removed after the next action. Although the paint andtiger problems do not have this property, it is the case that good results canbe obtained on these problems if the controller is willing to take a low costinformative action for a single step. The mls and av schemes do not favor



277these informative action because of their low cost, but the q-mdp methodmakes a slightly more informed decision, based on a single step of uncer-tainty. It turns out that the action chosen, while not completely informative,is useful enough that after one step q-mdp's subsequent decisions are fairlygood ones. If the domain requires a sequence of informative actions, wewould expect the q-mdp method to do poorly. We will see an instance ofthis in the robot navigation domains to follow.For the paint problem and aside from the approx-vi controller, only thetwo dual-mode controllers approach the optimal performance. The presenceof low cost information gathering actions, combined with signi�cant penal-ties for wrong action choices force these heuristics to continually apply theinformative actions until the state is known with su�cient con�dence. Thistype of behavior turns out to be the general structure present in the opti-mal controller. The entropy-based heuristics do well on the tiger problembecause it has similar structure to the paint problem.Ignoring the approx-vi for all of these small problems, there is someheuristic which yields fairly good control policies. However, there is no singleheuristic which is universally good, meaning that some exploration wouldbe required to establish which heuristics would be applicable to a particularproblem. These small problems do provide a useful forum for trying tocharacterize the structures of problems for which the various heuristics mightdo well. However, it could be that the structure that is most importantfor applying these heuristics is that the problem be small. The followingsubsections show this not to be the case by applying the heuristics to muchlarger problems.



2786.7.3 Robot NavigationWith no theoretical guarantees on the quality of the heuristic solutions, theusefulness of the heuristics are best determined with their applicability toactual problems. One question that has remained largely unanswered is thefeasibility of using the pomdp model in a real planning problem. Most of theprevious experimental results have been on either random, toy or syntheticproblems. One step we have taken in the direction of applicability is to use apomdp model on an autonomous robot navigating in an o�ce environment.Although the structure of the o�ce environment has many nice features forapplying the the somewhat abstract pomdpmodel, there is still a high degreeof uncertainty in the crude observations available and the action outcomes.The need for algorithms to handle noisy environments is quite noticeable inautonomous robot research [18]. It is the robot navigation domain whichmotivated the development of these heuristics.Previous work using pomdp models for planning in mobile robots bySimmons and Keonig [113] on the robot xavier used a single heuristic (es-sentially the voting heuristic) and our research has explored the question ofwhether there are better heuristics as well as whether pomdp models canbe applied to realistic problems. Additionally, the work by Simmons andKoenig used a more intriguing, though more complex, pomdp model of theenvironment than a simply discretization of the oor area. It is an openquestion whether the results here are applicable to models constructed withtheir methods, though we suspect they are.Another related e�ort is that by Nourbakhsh et al. [94] on the robot



279dervish. Although not explicitly grounded in an mdp model, they use aprobabilistic model to help predict potential resulting states. They alsouse the certainty equivalence principle and assume the robot is in the mostlikely state, though their planning schemes tend to be di�erent from thatused for the mls heuristic. More discussion of the similarities and di�erencesbetween their approach and those presented here can be found in Cassandra,Kaelbling and Kurien [21] along with some empirical comparisons.One of the shortcomings of all of these approaches in the need for a fullexplicit model of the environment. A more natural situation is for the robotto uncover the structure and model parameters. We present no solutions tothis problem but refer to the work by Koenig and Simmons [59] and Shatkayand Kaelbling [112].Synthetic EnvironmentsThe general robot navigation domain is discussed in Appendix H.5. Here weexplore 24 speci�c pomdp model instances of this domain which correspondto 4 di�erent location con�gurations, 3 di�erent starting/goal state con�g-urations and 2 di�erent noise models. One di�erence of these navigationdomains from the discussion in the appendix is that being in a non-goalstate and choosing the action that declares the goal state results in a tran-sitioning to a zero-cost absorbing state with no immediate reward. For thedomains described in Appendix H.5, the outcome is a self-transition and apenalty in the form of negative reward.We �rst present the results for a noise model where there is relatively lit-tle noise (standard) in the state transitions and observations, which roughly



280Action Standard probabilitiesmove-forward N (0.11), F (0.88), F-F (0.01)turn-left N (0.05), L (0.9), L-L (0.05)turn-right N (0.05), R (0.9), R-R (0.05)no-op N (1.0)declare-goal N (1.0)Action Noisy probabilitiesmove-forward N (0.05), F (0.7), F-F (0.05),L (0.1), R (0.1)turn-left N (0.1), L (0.7),L-L (0.1), F-L (0.1)turn-right N (0.1), R (0.7),R-R (0.1), F-R (0.1)no-op N (1.0)declare-goal N (1.0)Table 6.2: Action probability speci�cations for synthetic robot navigationdomains.correspond to those of a real robot. We then explore the e�ects of addingnoise (noisy) to these same 4 con�gurations. The transition and observationprobabilities for the both the standard and noisy noise models are given inTables 6.2 and 6.3, where Appendix H.5 gives the interpretation of thesetables.The four speci�c location con�gurations and three di�erent starting/goalstate combinations were selected to provide a range of challenges to theheuristics and to eliminate any odd e�ects that could arise with a singledomain or single con�guration of start/goal states. In particular, one set(experiment 1) of starting states reect the case where the robot knows withcertainty its starting location. The next set (experiment 2) is a situationwhere there is minor uncertainty about the initial state; e.g., the robot could



281za zo P (zo j za)Actual Observed Standard Noisywall wall 0.90 0.70wall open 0.04 0.19wall doorway 0.04 0.09wall undetermined 0.02 0.02open wall 0.02 0.19open open 0.90 0.70open doorway 0.06 0.09open undetermined 0.02 0.02doorway wall 0.15 0.15doorway open 0.15 0.15doorway doorway 0.69 0.69doorway undetermined 0.01 0.01undetermined undetermined 1.00 1.00Table 6.3: Conditional observation probabilities for synthetic robot naviga-tion domains.start in one of two possible states. The �nal set (experiment 3) representsthe case where there is complete uncertainty about its initial state; i.e., theinitial information state is a uniform distribution over all states in the model.Figures 6.1 through 6.4 show both the location layout and the variousinitial and goal states for the three sets of experiments. The dark squaresrepresent locations that are rooms and the lighter shaded squares are cor-ridor or hallway locations. These con�gurations are loosely based uponactual o�ce buildings and were not constructed to favor any particular con-trol strategy. They all have between 200 and 300 states, 64 observationsand 5 actions.When this evaluation was done, the dm, adm andwe heuristics were stillin an immature state. We have omitted the results of these heuristics andfocus on the mls, q-mdp and av heuristics. The dm, adm and we heuris-
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NFigure 6.4: Synthetic o�ce environment D.tics are evaluated in Sections 6.7.4 and 6.7.5 where we also consider somenavigation environments similar to the ones in this section. Additionally,there are also some related heuristics which were tried, but never provedsuperior in any of our experiments. We have eliminated these results aswell, and refer the reader to the original paper which introduced the resultsgiven here [21].For the experiments of this section we performed a T-test to determinewhether or not there were signi�cant di�erences between the heuristics. Inthe tables, the best performance is outlined darkly and those that are notsigni�cantly worse are lightly outlined.Standard Noise ModelTable 6.4 shows the results of the di�erent heuristics on the four synthetico�ce environments when the starting state is known.Although there is some variability between the methods, for the mostpart none of the heuristics do poorly. Since each is an approximationmethod, there are particular circumstances where they can be made to toperform arbitrarily poorly. The data points where one of the methods ap-



284Heuristic A B C Dmls 0.642 0.749 0.662 0.791av 0.639 0.704 0.612 0.800q-mdp 0.662 0.743 0.452 0.825omni 0.677 0.846 0.756 0.836Table 6.4: Experiment 1: Known starting state, standard noise model.Heuristic A B C Dmls 0.695 0.639 0.779 0.791av 0.669 0.000 0.737 0.791q-mdp 0.704 0.000 0.788 0.853omni 0.728 0.848 0.845 0.878Table 6.5: Experiment 2: Multiple possible start states, standard noisemodel.pear signi�cantly worse than the others are examples of such circumstances.Note that the mls method is fairly robust across the environments, showingthat not much more than the information captured in the information stateis needed to do exceedingly well in this situation.The next situation we address is when the agent is not certain of itsstarting state. In the experiments shown in Table 6.5, there are two possiblestarting states (four possible states for o�ce B) that are similar in theirimmediate surroundings.This is the �rst case where we see some of the methods performingpoorly. The q-mdp and av methods are never able to reach the goal inthe o�ce B experiment. This is because they cycle through the same set ofactions without making any progress toward the goal. This cycling behavioris not always present, as can be seen by their performance in the otherenvironments. In fact, the q-mdp method is signi�cantly better than the



285Heuristic A B C Dmls 0.630 0.615 0.601 0.729av 0.599 0.570 0.257 0.648q-mdp 0.405 0.502 0.308 0.574omni 0.750 0.868 0.853 0.898Table 6.6: Experiment 3: Uniform starting belief, standard noise model.others in the o�ce A and D experiments, where that particular con�gurationof starting states and goal states allows it to behave nearly as well as theomniscient method.A problem with selecting the av or q-mdp methods is that it is noteasy to know beforehand if the particular environment will bring out thebest or the worst in these heuristics. The mls method performs reasonablywell across all of these situations and would be the preferred choice unlesssomething more was known about the particular problem instance.The �nal situation we explore is the most di�cult from the control per-spective: what if the robot is equally likely to start in any of the states? Inthis situation, its initial belief distribution is uniform over all states. Ta-ble 6.6 shows the results of applying the heuristics to this situation. Theseresults show that the q-mdp and av methods do not usually perform wellwhen the uncertainty is high. The mls method is still quite robust andsuggests that for moderately noisy environments, it is the best choice acrossdi�erent types of environment layouts and starting beliefs.Noisier Noise ModelThe navigation problem becomes harder as the noise in action and observa-tion increases. In order to gauge the e�ects of noise on the various methods,



286Heuristic O�ce A O�ce B O�ce C O�ce Dmls 0.082 0.190 0.070 0.264av 0.044 0.156 0.025 0.307q-mdp 0.000 0.000 0.000 0.000omni 0.576 0.782 0.654 0.779Table 6.7: Experiment 1: Known starting state, noisy noise model.Heuristic O�ce A O�ce B O�ce C O�ce Dmls 0.166 0.150 0.181 0.251av 0.206 0.124 0.146 0.293q-mdp 0.000 0.000 0.000 0.000omni 0.650 0.792 0.784 0.830Table 6.8: Experiment 2: Multiple possible start states, noisy noise model.we repeated the experiments using the increased noise (noisy) action and ob-servation probabilities shown previously in Tables 6.2 and 6.3. Tables 6.7,6.8 and 6.9 show the results of these experiments.The q-mdp method was universally bad across all con�gurations andstarting beliefs. In none of the trials did it ever declare itself to be in thegoal. This is a direct result of q-mdp's assumption that it will be completelydisambiguated on the next step. Since the noise is high, it will never have avery con�dent belief that it is in the goal. It would prefer to delay declaringthe goal by doing one more action in hopes of knowing where it will be afterHeuristic O�ce A O�ce B O�ce C O�ce Dmls 0.130 0.125 0.122 0.236av 0.168 0.183 0.082 0.297q-mdp 0.000 0.000 0.000 0.000omni 0.660 0.811 0.774 0.852Table 6.9: Experiment 3: Uniform starting belief, noisy noise model.



287that action. Among the mls and av heuristics, neither is clearly superior tothe other, though the mls heuristic seems to be more applicable when theinitial uncertainty is low.Real Robot Navigation EnvironmentThe four synthetic environments of the previous sections lay the basic foun-dation for the performance of the heuristics in navigation domains. However,the ultimate aim is to use pomdp models on a fully autonomous robot, ina real o�ce environment. We would like the conclusions from the previousevaluations on synthetic environments to be applicable to real robot naviga-tion problems. We therefore took a two-stage approach to connecting thoseresults to actual autonomous robot navigation.The �rst stage consists of building a model of the environment wherethe robot needs to navigate and evaluating the heuristics on this model insimulation. This bridges the gap between the synthetic environments anda real environment, though both are evaluated using simulations. The sec-ond stage is to the evaluate the heuristics with the actual robot using thismodel. This two-pronged approach is necessitated by the fact that it is ex-tremely time consuming to gather the data using the actual robot, renderinghundreds of trials impractical. Moving directly from simulated experienceon synthetic environments to real experiences on a real environment wouldleave open the question of whether or not the results were an artifact of themodel or the real experiences. By running hundreds of simulations on thesame model, we eliminate one of the variables.Figure 6.5 shows the real o�ce environment navigated by the robot which
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Figure 6.5: Real o�ce environment.consists of 1; 052 pomdp states. Due to the size of this domain, we used 7di�erent con�gurations of initial information states. For all of these ex-periments, the goal state was the same, location G, facing east. The �rstthree experiments were for a known starting location, (A-east, B-east and C-south), roughly corresponding to di�ering physical distances from the goal.The next three experiments used a starting belief over two locations; foreach of the previous starting states we added a state, (D-east, E-east and F-north respectively), roughly the same distance and with similar immediateobservations. The �nal experiment was conducted with a uniform startingbelief over all states. We used the same standard noise model that was usedin the synthetic domain experiments.Table 6.10 shows the simulation results for 100 trials. These results areconsistent with the synthetic o�ce A layout, which is a simpli�ed version ofthis real environment.The last step is to connect the results of Table 6.10 to the actual robot



289ExperimentAlg. 1 2 3 4 5 6. 7mls 0.774 0.717 0.452 0.776 0.763 0.390 0.504av 0.690 0.721 0.339 0.710 0.775 0.207 0.539q-mdp 0.797 0.730 0.454 0.817 0.755 0.428 0.407omni 0.809 0.746 0.489 0.855 0.780 0.481 0.652Table 6.10: Simulations of real robot o�ce environment, standard noisemodel.experiments. Although we give the results in Table 6.11, we omit the detailsof these experiments, the actual experimental set-up and the overall designof the controlling architecture of the robot, though we note that there aremany interesting implementation issues which arose from this project. Theinterested reader is referred to the original paper [21], however there are afew points to be made about Table 6.112:� the number of trajectories run for each experiment was extremelysmall: three for experiments 1, 2 and 3, and six for experiments 4,5 and 6 (three for each of the two starting locations);� experiment 7 was not run, since properly evaluating for the uniformstarting location would require hundreds of trajectories from a sam-pling of all possible states;� the data roughly agrees with the simulated results.Aside from the general usefulness of the pomdp model and these heuris-tics in the robot navigation domain, this work demonstrated that the ex-ibility in the high-level pomdp model simpli�es the task of the low level2The experiments on the robot are the product of the e�orts of James Kurien with theautonomous robot Ramona.



290ExperimentAlg. 1 2 3 4 5 6mls 0.83 0.77 0.49 0.84 0.78 0.31av 0.86 0.77 0.50 0.00 0.77 0.00q-mdp 0.83 0.78 0.46 0.78 0.76 0.25Table 6.11: Experiments on robot.control design. Typically, designers of low-level controlling software spend apainstaking amount of time assuring reliability across all possible situationswhich could be encountered. The pomdp model allows for the imperfectionof the low-level control, which can even be combined with the true non-determinism of the environment. As long as a reasonable failure model canbe built and adhered to by the low-level controller, the high-level model canrecover from the errors, whether they be from the true stochasticity of theenvironment or artifacts of the low-level implementation.6.7.4 Other DomainsIn an e�ort to extend the small problem and robot navigation conclusions,we have evaluated the heuristics (including the parameterized heuristics we,awe, dm and adm) on a suite of larger synthetic problems. These domainswere discussed in Section 5.3.5 and are detailed in Appendix H. Note thatthe cit, mit, sunysb, pentagon and fourth domains are very similar tothe �ve navigation domains presented in the previous section, where thereis a single known starting state. Since the entropy-based heuristics were notexplored in the previous discussion, this will allow us to gauge their e�ec-tiveness in domains with similar structure. We will also explore variationsof these navigation domains where the initial information state is uniform



291across all locations: cit-u, mit-u, sunysb-u, pentagon-u and fourth-uAlthough the problems in this sub-section range from 100 to 8; 000 states,this is not the limit of the applicability of these heuristics. comdps that arelarger than this can be solved and information state vectors larger than thiscan be represented. However, as the state and observation spaces increasethe time requirements for the information state update could begin to mat-ter. Note that the action space also has some bearing upon this, though welimit our discussion to the cases where the size of state space usually dwarfsthe size of the action space.We �rst apply the heuristics to the the 57 and 89 state domains usedin the Chapter 5, and which were shown in Figures 5.2 and 5.3. Althoughboth domains have the property of complete initial uncertainty, hallwayhas a number of landmarks and an asymmetrical layout, helping to disam-biguate the location, even for a random sequence of actions. On the otherhand, hallway-2 has no distinguishing landmarks, and the property ofbeing hideously symmetrical. Table 6.12 shows that again, the approx-viheuristic is signi�cantly better than the rest, establishing again the potentialfor the use of exact algorithms in approximation schemes. Besides approx-vi we see that the we and awe heuristics do better in the hallway-2environment, where the information state entropy is always likely to behigh.Next, we evaluate the full set of heuristics on the robot navigation envi-ronments. Table 6.13 shows the results for the 5 domains where the initialstate is know and Table 6.14 shows the the same domains but where there iscomplete uncertainty in the initial information state, i.e., maximum entropy.



292Heur. hallway hall.-2mls 0.802 0.174q-mdp 0.344 0.097av 0.756 0.084we 0.598 0.326awe 0.776 0.378dm-mls 0.818 0.213adm-mls 0.823 0.215dm-qmdp 0.598 0.193adm-qmdp 0.602 0.224approxvi 1.001 0.416optimal N/A N/Aomni 1.519 1.189Table 6.12: The heuristic algorithms on the 57 and 89 state problems. T -testwith p = 0:995.Heur. cit mit suny. pent. fourthmls 0.804 0.858 0.764 0.789 0.587q-mdp 0.832 0.812 0.759 0.821 0.590av 0.807 0.863 0.711 0.795 0.586we 0.834 0.814 0.760 0.822 0.592awe 0.833 0.812 0.760 0.822 0.592dm-mls | | | | |adm-mls | | | | |dm-qmdp | 0.815 | | |adm-qmdp | | | | |approxvi 0 0 0 0 0optimal N/A N/A N/A N/A N/Aomni 0.845 0.894 0.809 0.836 0.625Table 6.13: The heuristic algorithms on some robot navigation problems.T -test with p = 0:995.



293Heur. cit-u mit-u suny.-u pent.-u fourth-umls 0.626 0.524 0.508 0.682 0.451q-mdp 0.366 0.556 0.330 0.573 0.340av 0.654 0.594 0.575 0.738 0.502we 0.368 0.559 0.334 0.577 0.349awe 0.373 0.557 0.336 0.580 0.348dm-mls 0.629 0.480 0.495 0.691 0.440adm-mls | | 0.492 0.692 |dm-qmdp 0.370 0.556 0.330 0.580 0.347adm-qmdp | | | 0.570 |approxvi 0.000 0.022 0.008 0.019 0.007optimal N/A N/A N/A N/A N/Aomni 0.837 0.893 0.845 0.896 0.652Table 6.14: The heuristic algorithms on the robot navigation problems withuniform initial information state problems. T -test with p = 0:995.For the case of known initial state, we see �rst, the dual mode controllersare rarely of any help. The exception is the drastically symmetric mitdomain, and even then its performance is below what is obtainable withother methods. The second result is that all the other heuristics do moreor less equivalently. By looking at the omniscient controller's value, we canalso see that they must not be too far o� from the optimal behavior. Asin the previous navigation experiments, we see that very unsophisticatedtechniques do quite well in domains with this structure. Finally, we see thatthe approx-vi heuristic did miserably in these domains. The sizes of thedomains limited the precision and length with which we could obtain resultsthrough the approximate value iteration and the �nal answers appear to bepoor controllers for these domains.In Table 6.14, where the initial state uncertainty is maximized, we getthe surprising result that the av method is signi�cantly better than all the



294other heuristics, except in the cit-u domain. This is quite a contrast to theknown initial state case and very similar to the previous results shown forthe other robot navigation environments where there was an uncertain initialstate and noisier actions. Notice that the approx-vi controller actually doesbetter in this situation than it did in the known starting state location. Thisis attributable to the randomness in the initial state, since there are somenumber of times where the robot will start very close to the goal. In thiscase, even random behavior is likely to lead one to the goal, though it stillis required to choose the declare-goal action to get a reward.The last set of domains we use to explore the usefulness of the heuris-tics have their results shown in Table 6.15. We see the resurgence of theapprox-vi controller, though the size of the baseball domain resulted invi taking considerably longer than we were willing to wait to produce evena single stage at a crude approximation. This is more of a problem withour particularly unmotivated method for doing approximate value iteration,than it is with the idea itself. For the most part, the results on this set ofdomains are mixed. For a given domain there are a number control heuris-tics which do well. However, the av heuristic is the only one which is alwaysamong the best.Of these domains, only the iff and machine domains have explicit in-formation gathering actions. Because of this, we would expect the mls,q-mdp and av heuristics to not do so well here, since they are based uponassumptions of complete observability. The entropy-based heuristics wouldseem to have an advantage in these domains, though the results in these do-mains do not bear this out. Although dm-mls is the best for the iff domain,



295Heur. iff bb machine aloha10 aloha30mls 8.191 0.634 57.042 126.082 852.773q-mdp 4.496 0.101 59.693 127.429 851.035av 8.004 0.633 57.901 126.227 849.109we 3.452 0.658 37.196 110.702 751.993awe 3.464 0.668 53.877 110.813 736.230dm-mls 8.389 | | 126.296 |adm-mls | | | 124.652 |dm-qmdp | 0.350 | | |adm-qmdp 5.684 0.461 | 125.947 |approxvi 4.590 N/A 59.884 126.808 848.830optimal N/A N/A N/A N/A N/Aomni 10.079 0.658 66.236 145.572 937.143Table 6.15: The heuristic algorithms on the other large problems. T -testwith p = 0:995.mls is not signi�cantly worse and the machine domain has q-mdp beingamong the best. However, for those two domains, we see that often, thedual-mode controllers never require taking entropy-reduction actions. Thishints that although these problems have information gathering actions, theyare seldom required. We speculate that problems with information gather-ing actions and that tend toward highly entropic information states wouldbe the type of structure where the entropy-based schemes would be signif-icant improvements to the mls, q-mdp and av heuristics. Although onecould construct models with just this structure, we have not explored thispossibility, since we want to avoid specially constructed domains.Although the results are as mixed as they were on the suite of smallproblems, this does show that for each domain there is some heuristic thatdoes fairly well. For some, the quality of the heuristic compared to the omni



296controller shows that there is little room for improvement. For others, thereappears to be room for improvement, but this cannot really be assessedwithout access to the optimal controller, since the omni heuristic can besigni�cantly better than even the optimal pomdp control.6.7.5 Parameterized HeuristicsIn the preceding evaluations of the heuristics, the dm, adm, we and aweheuristic results reected the best results from the range of parameter set-tings used. In this section we present results for all of the parameter settingsused and discuss the implications of adjusting these parameters.Dual ModeThe dm and adm heuristics are parameterized by an entropy threshold, �.We ran the heuristics dm-mls, adm-mls, dm-q-mdp and adm-q-mdp onevery domain 9 times and used a di�erent threshold each time, where therange of the thresholds was 0:1 to 0:9 in increments of 0:1. As a typicalresult, Table 6.16 shows the results for the dm-mls heuristic.
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ThresholdDomain 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.94x3 1.416 1.420 1.489 1.527 1.767 1.772 1.741 1.760 1.7614x4 3.487 3.487 3.494 3.491 3.489 3.491 3.654 3.653 3.717cheese 3.216 3.216 3.462 3.464 3.440 3.434 3.434 3.439 3.445paint 1.648 2.117 2.783 2.771 3.106 -1.753 -1.771 -1.763 -1.773shuttle 32.632 32.654 32.743 32.606 32.724 32.625 32.708 32.756 32.602tiger 16.178 19.837 19.132 19.843 19.378 19.291 -72.041 -72.892 -73.513network -595.119 -595.184 -595.213 -595.132 -595.298 -435.664 -414.192 -254.913 42.294nonlin 6.659 6.678 6.665 6.275 6.287 6.274 6.288 6.314 6.284saci -81.993 -82.350 -81.881 -82.293 -81.982 -81.655 -68.306 -49.446 -48.345hallway 0.255 0.487 0.534 0.780 0.786 0.818 0.804 0.805 0.809hall.-2 0.017 0.053 0.118 0.182 0.196 0.203 0.213 0.212 0.212cit -58.076 -0.095 0.753 0.805 0.808 0.802 0.805 0.803 0.806mit -0.164 0.799 0.857 0.857 0.857 0.859 0.855 0.859 0.860suny. -9.648 0.266 0.742 0.762 0.765 0.766 0.765 0.764 0.765pent. -5.179 0.160 0.647 0.754 0.791 0.792 0.791 0.796 0.793fourth -45.376 0.007 0.560 0.588 0.586 0.588 0.586 0.587 0.585iff 0.370 8.181 8.138 8.389 8.061 8.299 8.193 7.948 8.154bb 0.343 0.401 0.649 0.627 0.618 0.640 0.605 0.623 0.634machine -408.104 -286.265 -123.941 -41.377 5.963 21.595 33.916 54.255 56.923aloha10 92.855 97.556 105.587 112.436 118.920 126.296 125.766 125.814 125.662aloha30 683.531 688.004 693.332 705.423 759.159 842.663 849.878 848.449 848.477cit-u -26.739 -16.279 -6.524 -0.052 0.050 0.359 -0.080 0.615 0.629mit-u -22.874 -13.485 -6.614 -6.050 0.363 0.375 0.480 0.478 0.466suny.-u -27.403 -19.702 -15.305 -11.571 -5.309 0.384 0.473 0.495 0.487pent.-u -27.203 -26.343 -13.758 -0.909 -0.320 -0.716 -1.435 0.686 0.691fourth-u -37.774 -18.168 -11.376 -6.123 -3.852 -0.393 -0.478 0.438 0.440Table 6.16: Threshold values and the dm-mls heuristic. T -test with p = 0:995.



298This large table has entries which are visually marked in one of four ways� Entries that are white text on a black background indicate that theinformation state entropy never exceeded this threshold. If none ofthe steps taken were to reduce the entropy, then the heuristic simplydegenerates into either the mls or q-mdp heuristic. The full resultsshowing the percentage of steps for which the threshold was exceededare given in Appendix I.2, Tables I.13 through I.16.� Entries with a thick black box indicate that at least once the entropyexceeded the threshold level and it is the best value for that domainacross all threshold settings.� Entries with a thinner black box indicate that this value is not signif-icantly worse than the best value.� Entries with no markings are either statistically worse than the bestentry, or it is the case that the best entry for that domain occurredwhen no entropy reduction actions were needed.The most dramatic results concerning the threshold value occur on thepaint and tiger problems, where the wrong threshold can result in exceed-ingly poor performance. Aside from this, the dual mode controllers seem todo best when the threshold is relatively high. In other words, relying on acertainty equivalent type controller is a good heuristic, unless the entropy isvery high.The varying threshold results for the adm-mls, dm-q-mdp and adm-q-mdp heuristics can be found the Appendix I.2, Tables I.10 through I.12.



299Unfortunately, there is no clear-cut best value of �, and the actual valueseems to be domain dependent. Again, we suspect that, for the most part,these problems do not exhibit the structure where the dual-mode controllerswould be clearly preferable to the non-entropy-based controllers.Weighted EntropyThe we and awe heuristics have an exponent for scaling the normalizedentropy. We ran all the we and awe experiments 3 times using the di�eringexponents of 1=3, 1 and 3 each time. Table 6.17 shows the results for thewe heuristic and Table 6.18 shows the results for awe. The dark boxedentries highlight the exponent value which gave the best result, with thelighter boxes indicating no signi�cant di�erence.For many of the domains, these particular exponents give roughly equiv-alent performance. However, there are domains where the actual value doesmatter (e.g., hallway, hallway-2, iff, bb) and, unfortunately, there is noclear cut best value. Thus, the proper exponent is either domain dependentor some function of the combination of the domain and the particular upperand lower bounds used in the we and awe heuristics.Note also that the particular lower bound we used was to simply evaluatethe value function, once for each action, for a policy which always choosethat action. These one-action policies are not only easy to compute, buttheir value functions are linear, making them easy to represent.



300ExponentDomain 1/3 1 34x3 0.965 1.296 1.8194x4 3.709 3.708 3.720cheese 3.262 3.246 3.349paint 0.434 0.435 0.417shuttle 32.656 32.638 32.715tiger -9.888 8.544 19.641network 148.960 197.002 210.211nonlin 6.283 6.306 6.274saci -4.481 -4.379 -4.139hallway 0.598 0.513 0.338hall.-2 0.326 0.304 0.180cit 0.833 0.834 0.833mit 0.814 0.810 0.811suny. 0.760 0.758 0.757pent. 0.822 0.822 0.821fourth 0.592 0.591 0.592iff 3.328 3.452 -12.067bb 0.634 0.658 0.210machine 37.196 37.144 37.176aloha10 109.930 110.702 109.621aloha30 689.554 691.697 751.993cit-u 0.361 0.364 0.368mit-u 0.559 0.556 0.550suny.-u 0.324 0.334 0.329pent.-u 0.573 0.577 0.573fourth-u 0.337 0.347 0.349Table 6.17: Exponent values and the we heuristic. T -test with p = 0:995.



301ExponentDomain 1/3 1 34x3 1.373 1.843 1.8574x4 3.706 3.713 3.713cheese 3.255 3.254 3.358paint -0.093 -0.224 -0.237shuttle 32.725 32.787 32.742tiger -9.904 8.587 19.531network 150.696 197.650 252.733nonlin 6.286 6.253 6.292saci 8.500 8.321 7.495hallway 0.564 0.776 0.340hall.-2 0.049 0.378 0.212cit 0.833 0.833 0.833mit 0.812 0.811 0.810suny. 0.760 0.759 0.759pent. 0.821 0.822 0.821fourth 0.591 0.591 0.592iff 3.097 3.464 2.264bb 0.668 0.655 0.401machine 40.931 46.670 53.877aloha10 110.266 110.813 109.921aloha30 689.189 693.579 736.230cit-u 0.366 0.373 0.365mit-u 0.552 0.557 0.557suny.-u 0.329 0.336 0.324pent.-u 0.580 0.576 0.573fourth-u 0.346 0.342 0.348Table 6.18: Exponent values and the awe heuristic. T -test with p = 0:995.



3026.8 Heuristics vs. RL/NDPHaving discussed the usefulness of some heuristic approaches and also thedi�culties present when trying to decide which heuristic is best, we now turnto the question of comparing our two separate approximation approaches.First, from the practical side, the rl/ndp methods typically require anextensive training phase, which may either be undesirable, unavailable orunneeded. However, they tend to usually lead to useful control policies, orat least the resulting policies seldom have catastrophic results. The heuris-tic methods are easy to compute, but have wildly varying results. For aparticular domain, there is usually a heuristic which can do very well for it,but it is not always clear which heuristic to choose. There is a wide areaof unexplored options for pomdps which could combine rl/ndp techniquesto possible get the best of both worlds, perhaps combining the heuristicsand training a neural network to assign the proper weightings for particularsituations.Having said that, we now turn our attention to actually merging theempirical studies of these two approximation approaches. For each domain,we have selected the best rl/ndp and best heuristic results and performed atwo-sided T -test to gauge whether one approach was better than the other.Table 6.19 has the results, and coincidentally they both have three domainswhere they are signi�cantly better than the other.



303Best rl/ndp Best HeuristicDomain Alg. Mean Alg. Mean4x3 lin-q 1.868 approxvi 1.8834x4 7pwlc 3.710 we 3.720cheese lin-q 3.465 approxvi 3.468paint 7pwlc 3.271 approxvi 3.250shuttle lin-q 32.690 we 32.787tiger 7pwlc 19.307 dm-mls 19.843network 3pwlc 291.343 approxvi 290.624nonlin lin-q 7.158 approxvi 7.158saci lin-q 14.787 approxvi 14.817hallway 7pwlc 1.008 approxvi 1.001hall.-2 7pwlc 0.510 approxvi 0.416cit 3pwlc 0.829 we 0.834mit 7pwlc 0.868 av 0.863suny. lin-q 0.771 mls 0.764pent. lin-q 0.819 we 0.822fourth lin-q 0.596 we 0.592iff 7pwlc 8.828 dm-mls 8.389bb 3pwlc 0.481 we 0.668machine lin-q 59.839 approxvi 59.884aloha10 lin-q 123.871 q-mdp 127.429aloha30 lin-q 825.365 mls 852.773Table 6.19: Comparison of best heuristic and best rl/ndp variation. T-testwith p = 0:995



3046.9 Related WorkThis chapter has focused on heuristic methods for approximating pomdpvalue functions and policies. This is far from the �rst research that haslooked at this question and the range of techniques spans a broad space ofapproaches. We briey discuss some of these approaches, though our roughcharacterization into topics is more for organizational purposes than it isprecisely correct.6.9.1 Grid-basedOne common method to deal with continuous state spaces for mdps includeslaying a grid of points over the state space, thereby transforming the probleminto a discrete problem; e.g. multi-grid techniques [17, 107]. Aside fromscaling poorly with the dimensionality of the state space, these are generaltechniques which were not speci�cally developed for pomdps and thus donothing to exploit the shape of the value function.Some of the earliest work in pomdps, predating all of the exact algo-rithms, approached the problem by discretizing the state space [40, 54]. Al-though speci�cally geared toward partially observable environments, thesemethods scale miserably with the dimensionality of the state space. Love-joy's [75] grid-based algorithm uses a more exible scheme for establishingthe grid, but still is problematic for anything but a small number of states.One of the more interesting aspects of Lovejoy's work is his methods andinsights for establishing upper and lower bounds on the pomdp value func-tion.All of the above grid-based algorithms could be classi�ed as �xed-grid



305methods, since the grid is established in a very regular way and neverchanged. These �xed-grid methods are very rigid, but allow easy inter-polation for points not in the grid. Recently, Hauskrecht [46] has developedsome techniques for quickly getting upper and lower bounds for the valuefunctions, which do not depend on any particular �xed grid. The applicabil-ity to an arbitrary set of points makes his interpolation techniques especiallyuseful for approximation schemes. Brafman [16] has also looked at applyingvariable grid-based methods to pomdps, where he uses heuristic rules todecide where and when to add points to the grid.We note that the exact algorithms of Chapter 3 can be viewed as variable-grid methods, since at each dp stage they attempt to uncover a �nite numberof points which will give rise to the optimal value function. Our approx-vischeme is a general, though not yet precise, method for adapting these exactmethods to be approximations. The work by Cheng [26] shows how his linearsupport algorithm can be adopted for use in a successive approximationscheme and Zhang and Liu [140] show the same for the incremental pruningalgorithm.6.9.2 Finite MemoryAnother approach to approximating pomdp solutions is to only keep a �-nite amount of history of the process [100, 133]. This can also be viewedas a discretization of the continuous information state space space, but thediscretization is in a slightly di�erent form; now decisions are made basedupon some discrete number of possible histories, instead of some interpola-tion from some discrete number of information points. Some of the rl/ndp



306techniques would also fall into the �nite memory approach; for instanceMcCallum's rl work decides how much history is needed to do a good jobpredicting rewards.6.9.3 Exploiting StructureAlthough the general pomdp problem is computationally hard [95, 20, 92],there has been little work done in examining the complexity of sub-classes ofpomdps to see if certain useful restrictions could be put on the model whichwould make their solution tractable. White [130] shows how structure, inthe form of an order on action quality, can be exploited to speed up Sondik'sone-pass algorithm. A similar idea is used by Zhang [138], where he showshow to speed up the witness algorithm for problems with the structure ofhaving relatively informative observations.Another e�ort along these lines is the work by Zhang and Liu [141] whichsolves speci�c deterministically observable pomdps as approximations to thetrue pomdp. By exploiting characteristics of solving these special pomdps,more e�ective solution procedures can be developed and become a basis forapproximations schemes.A major limitation on the applicability of pomdps and the techniquespresented in this thesis to larger problems is in the explicit enumerativerepresentation of all the states, actions and observations. Problems are morenaturally presented in a compositional manner. For instance, the state in therobot navigation problems is more naturally thought of as consisting of twoattributes, a location and an orientation, rather than a single number. Forproblems with more than two attributes, the compositional representation



307can be exponentially smaller than the enumerative scheme, which leads tothe research direction of �nding algorithms that can work directly on themore compact form.Boutilier, et al [14, 15] have shown how to adapt some of the comdpand pomdp algorithms to operate directly on the compact representation,but experience with these algorithms is severely limited. The basic idea isto represent the value functions as a tree, where the branches of the treecorrespond to the di�erent values for the state attributes. The leaves of thevalue function tree represent sets of states all having the same value. Newleaf nodes are added only when necessary, i.e., when a new value is requiredfor some subset of states. The unanswered questions surrounding thesealgorithms is whether or not useful problems have the structure necessaryfor the algorithms to remain compact, and what is the overhead cost inmaintaining the data structures necessary in the implementation. Althoughthese algorithms are presented as a way to arrive at optimal answers, theywould seem to have the most potential as approximate algorithms wheresmall di�erences between the states could be ignored.There has been work by Dean et al. in solving comdps using compactrepresentations [34, 35] which would seem to have natural extensions topomdps, though the additional complications introduced with the additionof partial observability have not yet been fully addressed.6.9.4 Classical AI PlanningThe previous discussion concerning the need for compact representationswould seem strange to researchers that have been working in the area of the



308more traditional ai planning. In particular, we refer to classical ai planningschemes as those employing strips-like operators and which derive partiallyordered sequences of actions [82, 97, 98]. In these planning schemes and theirderivatives, compact representation are, and always have been used, whichraises the question concerning the connection between mdp algorithms andthose used in these planning algorithms. This connection is elaborated inmore detail in Kaelbling et al. [52] and here we just highlight the mainpoints.The basic partial order planners have actions which are deterministic, astarting state and some set of goal states which were to be achieved. Witha known starting state and deterministic operators, a full policy over allpossible states is not required and a plan or sequence of actions su�ces.Although their state and action representations are compact, �nding a planrequires a search through an exponential space of possibilities. Koenig [58]has shown how to recast such problems as comdps, which permits solutionby polynomial-time algorithms. The catch here is that the conversion makesa problem that is exponential in size, since the compositional representationmust now be converted into the full cross-product of all attributes. Thusthe oversimpli�ed view is that the classical ai planning does an exponentialsearch over a polynomial representation; whereas the mdp formulation doesa polynomial search over an exponential sized representation.Discussed previously were techniques which attempt to adapt the mdp-based algorithms to compact forms; similarly, there has been much worktrying to extend classical planning to handle the full generality of the mdpformulations. Although there have been many extensions to the classical



309planning algorithms [88, 29, 79, 136], the one that comes closest to capturingthe true mdp avor is the work on the buridan [62, 61] and c-buridan [37]systems, both of which allow actions with probabilistic e�ects and the lat-ter which allows partial observability. However, the plans derived from thec-buridan system have a limited expressibility and are not as general aspossible in the full pomdp framework. Further exploration into the repre-sentational issues for classical planners is provided by Littman [73].6.10 ConclusionsThis chapter has presented an array of approximation schemes and evalu-ated them on a range of problems. The �rst major conclusion is that smallpomdp problems do not pose any great di�culty for getting high qualityheuristic solutions. The second result is that on a speci�c class of robotnavigation environments, e�cient heuristics can give very satisfying controlpolicies. The rl/ndp, while applicable to these domains, requires enten-sive training or, when initialized with the Q-functions, do little to improvethe solution. Thus, some problem have a particular structure which makesthem amendable to heuristic solution. However, there are problems thatdo not, or for which the structure is unknown. In these cases, the rl/ndptechniques are more applicable, since they are somewhat more robust andseldom yield extremely poor answers. Finally, heuristic solutions can oftengive high quality control policies in other domains, though there is still roomfor improvements and some hybrid approach mixing heuristics with rl/ndp.



Chapter 7Conclusions7.1 ContributionsThis thesis has contributed to advances in the exact and approximate solu-tion of partially observable Markov decision processes. We have organizedthe contributions as we have organized the thesis, broken down into exact,heuristic and rl/ndp contributions.In conjunction with Littman, Kaelbling and Zhang [23, 72, 24], this workhas helped develop the witness algorithm and has helped to make improve-ments to the incremental pruning algorithm, both of which are currentlythe best exact pomdp algorithms available. Additionally, this work is the�rst to analyze these algorithms and their variants in terms of boundingtheir best and worst case complexity for the amount of e�ort required intheir linear programming routines. It has shown that the generalized formof the incremental pruning algorithm represents an asymptotic improvementto previous algorithms in this context. We have also added some minor ex-tensions to ideas concerning �nitely transient policies which incorporate abroader class of policies with the same useful properties.310



311Aside from the development and theoretical analysis of these exact al-gorithms, this work has contributed a comprehensive implementation of theexact pomdp algorithms, as well as a comprehensive empirical comparisonsof the exact algorithms using this implementation. Aside from its value tothe work presented in this thesis, this implementation has proven as a usefultest-bed for many researchers working on related pomdp problems and hasoften been the inspiration for improvements to the existing techniques.In summary, for the exact algorithms, this thesis has contributed to the� development of the witness algorithm, with Littman and Kaelbling;� development of the generalized incremental pruning algorithm, withLittman and Zhang;� detail analysis of the witness, ip, gip and two-pass algorithms;� various minor optimizations and improvements of the exact algorithms,with Littman;� broadening of the class of �nitely transient policies;� implementation and empirical comparisons of all the exact algorithms.In conjunction with Littman and Kaelbling [68], his thesis has helped de-rive some novel reinforcement learning rules that are applicable to pomdpsand presented some variations of previously existing techniques. We haveimplemented these ideas, presented some empirical comparisons using thesetechniques and explored some of the many possible variations availablewithin the rl/ndp framework. The reinforcement learning contributionsare the



312� development of the lin-q and k-pwlc algorithms, with Littman andKaelbling;� re�nements of the k-pwlc algorithms;� implementation and empirical comparisons.In an e�ort to �nd e�ective solutions to large pomdp problems, we havedeveloped a range of heuristics which can be applied to these problems andundertook a comprehensive empirical comparison of these on a range ofproblems. Aside from evaluating these heuristics in synthetic simulations,along with Kurien and Kaelbling [21], we have helped to successfully applyand evaluate the pomdp model and these heuristics on a mobile robot forthe purpose of navigation.Finally, the contributions concerning the heuristics are in the� development of various heuristic controllers for pomdps, with Kael-bling;� implementation and empirical comparison of the heuristics on a rangeof synthetic pomdp domains;� implementation of heuristics and robot controller on autonomous robot,with Kurien.Throughout all of the work of this thesis, many pomdp problems, span-ning many domains have been developed for use in the empirical compar-isons. This suite of problems has proven useful not only in this work, butby the work of many other researchers.



3137.2 Future WorkAlthough the worst case complexity for pomdps is somewhat dishearten-ing, there has been little e�ort to try and characterize pomdps that may beexpressively restricted, but which may allow e�ective algorithms to be de-veloped. This e�ort will require �nding real pomdp problems and exploringwhat type of structure they may have that could be exploited. One exampleof an e�ort along these lines is some work by White [130] which exploitsstructure in the problem to speed up Sondik's one-pass algorithm. Insightsfrom the structure of the problem and the nature of the algorithms couldmake the exact solutions of larger problems possible.Given the computational complexity of exact algorithms, it is temptingto ignore improving the exact one-step dp algorithms for pomdps. However,although exact vi may never be an e�ective method for solving realisticpomdps, the single dp step can be an integral part of either policy iterationor some approximation algorithms. Since many of these exact algorithmsmay have e�ective approximations, improvements in the exact algorithmscould lead directly to e�ective approximations.There are some e�orts currently in progress on policy iteration algo-rithms [45] using a single exact dp step. Given that pi iteration algorithmsare often more e�ective than vi in the comdp context, this hints that thesame can be true for pomdps. More work on improvements to pi iterationtype algorithms and, more importantly, related approximate pi algorithmsis the likely place where signi�cant contributions can be made.Even in the context of vi using the exact algorithms discussed in this



314thesis, we have had successes in solving problems that would otherwise beimpossible by using approximate versions of these algorithms. Our methodto date has mostly been heuristic and unmotivated. We would like to bettercharacterize these approximations based upon what the exact algorithmsare actually computing. This e�ort will lead to a better understanding ofthe e�ects of these approximations and could leads to better approximationschemes.We have seen that there are domains where simple heuristics do verywell and some where they do not, which shows much room for improve-ments in approximate pomdp algorithms. Aside from these heuristics beingan alternative to the rl/ndp techniques, there is an interesting possibilityto combine these heuristics with the rl/ndp techniques. Many successfulrl/ndp e�orts use hand-crafted features and let the parameter adjustmentand simulations work to learn the proper function over these features. Whenthese heuristics are viewed as features, we could use construct an rl/ndpscheme using them. More importantly, if the heuristics can capture thesalient non-linearities of the environment, then simpler and more e�ectivelinear approximations could be used. There are also many interesting waysin which the heuristics could be combined using roll-out policies [11] to helpthese algorithms to arrive at better solutions with fewer simulations. Thisis one of the more promising areas for future research.Although this and previous work has slowly been expending the sizes ofproblems that could be addressed with pomdp models, there are many prob-lems that have such large state spaces, the only way to tackle them is usingcompositional, factored or structured models. Although there is some early



315work in this area [15], the e�ectiveness of these techniques remains largelyunexplored. A related approach is to decompose the problem hierarchically,but there are many details that must �rst be worked.The entire e�ort of this thesis makes the assumption that a full entiremodel, or at least a full simulation of the model, is available. Additionally,it assumes the model is unchanging over time. There are many applicationsof pomdps where either or both these assumptions are not known. Eitherthe model parameters are unknown or they may change over time. Thus,the problem becomes complicated because there is now a parameter estima-tion problem along with a planning problems. Some early work in learningpomdp models exist [28, 112], but more more work still needs to be done.Another shortcoming of the pomdp approach is its limitations to dis-crete states. Many problems are more naturally speci�ed as continuousspace problems or have components of their states that are continuous val-ued. Kalman �lter approaches [55, 65] to localization are the analog of thethe information state update equation for pomdps. Although this requiresthe state transition and observational noise to be Gaussian, Kalman �lteringand the extended Kalman �lter have been employed successfully and exten-sively in many control applications. There may be hybrid approaches thatcan combine the more general noise models allowed by pomdps and thosee�ective state estimation techniques of the Kalman �lter, that permit e�ec-tive heuristic solution to the control problem of problems with a mixture ofdiscrete and continuous states.One of the most e�ective methods toward making advances in researchis to have challenging problems to work on. Although slowly growing, there



316is a need for more pomdp problems and larger pomdp problems to help spurthis research e�ort.



Appendix ABaseball in a NutshellIn this appendix we attempt to briey review the relevant portions of thegame of baseball necessary for understanding the small example presentedin Chapter 2. Note that we use a larger baseball domain in some of theempirical evaluations, which we discuss in Appendix H.1, but the followingdiscussion will not be enough to completely understand that larger domaindescription.Baseball's two closest relatives are the games of cricket and rounders.The overall scenario is for one team to attempt to hit a ball (using someform of long stick) which is thrown by the opposing team. The team thatthrows the ball is attempting to have the batter either miss striking the ballentirely, or to have them hit the ball weakly. The teams also take turns inthe two aspects of throwing and hitting and the team that performs betterthan the other at hitting the ball is the winner.In the game of baseball, the person throwing the ball (called a baseball)is referred to as the pitcher, whereas the person trying to hit the ball, uses abat, and is called a batter. The pitcher has a team of �elders around that can317



318catch the batted balls, and if the balls were hit weakly enough, the �elderscan make a play such that the batter's attempt is deemed unsuccessful.When the batter's attempt is unsuccessful, it is called making an out, whilea successful batter is credited with making a hit. After a certain number ofhits, the batter and his team are credited with points or runs in baseball.After a certain number of outs, the pitcher and his team get a chance atbatting, while the batter and his team go into the �eld with one of thoseplayers taking on the role of the pitcher.One series of being the team at bat and then being the team in the �eldis called an inning. Normally a baseball game lasts 9 innings and the teamscoring the most runs at the end of this time is declared the winner. In caseof ties, a sequence of full innings are played until at the end of one of theseinnings one team has gained the advantage over the other; i.e., more runsare credited.Roughly, the more hits a team gets, the more runs they score and themore likely they are to win the game. Likewise, the less hits a team givesup, the less runs the opponents score and the more likely they are to win.Thus the main tension in the game is between the pitcher and the batter.Aside from the players in the game, there is amanager who is responsiblefor deciding what order his players should bat, who should pitch, and manyother decisions involving details of the game not discussed here. In baseball,once a pitcher is removed from the game, they can no longer pitch in thatgame. Thus, the manager must carefully decide when and when not to takea pitcher out of the game. In baseball, pitching is a specialty task that notall players on the team are competent enough to do. Although a baseball



319team typically is comprised of 25 or so players, only about 10 of them areusually good enough at pitching that the manager would decide to let thempitch. The pitchers not currently pitching are referred to collectively as theteam's bull-pen for archaic reasons.Pitching, like any other athletic activity, is subject to complex physicaland mental interactions, which means that the ability and performance levelof a pitcher is subject to uctuations. The manager would like to get asmuch out of each pitcher as possible, but also wants to recognize when apitcher might be having a bad day and remove him/her before the otherteam accumulates too many hits.The hidden state in our example is the combined physical and mentalcondition of the pitcher. This state is often hidden from the pitchers them-selves, since the criteria they may use to assess their own condition may notreect the criteria necessary for performing well as a pitcher. Even when apitcher knows their own physical or mental condition to be below the normallevels, the pitcher can be reluctant to inform the manager for any of a hostof complicated reasons; e.g., ego, contract status, embarrassment, etc. Themanager is faced with the task of determining the condition of the pitcherwith only limited information.In our example, the pitcher's performance against each batter providesthe manager with evidence of the internal condition of the pitcher. Basedupon this evidence, which we break down into the simple cases of the battermaking and out or getting a hit, the manager must decide after each batterwhether to let the current pitcher continue, or to replace him with one ofthe pitchers in the bull-pen.



320Aside from the initial conditions of a pitcher on a given day, the condi-tion of a pitcher can deteriorate as the game progresses. The physical actof pitching a baseball requires strenuous activity, which even the most �tof people can only e�ectively perform for a limited amount of time. Thus,at any given point in time, the pitcher can become fatigued, causing per-formance to su�er. Although we have modeled the probability of a pitcherbecoming fatigued as constant over all time, a realistic model would havethis probability be a function of time; i.e., a non-stationary state transitionfunction.



Appendix BPWLC PropertiesThere are a number of properties of pwlc functions and operations on theirrepresentations which are used throughout this thesis. This appendix sum-marizes these useful properties. For this appendix, we will use V A and V Bto represent two pwlc value functions over information space and let A andB, respectively, be the two sets of vectors representing those value functionswhere V A(b) = max�2A b � �V B(b) = max�2B b � � :We de�ne an equivalency relation between the representation and the valuefunction, which notationally is A � V A and B � V B.Repeating Propositions 2.3.1 and 2.3.2 we have� V A + V B is a pwlc function, and� max(V A; V B) is a pwlc function.321



322B.1 Cross-sumIn this section we formally de�ne the cross-sum operator, �, and later willdiscuss some of its properties when applied to pwlc functions representedby a set of vectors.De�nition B.1.1 The cross-sum operation on two sets of vectors, A andB is A�B = f� + �j� 2 A; � 2 Bg :As a direct result of the properties of the addition operator, this operatoris commutative and associative.De�nition B.1.2 Similar to the notation, P, for addition, we de�neNMi=1 Ai = A1 � A2 � : : :� AN :B.2 Representation PropertiesRelating the union and cross-sum operations on the representations we havethat A �B � V A + V Band A [B � max(V A; V B) ;and we see that the union or cross-sum of two sets of vectors are themselvesrepresentations for a pwlc function.



323As discussed in Section 3.1.1 concerning parsimonious sets, a given valuefunction can have many di�erent representations as a set of vectors. Thepruning operator, whose semantics are given by the prune routine of Ta-ble 3.4 in Section 3.1.1, operates on a set of vectors to produce another setof vectors. The prune operation was introduced as a way to convert a rep-resentation of a pwlc value function to a unique minimal set. Because ofthis we have, 8b 2 B, V A(b) = max�2A b � �= max�2prune(A) b � �and, with some abuse of notation,A � prune(A) � V Awhere the equivalency relation is extended to incorporate a relation betweentwo sets.This gives us the propertiesprune(A[ B) � max(V A; V B)prune(A� B) � V A + V B ;which lead directly toprune(A [B) � prune(prune(A)[ prune(B))prune(A�B) � prune(prune(A)� prune(B)) :



Appendix CRandom DistributionsTo problem we address here is how to generate a random discrete probabilitydistribution, p such that the entire probability space, an N -dimensionalsimplex, is sampled in a uniform manner. The obvious approach would beto �rst generate N real numbers, p(1); p(2) : : :p(N), each being drawn froma uniform distribution on the interval [0; 1] and then normalize this vectorso that p := pPNi=1 p(i) ;to satisyfy the simplex constraints. This generates a probability distribution,but does not generate distributions uniformly randomly over the probabilityspace. This algorithm skews the distribution in such a way that points closeto the simplex corners and borders are much less likely than points on theinterior, or closer to the uniform distribution. Figure C.1 shows 10; 000points generated on an N = 3 simplex. Note that the simplex constraintsforce a two-dimensional space.The correct algorithm for ensuring distributions are chosen uniformly324



325
Figure C.1: Random probability points generated according to a naive al-gorithm.at random is given in Table C.11 In this algorithm, the function rand()is simply a routine that returns a uniformly random real number on theinterval [0; 1]. Figure C.2 shows 10; 000 points generated according to thisalgorithm.

1Thanks to John Hughes for showing us this algorithm.



326randomDistribution()p(1) := 1for each i 2 f2; 3; : : : ; Ngp(i) := 1:0� iprand()for each j 2 f1; : : : ; jgp(j) := 1:0� p(i)end for each jend for each ireturn pend randomDistributionTable C.1: Routine for generating a uniformly random discrete probabilitydistribution.
Figure C.2: Random probability points generated according to the correctalgorithm.



Appendix DFinitely Transient PoliciesFor a stationary policy of an in�nite horizon pomdp problem, there is aproperty called �nite transience (f.t.) which was introduced by Sondik [117].The interest in f.t. policies lies in Sondik's theorem that if an in�nite horizonpolicy is f.t., then its value function is p.w.l. and can be computed relativelyeasily by solving a system of equations. However, the requirements thatSondik de�nes for f.t. policies are much stronger than are needed to ensurea p.w.l. cost function for a policy as we show here. In this section we willdiscuss the �nitely transient property and introduce a more relaxed criterionthat will have the same nice properties as the f.t. policies. Before de�ningthe �nitely transient property and our extension, we require some additionalconcepts, which are due to Sondik.We will use a pomdp problem with 2 states, 3 actions and 2 observations,whose parameters are given in Table D.11. For this problem, the discountfactor will be � = 0:95 and we will be considering the policy shown inFigure D.1. Since this is a two state problem, an information state can be1This problem has appeared elsewhere and is known as the \tiger" problem. [23]327



328�(�; 0; �) s s0s 1:00 0:00s0 0:00 1:00 �(�; f0; 1g; �) s s0s 0:50 0:50s0 0:50 0:50o(0; �; �) z z0s 0:85 0:15s0 0:15 0:85 o(f1; 2g; �; �) z z0s 0:50 0:50s0 0:50 0:50r(�; a) a0 1 2s �1 �100 10s0 �1 10 �100Table D.1: Model parameters for f.t. example.
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ππ(G  )=11Figure D.1: Policy regions for f.t. example.represented with a single number, namely b(s) since b(s0) = 1� b(s). Thispolicy imposes a partition, G� = fG�1 ; G�2 ; G�3g, on the information spaceconsisting of three regions. For this example, the precise partition, whichcan be represented as a set of intervals over b(s), isG� = 8<: G�1 = [ 0:0000000000 0:0396544425 ];G�2 = [ 0:0396544425 0:9603455575 ];G�3 = [ 0:9603455575 1:0000000000 ] 9=; :Since we de�ne a single action over each partition element, we will use thenotation �(Gi) = �(i) for the action assigned to partition element Gi. Forthe example policy we have: �(1) = 1, �(2) = 0 and �(3) = 2.



329It is of interest to be able to easily �nd the value of an arbitrary policyde�ned over information space, e.g., the value determination step of policyiteration. We will make the simplifying assumptions that the policy is spec-i�ed with a �nite number of connected regions, where each region is eitherconvex or made up of a �nite number of convex regions.LetD� be the set of information points at which a policy is discontinuous.For the example, as shown in Figure D.1, policy consists only of three regionswith discontinuity setD� = f0:0396544425; 0:9603455575g ;where we assume that the policy is continuous at the simplex corners. Again,with two states we can represent the regions borders with a single number.Note that D� is a set of points and not a set of intervals. Also for jSj > 2all of the results of this section still apply, but the representation of thepartitions and discontinuities must be done using a more complex system ofhyper-planes instead of simple intervals and points. Sondik [117] shows howthis is done for jSj > 2.Let A be a subset of the information state space, B, and let the infor-mation transformation function on a set of points be de�ned withT (A; a; z) = fbaz jb 2 Ag ;and note that T (fbg; a; z) is equivalent to the one element set fbazg. The T ()function simply converts one set of points into another.De�nition D.0.1 The set of all possible transformed information states of



330a set A is T�(A) = fT (b; �(b); z)j8b 2 A; 8z 2 Zg :Let S0� = B and de�neSn� = T�(Sn�1� ) ; n � 1 :This states that Sn� is the set of all possible information states that theprocess could have after following the policy � for n steps. This makes noassumptions about the initial information state, or the sequences of obser-vations received.In the example policy, with S0� = B, S1� consists of all information statesin the interval � 0:0072340834 0:9927659166 � :Further, we see that S2� = S1�, which means that Sn� = S1� for all n > 1.Sondik gives the following de�nition on page 71 of his thesis:De�nition D.0.2 A stationary policy � is �nitely transient if and only ifthere is an integer n <1 such thatD� \ Sn� = ; :The smallest such n is called the index of the �nitely transient policy and islabeled n�.By this de�nition, our example policy is not �nitely transient since bothpolicy discontinuity points lie in the interval de�ned by Sn� for all n. The



331transition dynamics of this example are such that there is a non-zero prob-ability of being at a discontinuity at any step, n < 1, in the future. Thisproperty removes this policy from the class of f.t. policies, though we shallsee that, despite this, this policy has the same nice properties as f.t. policies.There is another way to approach f.t. policies (also due to Sondik) thatuses a sequence of sets derived from the discontinuities of the policy. Thislooks at the inverse problem, and attempts to �nd all possible states whichcould reach the policy's discontinuities. We de�ne the inverse informationtransformation on a set of information points asT�1� (A) = nbjb�(b)z 2 A; for some z 2 Zo ; n � 0 :Letting D0 = D�, which is just the set of discontinuities of the policy, wethen de�ne Dn+1 = T�1� (Dn) ; 8n � 0 ;which de�nes the set of all information states which can reach a discontinuityof the policy in n + 1 steps following the policy �. We can �nd these setsby using the inverse of the information state transformation function andSondik's construction methods [117], though we must handle the special caseof a non-invertible transformation function explicitly.For actions 1 and 2 of our example, the information state transformationis non-invertible, since no matter what the information state is, the result ofthese actions is the information state [ 0:5 0:5 ]. Since this point is not oneof the discontinuities of the policy, those two actions will not contribute toany of the Dn sets, unless we �nd [ 0:5 0:5 ] 2 Dn�1, which does not occurin this example.



332Looking at our example policy the sequence of discontinuity sets isD0 = f0:0396544425; 0:9603455575gD1 = f0:1896187811; 0:8103812189gD2 = f0:4299360872; 0:5700639128gD3 = f0:1174593043; 0:1896187811; 0:8103812189; 0:8825406957gD4 = f0:4299360872; 0:5700639129g :At this point we see that D4 = D2 which means that the sequence willrepeat inde�nitely from that point.Sondik gives the following LemmaLemma D.0.1 Dn is the �rst empty set in the sequence D1, D2, : : : if andonly if the policy � is �nitely transient with n� = n.This Lemma follows almost immediately from the de�nition of a f.t. policy.Using the f.t. property, Sondik goes on to show that these f.t. policies havesome desirable properties. However, we see again, that the example's policydoes not satisfy this criterion and is not f.t. It turns out that this examplepolicy has the same nice properties as f.t. policies, and so we would like aless stringent criterion that ensures we get those properties.De�ne Dn = Sni=0Di, which is simply every point that leads to a dis-continuity of the policy in n or fewer steps.



333De�nition D.0.3 If Dn+1 = Dn for any n < 1 we say the policy is ex-tended �nitely transient (e.f.t.) with index n�.Theorem D.0.1 If Dn+1 = Dn, then Dm = Dn for all m > n + 1.Proof We prove this by contradiction and note that the construction pro-cess ensures that Di � Dj for all j > i. Assume Dm is the �rst set in thesequence that di�ers from Dn. Then there must be a point b 2 Dm, whereb 62 Dn, such that for some observation z, b�(b)z 2 Dm�1. Since this is the �rstdiscontinuity set that di�ers from Dn, we know that Dm�1 = Dn+1 = Dnand we must have b�(b)z 2 Dn. Since b 2 T�1(fb�(b)z g), b must be in Dn+1and we have a contradiction because we de�ned b 62 Dn and Dn+1 = Dn.� For our example, the sequence we get isD0 = �0:0396544425; 0:9603455575	D1 = �0:0396544425; 0:1896187811; 0:8103812189;0:9603455575	D2 = �0:0396544425; 0:1896187811; 0:4299360872;0:5700639128; 0:8103812189; 0:9603455575	D3 = �0:0396544425; 0:1174593043; 0:1896187811;0:4299360872; 0:5700639128; 0:8103812189;0:8825406957; 0:9603455575	



334D4 = �0:0396544425; 0:1174593043; 0:1896187811;0:4299360872; 0:5700639128; 0:8103812189;0:8825406957; 0:9603455575	 :We see that our example policy does have the e.f.t. property, with indexn� = 3. Notice that the e.f.t. property is implied by the f.t. property sinceDn = ; ensures that Dn = Dn�1. We will now closely follow Sondik'sdevelopment for the properties of f.t. policies, except we will extend this tothe e.f.t. case.For Sondik, his f.t. property assures that, regardless of the initial infor-mation state, after a �nite number of steps it will be impossible to be at aninformation state which lies on a border of the policy partition. For e.f.t.policies, there may be no �nite number of steps in which we can give thissame guarantee. However, we will be able to guarantee that, for some �-nite number of steps, we only reach a partition boundary point if the initialinformation state is itself a partition boundary point.We de�ne a partition Gn = fGni g by using the set Dn as the de�ningborders for the partition regions. Since Dn�1 � Dn, each partition derivedfrom the discontinuity set sequence is a re�nement of the previous partitionwith the �nal partition Gn� , which can not be re�ned further since Dn+1 =Dn for all n � n� . Since we are mainly concerned with the �nal partition,we will drop the superscript such that Gn� = G and Gn�i = Gi.For our example policy we haveG0 � 8<: � 0:0000000000 0:0396544425 �� 0:0396544425 0:9603455575 �� 0:9603455575 1:0000000000 � 9=;



335G1 � 8>>>><>>>>: � 0:0000000000 0:0396544425 �� 0:0396544425 0:1896187811 �� 0:1896187811 0:8103812189 �� 0:8103812189 0:9603455575 �� 0:9603455575 1:0000000000 � 9>>>>=>>>>;G2 � 8>>>>>>>><>>>>>>>>: � 0:0000000000 0:0396544425 �� 0:0396544425 0:1896187811 �� 0:1896187811 0:4299360872 �� 0:4299360872 0:5700639128 �� 0:5700639128 0:8103812189 �� 0:8103812189 0:9603455575 �� 0:9603455575 1:0000000000 � 9>>>>>>>>=>>>>>>>>;G3 � 8>>>>>>>>>>>><>>>>>>>>>>>>: � 0:0000000000 0:0396544425 �� 0:0396544425 0:1174593043 �� 0:1174593043 0:1896187811 �� 0:1896187811 0:4299360872 �� 0:4299360872 0:5700639128 �� 0:5700639128 0:8103812189 �� 0:8103812189 0:8825406957 �� 0:8825406957 0:9603455575 �� 0:9603455575 1:0000000000 � 9>>>>>>>>>>>>=>>>>>>>>>>>>; :Because this policy is e.f.t. with index 4, we know that Gi = G3 for all i � 4and we haveG � 8>>>>>>>>>>>><>>>>>>>>>>>>: G1 = � 0:0000000000 0:0396544425 �G2 = � 0:0396544425 0:1174593043 �G3 = � 0:1174593043 0:1896187811 �G4 = � 0:1896187811 0:4299360872 �G5 = � 0:4299360872 0:5700639128 �G6 = � 0:5700639128 0:8103812189 �G7 = � 0:8103812189 0:8825406957 �G8 = � 0:8825406957 0:9603455575 �G9 = � 0:9603455575 1:0000000000 � 9>>>>>>>>>>>>=>>>>>>>>>>>>; ;which is the �nal partition and is shown in Figure D.2.
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G9G8G7G6G5G4G3G2G1

0 1
0.960.04

0.12 0.88b(s)
0.19 0.43 0.57 0.81Figure D.2: Final constructed partition for f.t. example.Lemma D.0.2 All information states in a partition element Gni are as-signed the same action, �(i), by �.Proof Since D� is a subset of the boundaries of Gni , the partition mustbe a re�nement of G�. Since the policy partition initially assigns only oneaction to each partition element, it must assign one and only one action toeach partition element Gni . �Lemma D.0.3 For the �nal partition formed by a e.f.t. policy, if b 2 Giand b�(i)z 2 Gj, then 8bb 2 Gi we must have bb�(i)z 2 Gnj .Proof Let two distinct points, b and bb lie within the region of partitionelement Gi where b�(i)z 2 Gj and bb�(i)z 2 Gk for some observation z. We nowassume that Gj 6= Gk and proceed to �nd a contradiction. Let l be the linesegment that lies between b and bb. Since we only allow convex regions, lmust lie entirely within the interior of the region of Gi.Thus, the line segment T (l; �(i); z) will have endpoints in Gj and Gk. Byour assumption Gj 6= Gk and the properties of the transformation function,the line segment must cross at least one region boundary, and there must bea point b� 2 l such that b�;�(i)z lies on the boundary of two regions. However,
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0 b(s) 1

z=0

z=1Figure D.3: Information state transitions on partition for e.f.t. example.if b�;�(i)z is on the boundary, then b�;�(i)z 2 Dn� and there must be some setDn that contains this point. By nature of construction, b� must be in theset Dn+1. If b� 2 Dn+1, then it must also be in Dn� . However, b and bbwere chosen to be in the partitions element's interior and the convexity ofthe regions means that all points in l must also be in the interior, which isthe contradiction since we �nd b� in l and in Dn� . �De�nition D.0.4 When b 2 Gni and b�(i)z 2 Gnj then �(i; z) = j.Thus, given a partition derived from an e.f.t. policy, we can easily de�nethis �(�; �) mapping by selecting a point in each region and transforming itfor each observation. From Lemma D.0.3, we see it does not matter whichinformation state we select for each partition element. Returning to ourexample, we can construct the mapping shown in Table D.2 and illustratedin Figure D.3.The following lemma appears, and is proved in Sondik's thesis [117]as Lemma 3.4 on page 72. It shows the form of the value function for anystationary policy evaluated over the in�nite horizon. Note that this theoremdoes not say that all policies have p.w.l. value functions. However, below we



338i z z01 5 52 4 13 5 14 6 25 7 36 8 47 9 58 9 69 5 5Table D.2: Partition transition function �(�; �) for the e.f.t. example.will use this lemma to prove that e.f.t. policies do have p.w.l. value functions.Lemma D.0.4 The value function, V�(b), of a policy � can be writtenV�(b) = b � g(bj�)where g(bj�) is an jSj-vector that is the unique bounded solution to the vectorequation g(bj�) = r(�(b)) + �Xz P�(b);zg(b�(b)z j�) : (D.1)Note that this lemma does not assume that there are a �nite number ofg(bj�) which satisfy this equation.The following theorem just extends Sondik's Thesis Theorem 3.4 to thecase of e.f.t. policies. The proof is exactly the same as presented by Sondikfor the f.t. case, since his proof relies only upon properties of f.t. policieswhich we have shown to exist for e.f.t. policies.Theorem D.0.2 If a policy � is e.f.t. then V�(�) is p.w.l.



339Proof By Lemma D.0.4, the value function can be written as V�(b) =b � g(bj�) where g(bj�) is the unique solution to Equation D.1. The onlything remaining to be proven is that there are a �nite number of g(bj�)vectors.Since the policy is e.f.t.,� we can construct a �nite sized partition set G = fGig using Dn� asthe region boundaries by Theorem D.0.1,� the same action is de�ned over all information points in a given parti-tion element by Lemma D.0.2,� a �(�; �) mapping exists by Lemma D.0.3.If we assume that for each partition element and for all b 2 Gi wehave g(bj�) = gi. Since for all bb 2 Gi, �(b) = �(i), Equation D.1 can betransformed into a �nite set of equationsgi = r(�(i)) + �Xz P�(i);zg�(i;z) ; (D.2)which must have a unique solution by the properties of right-hand side2.Since Equation D.1 and Equation D.2 are of the same form and haveunique solutions, they must be one and the same solution. Thus, the solutionto Equation D.2 must be the policy's value function, which shows it has a�nite number of segments. �2The right-hand side is a vector contraction mapping for the function g(�j�) under thevector supremum norm. See the proofs of Lemma 3.1 and Lemma 3.4 of Sondik's thesiswhich discuss this further.
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b(s)Figure D.4: Optimal value function for f.t. example.For our example, we can set up the system of equations from the �(�; �)function and solve to get the p.w.l. value function represented byV�(�) � 8>>>>>>>>>>>><>>>>>>>>>>>>: g1 = [ �81:597200063 28:402799937 ]g2 = [ 0:690888139 25:004972735 ]g3 = [ 3:014778938 24:695680939 ]g4 = [ 16:493485015 21:541837097 ]g5 = [ 19:371368356 19:371368356 ]g6 = [ 21:541837097 16:493485015 ]g7 = [ 24:695680939 3:014778938 ]g8 = [ 25:004972735 0:690888139 ]g9 = [ 28:402799937 �81:597200063 ] 9>>>>>>>>>>>>=>>>>>>>>>>>>; ;where this value function is shown in Figure D.4. Note that this valuefunction is both p.w.l. and convex, though convexity of a policy's valuefunction is not always guaranteed. In this case, the example policy we usedcorresponded to the optimal policy, which explains its convexity.Sondik makes the following conjecture about f.t. policies:



341Conjecture D.0.1 A policy with a p.w.l. value function is f.t.and shows that it is false by way of a counter-example. Thus, the samequestion arises in the context of e.f.t. policies:Conjecture D.0.2 A policy with a p.w.l. value function is e.f.t.The natural place to start is with Sondik's counter-example which showsthat the dynamics of the information state transformation makes the infor-mation states asymptotically approach a single point for a particular combi-nation of an action and an observation. Since this limiting point lies withinthe action's region, once an information state transforms into the region, fora the particular observation the information state will approach the limitingpoint, but only reach it in the limit. Since this limiting point lies withinthe region, the Sn sequence will never be empty. In fact, Sondik shows thatthe set of reachable states has limn!1 Sn� = [ 0:075807 0:763158 ]3, whichincludes the policy discontinuity point 0:6. Since he de�nes f.t. policies asD� \ Sn� = ;, this policy is clearly not �nitely transient.However, we have de�ned e.f.t. policies using the sequence of discontinu-ity sets Dn�. To show a policy is not e.f.t. we have to show limn!1Dn� 6= ;.We have not yet shown a counter-example to Conjecture D.0.2, but suspectthere are many.3Sondik states that S1 is [ 0:076 0:766 ].



Appendix ENeighbor PropertiesThere are some properties of the neighbor relation from Section 3.2.1 whichmay not be immediately obvious. We use this appendix to briey highlighta few. We use a simple pomdp where we have only two observations andtwo states. Thus we want to explore the relationship between a vector andits neighbors in terms of how �an is constructed from the individual �a;zn sets.Consider the case of a vector  which has a non-empty region in �an. Oneobvious fact is that for a given neighbor, �, it may or may not be the casethat R(�;�an) = ;.The �rst somewhat counter-intuitive property is the fallacy that for aneighbor with a non-empty region in �an, that R(�;�an) and R(;�an) mustbe adjacent. Figure E.1 shows a counter-example where a neighbor's regionis non-adjacent.Another not so obvious fallacy is that if two regionsR(;�an) andR( 0;�an)are adjacent, then  0 2 N (). Figure E.2 is a counter-example. This �gurealso shows another non-obvious case where, for all neighbors � of a vector, we have R(�;�an) = ;. 342
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ν γΓ a,1+Figure E.1: A vector's neighbor with a non-adjacent region.
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+ γ γ’Figure E.2: A situation where adjacent regions are not neighbors and whereall neighbors have empty regions.



Appendix FFull DP ExampleIn this appendix, we show how the witness and incremental pruning algo-rithms work on a simple example for a few value iteration steps. This isintended to serve two purposes; to concretely illustrate the operation of thetwo algorithms; and to provide a point of reference for researchers that mayattempt to implement these or related algorithms.We use the the simple 2-state, 2-action, 2-observation pomdp baseballexample from Chapter 2 where the model parameters are given in Tables 2.1,2.6 and 2.7 and the discount factor is � = 0:95. We assume that the terminalrewards are all zero so that �0 = f[ 0:0000 0:0000 ]g. We will use thefollowing indices to make the notation succinct: action pitch = 0; actionbull-pen = 1; observation out = 0; observation hit = 1. In addition, the�rst component of the vectors shown corresponds to state s = good andthe second component is s0 = bad. We show the �rst 3 dp steps using theincremental pruning algorithm and the 4th step using the witness algorithm.344



345F.1 Incremental PruningWe start with the no cost terminal value function�0 = � � �0:00000 �0:00000 � 	and generate the �0;z1 sets using Equation 3.2 to get�0;01 = � � 0:03250 �0:46250 � 	�0;11 = � � 0:03250 �0:46250 � 	 :Since there is only a single vector in each set, the full single action valuefunction is �01 = � � 0:06500 �0:92500 � 	 ;which simply corresponds to the immediate rewards for action 0. By thesame procedure, we derive the other action's value function as its immediaterewards and get �11 = � � �0:3750 �0:3750 � 	 :Combining the two action value functions, we �nd that each vector hasa non-empty region, so the �nal value function is represented with�1 = � � 0:06500 �0:92500 �� �0:37500 �0:37500 � � ;which is shown in Figure F.1.
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b(s)Figure F.1: Value function V1(�).2 Steps-to-go: First, considering action 0 we build the �0;z2 value functionsfrom �1 which yields�0;02 = � � 0:02262 �1:03369 �� �0:26319 �0:69406 � ��0;12 = � � 0:01008 �0:77006 �� �0:02806 �0:58719 � � :Computing the full cross-sum, �0;02 � �0;12 , we get 4 vectors, though one ofthese has an empty region as shown with the dashed line in Figure F.2.Thus we �nd that�02 = 8<: � 0:03270 �1:80375 �� �0:29125 �1:28125 �� �0:00544 �1:62088 � 9=; :
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b(s)Figure F.2: Full cross-sum for �0;02 � �0;12 with one useless vector.For action 1, the associated single action and observation sets are�1;02 = � � �0:44685 �0:44685 �� �0:45469 �0:45469 � ��1;12 = � � �0:33665 �0:33665 �� �0:27656 �0:27656 � � :Since each of these vectors is a horizontal line, the full cross-sum containsonly horizontal lines and the �12 set will consist of a single vector which isthe largest, i.e., �12 = � � �0:72341 �0:72341 � 	 :Combining �02 and �12 we �nd that one of the vectors from �02 has anempty region, making the �nal set�2 = 8<: � 0:03270 �1:80375 �� �0:00544 �1:62088 �� �0:72341 �0:72341 � 9=; ;
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b(s)Figure F.3: Value function V2(�).which is shown in Figure F.3.3 Steps-to-go: We start with�0;03 = 8<: � �0:05512 �1:57632 �� �0:07154 �1:46339 �� �0:53791 �0:90921 � 9=;�0;13 = 8<: � �0:02328 �1:06225 �� �0:02209 �1:00144 �� �0:08433 �0:70303 � 9=; ;and generate the full cross-sum �0;03 ��0;13 , which yields 9 vectors, shown inFigure F.4. Although it is di�cult to see in the �gure, all but four of thesevectors have empty regions, resulting in�03 = 8>><>>: � �0:07721 �2:57776 �� �0:09364 �2:46483 �� �0:15587 �2:16642 �� �0:62224 �1:61224 � 9>>=>>; ;
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b(s)Figure F.4: Full cross-sum for �0;03 � �0;13 with 5 useless vector.For action 1 we have�1;03 = 8<: � �0:73121 �0:73121 �� �0:69014 �0:69014 �� �0:70293 �0:70293 � 9=;�1;13 = 8<: � �0:48504 �0:48504 �� �0:45736 �0:45736 �� �0:35931 �0:35931 � 9=; :As we had for the case of a = 1, n = 2, every vector in the two sets is ahorizontal line, and the �nal set is simply the maximal line or�13 = � � �1:0495 �1:0495 � 	 :Combining �03 and �13 we �nd that one of the �03 vectors has an empty
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b(s)Figure F.5: Value function V3(�).region. This makes the �nal value function representation�3 = 8>><>>: � �0:07721 �2:57776 �� �0:09364 �2:46483 �� �0:15587 �2:16642 �� �1:04950 �1:04950 � 9>>=>>; ;which is shown in Figure F.5.The basic incremental pruning algorithm continues in this same manner,though we terminate the example at this step. The next section shows thefollowing dp step, but uses the witness algorithm.F.2 WitnessWe will discuss the operation of the witness algorithm for a single dp step.We will pick up where the incremental pruning algorithm left o�, computing�4 from �3. An important point to be aware of is that we have roundedo� the vectors to 5 decimal places, though the computations discussed used



351the full precision. Therefore, there may be appear to be slight discrepanciesbetween the witness points and the vectors.Action 0: The witness algorithm begins by selecting any informationstate, b, generating its vector, an(b), and adding that vector's neighborsto �. It will be useful to �rst show the �0;z4 sets, since we ill need them inthe discussion:�0;04 = 8>>><>>>: � �0:18279 �2:05426 �(0;04;0)� �0:18775 �1:98453 �(0;04;1)� �0:21455 �1:80026 �(0;04;2)� �0:79503 �1:11057 �(0;04;3) 9>>>=>>>;�0;14 = 8>>><>>>: � �0:06311 �1:31960 �(0;14;0)� �0:06146 �1:28206 �(0;14;1)� �0:05952 �1:18284 �(0;14;2)� �0:13699 �0:81146 �(0;14;3) 9>>>=>>>; :Notice that we have labeled each vector so that each vector constructedcan be referenced to the vectors that were used to construct it, where a;zn;iis the vector for action a, observation z, dp step n and is the ith vector inthe set �a;zn . We arbitrarily choose b = [ 0:0 1:0 ] to start and �nd04([ 0:0 1:0 ]) = 0;04;3 + 0;14;3= [ �0:93203 � 1:92203 ];which is added to b�. With j�0;04 j = 4 and jZj = 2, this vector has jZj(j�a;zn j�



3521) = 6 neighbors which are added to �� = N (04([ 0:0 1:0 ]))= 8>>>>>>>><>>>>>>>>: � �0:31978 �2:86572 � (0;04;0 + 0;14;3)� �0:32475 �2:79599 � (0;04;1 + 0;14;3)� �0:35155 �2:61172 � (0;04;2 + 0;14;3)� �0:85814 �2:43017 � (0;04;3 + 0;14;0)� �0:85650 �2:39262 � (0;04;3 + 0;14;1)� �0:85455 �2:29340 � (0;04;3 + 0;14;2) 9>>>>>>>>=>>>>>>>>; :We now enter the loop and select an item from �. Arbitrarily, we willalways select the �rst item as listed and add items to the end of the list.Selecting � = [ �0:31978 �2:86572 ]. First, we check R(�; b�) and, as shownin Figure F.6 with a dashed line, we �nd that it is not empty. Since thefindRegionPoint lp maximizes the di�erence between � and b�, it returnsthe witness point b = [ 1:0 0:0 ]. With this witness point we �nd its maximalvector to be 04([ 1:0 0:0 ]) = 0;04;0 + 0;14;2= [ �0:24231 � 3:23710 ] ;with neighborsN (04(b)) = 8>>>>>>>><>>>>>>>>: � �0:24590 �3:37387 � (0;04;0 + 0;14;0)� �0:24425 �3:33632 � (0;04;0 + 0;14;1)� �0:31978 �2:86572 � (0;04;0 + 0;14;3)� �0:24728 �3:16737 � (0;04;1 + 0;14;2)� �0:27408 �2:98310 � (0;04;2 + 0;14;2)� �0:85455 �2:29340 � (0;04;3 + 0;14;2) 9>>>>>>>>=>>>>>>>>; :Adding those neighbors to � that are not already in � and � back into
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b(s)Figure F.6: An agenda item with a non-empty region over b�.� we have b� = � � �0:93203 �1:92203 �� �0:24231 �3:23710 � �� = 8>>>>>>>>>>>>>><>>>>>>>>>>>>>>:
� �0:32475 �2:79599 �� �0:35155 �2:61172 �� �0:85814 �2:43017 �� �0:85650 �2:39262 �� �0:85455 �2:29340 �� �0:24590 �3:37387 �� �0:24425 �3:33632 �� �0:24728 �3:16737 �� �0:27408 �2:98310 �� �0:31978 �2:86572 �

9>>>>>>>>>>>>>>=>>>>>>>>>>>>>>; :Returning to the top of the loop, we select � = [ �0:32475 � 2:79599 ]and compare it to b� which yields a non-empty region as shown in Figure F.7.Again, because findRegionPoint tries to �nd the point of maximal di�er-ence, it will return the point where the two vectors in b� intersect, i.e.,
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b(s)Figure F.7: Another agenda item with a non-empty region over b�.b = [ 0:65597 0:34403 ]. We get04(b) = 0;04;2 + 0;14;3= [ �0:35155 � 2:61172 ]with neighborsN (04(b)) = 8>>>>>>>><>>>>>>>>: � �0:31978 �2:86572 � (0;04;0 + 0;14;3)� �0:32475 �2:79599 � (0;04;1 + 0;14;3)� �0:27767 �3:11987 � (0;04;2 + 0;14;0)� �0:27602 �3:08232 � (0;04;2 + 0;14;1)� �0:27408 �2:98310 � (0;04;2 + 0;14;2)� �0:93203 �1:92203 � (0;04;3 + 0;14;3) 9>>>>>>>>=>>>>>>>>; :



355Adding these neighbors and � into � we getb� = 8<: � �0:93203 �1:92203 �� �0:24231 �3:23710 �� �0:35155 �2:61172 � 9=;� = 8>>>>>>>>>>>>>>>>>>>>><>>>>>>>>>>>>>>>>>>>>>:
� �0:35155 �2:61172 �� �0:85814 �2:43017 �� �0:85650 �2:39262 �� �0:85455 �2:29340 �� �0:24590 �3:37387 �� �0:24425 �3:33632 �� �0:24728 �3:16737 �� �0:27408 �2:98310 �� �0:31978 �2:86572 �� �0:27767 �3:11987 �� �0:27602 �3:08232 �� �0:93203 �1:92203 �� �0:32475 �2:79599 �

9>>>>>>>>>>>>>>>>>>>>>=>>>>>>>>>>>>>>>>>>>>>; :Returning to the top of the loop, the next vector we remove from � is � =[ �0:35155 � 2:61172 ], but we �nd that � 2 b�, so we discard this, return tothe top of the loop and remove the next item to � = [ �0:85814 �2:43017 ].As shown in Figure F.8, the R(�;b�) = ; and we return to selecting itemsfrom �. We �nd that the next 4 items selected, assuming we select them inorder they are listed above, all have empty regions over b�. In all, 6 vectorshave been removed from � without adding anything to b�. The vectorsremoved are � �0:35155 �2:61172 �� �0:85814 �2:43017 �� �0:85650 �2:39262 �� �0:85455 �2:29340 �� �0:24590 �3:37387 �� �0:24425 �3:33632 �Not until � = [ �0:24728 � 3:16737 ] do we �nd a non-empty region.In this case, although the region is quite small, findRegionPoint returns
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b(s)Figure F.8: An agenda item with an empty region over b�.b = [ 0:85131 0:14869 ] and we generate04(b) = 0;04;1 + 0;14;2= [ �0:24728 � 3:16737 ] ;which just happens to be the same vector as �.At this point, following the algorithm to the letter would require addingthis vector both to b� and �. However, putting it in b� guarantees that we willnot check this vector when we later remove it from �, since the algorithmspeci�cally checks for this condition. Thus, we will elect not to add them to�. Even if we do not add the vector � to �, we are still required to add its



357neighbors to �. We haveN (04(b)) = 8>>>>>>>><>>>>>>>>: � �0:24231 �3:23710 � (0;04;0 + 0;14;2) (a)� �0:25087 �3:30414 � (0;04;1 + 0;14;0) (a)� �0:24922 �3:26659 � (0;04;1 + 0;14;1) (a)� �0:32475 �2:79599 � (0;04;1 + 0;14;3) (b)� �0:27408 �2:98310 � (0;04;2 + 0;14;2) (b)� �0:85455 �2:29340 � (0;04;3 + 0;14;2) (c) 9>>>>>>>>=>>>>>>>>; ;which allows us to relate some of the optimization ideas from Section 3.2.3.Looking at the neighbor set above, we see three types of vectors which wehave labeled (a), (b) and (c) above. We �nd:(a) There are vectors which are not, and have never been in �. In thiscase there are three of these, and we have no choice but to add it to�.(b) There are two vectors which are currently in the agenda. By nature oftaking the union of the neighbor set and �, these will not contributeto making � any larger.(c) There is one vector that is not currently in �, however, it previouslywas in � until it was removed, due to it producing an empty region.The algorithm, as it appears in Table 3.7, will add this to �, but thisis not necessary. If the region was empty before, having added morevectors to b� cannot make this region non-empty. Thus, an optimiza-tion that can be added keeps track of vectors removed from �. Wewill use this optimization here and not add this vector to �.With the optimizations in place, we end up adding only three vectors to



358� giving b� = 8>><>>: � �0:93203 �1:92203 �� �0:24231 �3:23710 �� �0:35155 �2:61172 �� �0:24728 �3:16737 � 9>>=>>;� = 8>>>>>>>>>>>><>>>>>>>>>>>>: � �0:27408 �2:98310 �� �0:31978 �2:86572 �� �0:27767 �3:11987 �� �0:27602 �3:08232 �� �0:93203 �1:92203 �� �0:32475 �2:79599 �� �0:24231 �3:23710 �� �0:25087 �3:30414 �� �0:24922 �3:26659 � 9>>>>>>>>>>>>=>>>>>>>>>>>>; :The next item selected at the top of the loop is � = [ �0:27408 �2:98310 ]which has a small, non-empty region, yielding b = [ 0:84200 0:15800 ]. We�nd that this item happens to be the maximal vector for this point and hasN (04(b)) = 8>>>>>>>><>>>>>>>>: � �0:24231 �3:23710 � (0;04;0 + 0;14;2) (b)� �0:24728 �3:16737 � (0;04;1 + 0;14;2) (c)� �0:27767 �3:11987 � (0;04;2 + 0;14;0) (b)� �0:27602 �3:08232 � (0;04;2 + 0;14;1) (b)� �0:35155 �2:61172 � (0;04;2 + 0;14;3) (c)� �0:85455 �2:29340 � (0;04;3 + 0;14;2) (c) 9>>>>>>>>=>>>>>>>>; ;where we have again indicated the types. For this vector, since all neighborsare either in � or were previously in �, we do not have to add anything to



359the agenda. We now haveb� = 8>>>><>>>>: � �0:93203 �1:92203 �� �0:24231 �3:23710 �� �0:35155 �2:61172 �� �0:24728 �3:16737 �� �0:27408 �2:98310 � 9>>>>=>>>>;� = 8>>>>>>>>>><>>>>>>>>>>: � �0:31978 �2:86572 �� �0:27767 �3:11987 �� �0:27602 �3:08232 �� �0:93203 �1:92203 �� �0:32475 �2:79599 �� �0:24231 �3:23710 �� �0:25087 �3:30414 �� �0:24922 �3:26659 � 9>>>>>>>>>>=>>>>>>>>>>; :We will now �nd, selecting one vector at a time, that all the remainingitems in � yield empty regions over b�. When � has been exhausted, weare left with �04 = b� and the witness algorithm is complete. The �nal valuefunction, V 04 (�), represented by �04 is shown in Figure F.9.Action 1: The witness algorithm proceeds in the same for action 1, ex-cept the structure of the solution makes this somewhat simpler. Instead ofshowing the full witness algorithm for this case, we show how one of theoptimizations discussed in Section 3.2.3 can save a large amount of work.Recall from Section 3.2.3 that the witness algorithm can be modi�edto initialize b� with vectors generated from any number of points. Forthis case, assume we select our set of point to be the information spacesimplex corners. After checking all (two) simplex corners, we �nd that14([ 0:0 1:0 ] = 14([ 1:0 0:0 ] = [ �1:3561 � 1:3561 ]. We had mentionedthat checking all the simplex corners is guaranteed to yield at least two vec-tors if and only if j�14j > 1. From this we can conclude that we have already
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Appendix GPolicy Graph ConstructionIn this section we will show the construction of a �nite state controllerfor the in�nite horizon version of the simple baseball example presented inChapter 2 with Tables 2.1 and 2.6. This controller, which we call a policygraph, is derived from executing value iteration for a large horizon. Wenote that the technique shown in this section cannot always be applied,or may require a more complicated construction. This example is simplyto illustrate how an optimal policy graph can be constructed for certainpolicies. Appendix D discusses the conditions on the policies required tobe able to accomplish this, where the property required is are called �nitetransience .There is a corresponding �nite-horizon policy graph, which has a treestructure, where the in�nite horizon policy graph can have cycles. We willuse the general term policy graph for both in this appendix, allowing thecontext to disambiguate the two.We begin with Figure G.1 which shows the �nite horizon policy graphfor the �rst 4 value iteration steps. Each node in this graph represents one362
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364made possible by there being only two states, making the information statespace essentially one-dimensional.Aside from indicating which �n�1 vectors helped construct a vector orthe information state transformation process, the main use of this graphis how it speci�es the optimal �nite horizon policy to follow. Given aninformation state and a certain number of steps to go, n, we can �nd themaximal vector (or simply see which region the information state is in),which will be one of the nodes in the graph from among those in horizonn. Following the action of the node label, we will get an observation andwe follow the edge based on that observation to arrive at another node withone less step to go. In this way, the node indicates the action, and the edgesindicate the next node and consequently, the next action. Therefore, giventhis �nite horizon policy graph and the initial starting state, we can use it tooptimally control the pomdp by selecting actions according to the currentnode, and moving in the graph according to the observations received.Picking up where the algorithm examples left o� in Appendix F, n = 5,we �nd that for all n � 5, the sizes of the �n sets stop growing and for alln � 4 the parsimonious representation of Vn(�) is of size 5. By the 385thstep, the machine precision limitations no longer allows us to distinguishbetween V384(�) and V385(�). The in�nite horizon value function, V (�) isshown in Figure G.2 and is represented by the set of vectors� = 8>>>><>>>>: � �5:7178259162 �9:5605069575 �� �7:0743380696 �7:0743380696 �� �5:8794976079 �8:5678886466 �� �5:7759198754 �9:0644942135 �� �5:7313101520 �9:3711481510 � 9>>>>=>>>>; ;presented with more precision than the example in Appendix F.
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Appendix HExample DomainsThis appendix provides descriptions for some of the example domains usedin the empirical comparisons1.

1Every e�ort will be made to ensure that the actual problems used for the empiricalresults are available through the author or Brown University.369



370H.1 Large Baseball DomainThis domain is roughly based upon the example that appears in Howard'sbook [49] though others have applied decision theory to this domain [19].It considers the strategic decisions of a baseball manager, for some numberof innings, when their team is batting2. The discussion in here assumessome knowledge about the game of baseball. Appendix A provides enoughdiscussion to understand the small baseball example of the main text, butit probably insu�cient for full comprehension of this section. Note that thefundamental probabilities for this case are di�erent than the simpler baseballexample used in Chapter 2.The choices available to the manager concern what the runners on base(if any) and the batter should do. The actions the manager has to choosefrom are� hit - tells the batter to swing normally and the runners to wait andsee the result before deciding to advance a base. This is typically whatis chosen when there is no one on base or when the manager thinksthe hitter is likely to get a hit.� bunt - tells the batter to bunt the ball softly and the runners to startto advance as the pitch is being thrown. This decision is typicallyused when the manager is willing to sacri�ce an out for advancing therunners a base. The drawback is that the batter is very likely to beout.2As Howard does, we make no claim to the validity of the modeling assumptions,decisions or data toward the real situation in a baseball game.



371� hit-and-run - tells the batter to swing normally, but for the runnersto be moving as the pitch is delivered. The advantage here is that theywill advance further on a hit and avoid a double-play. The disadvan-tage lies in the potential for a double-play on a strike-out, resultingfrom the runner being thrown out trying to steal.� steal-2nd - tells the runner on �rst-base to attempt to steal second-base. This action is only valid if there is a runner on �rst and norunner on second.� steal-3rd - tells the runner on second-base to attempt to steal third-base. This action is only valid if there is a runner on second and norunner on third. If there is also a runner on second-base, it has thee�ect of a double steal.� steal-home - tells the runner on third to attempt to steal home. Thisis only valid if there is a runner on third, and if there are other runners,if has the e�ect of all of them attempting to steal.Howard considers a completely observable situation, but here we addsome hidden state to complicate the manager's decision. The hidden stateconsists of the quality of the pitcher, batter and catcher. All three of theseplayers can either be in a good or bad state and their performance is directlyrelated to their state. Thus there are 8 possible combination of the hiddenstate of these three players. For the speci�c parameters used, we have veri-�ed that these hidden state components would inuence the optimal actionselection if the state was fully observable.



372There is actually only one observable component of the state space: theresult of the last play. However, this component fully determines the valuesof a number of other components of the state space, since we have pre-cisely de�ned the resulting situation for every initial situation and outcome.Thus these other components are, in e�ect, fully observable. The full set ofe�ectively fully observable state components is� The inning itself. The problem is extensible along this dimension. Forthe data shown, we only consider a single inning.� The number of outs in the inning. Valid values are 0, 1 or 2. We donot need a 3 out state, since this is the same as the start of a newinning or the end of a game.� The situation on the base-paths. Whether or not there is a runner on�rst-base, second-base or third-base. There are eight possible situa-tions.� How many players scored on the last play. This doesn't really havemuch e�ect on the current decision, but allows the rewards to be basedupon the state, since a reward of 1 is received for each run that isscored. There are 5 valid values here, representing 0 through themaximum of four runs scoring on a single play.� The result of the last play. This is the component that completelydetermines these other state variables and is directly related to theobservations. The possible values here are discussed below.



373In addition to all possible combinations of the above state variables, thereis an extra state which is an absorbing state which represents the game beingover. There are also the 8 combinations of hidden state discussed previously.Using only a single inning, this makes a total of 7681 states for the problem.The observations are the results of the last play and there are 10 pos-sible. When any of the three hitting actions are chosen, one of 8 obser-vations are possible: single, double, triple, home-run, base-on-balls,strike-out, fly-out, ground-out, which all correspond to the usual base-ball interpretation and whose semantics are described below. If one of thethree stealing actions are chosen they there are only two possible obser-vations: stolen-base and caught-stealing both of which pertain to theoutcome of the lead runner3.To simplify both the description and coding of this example, we de�neoutcome probabilities for a typical batter and then scale these probabilitiesaccordingly to incorporate the states of the pitcher, batter and catcher.Table H.1 shows the statistics that we used as a basis for this example.These translate into a probability of 0:336 for not making an out on a givenplay when the hit or hit-and-run action is chosen. This is the nominalvalue, and the actual value will be adjusted twice: once to account for thequality of the batter and once more to account for the quality of the pitcher.We next de�ne conditional probabilities for the type of non-out and thetype of out as shown in Tables H.2 and H.3. Although the probability ofmaking an out will be scaled according to the state of the batter and pitcher,3Since the 8 hitting and 2 stealing observations are mutually exclusive, we only actuallyneed 8 total observations in the model.



374550 plate appearancesnon-outs outs85 singles 55 strike-outs25 doubles 155 y-outs5 triples 155 ground-outs20 home-runs50 base on ballsTable H.1: Statistics for a typical batter which are used as the basis for theprobabilities in the baseball domain.Outcome Pr(� j hit)single 0.460double 0.135triple 0.027home-run 0.108base-on-balls 0.270Table H.2: Conditional probabilities for \non-out" outcomes for the hit andhit-and-run action.these conditional probabilities will not be a�ected.As mentioned, we will scale the probability that the batter does notmake an out by the quality of the pitcher and catcher. We �rst adjust thenon-out probability to compensate for the batter. If the batter is good, thenthe probability is multiplied by 1:15 and if the batter is bad we multiply thenon-out probability by 0:80. Note that this scaling requires the non-outprobability to not be too close to 1. After the non-out probability has beenOutcome Pr(� j hit)strike-out 0.16fly-out 0.42ground-out 0.42Table H.3: Conditional probabilities for \out" outcomes for the hit andhit-and-run action.



375Outcome Pr(� j bunt)single 1.0double 0.0triple 0.0home-run 0.0base-on-balls 0.0Table H.4: Conditional probabilities for hit outcomes for the bunt action.Outcome Pr(� j bunt)strike-out 0.05fly-out 0.10ground-out 0.85Table H.5: Conditional probabilities for out outcomes for the bunt action.adjusted for the batter, we adjust it for the quality of a pitcher with thefactors 0:75 and 1:15 for a good and bad pitcher respectively.For the bunt action we have a slightly di�erent situation. Here we de�nethe probability of making an out as 0:9 and assume that the quality of thepitcher and batter do not have an e�ect on this probability. For bunting,we use the condition probabilities shown in Tables H.4 and H.5.Finally, for the actions corresponding to stealing a base, Table H.6 showsnominal success probabilities for stealing the various bases. These are un-adjusted values and they are scaled by 0:8 if the catcher is good and 1:10if the catcher is bad. For all steal actions except one, it is assumed thatall runners attempt to steal with only the lead runner having the potentialof being thrown out. The one exception is when there is a runner on �rstand a runner on third and the steal-2nd action is chosen. In this case, therunner on third does not advance regardless of the outcome of the stealingaction.



376Stealing Prob. of Success2nd 0.753rd 0.50home 0.10Table H.6: Stealing base probabilities prior to adjustment for the state ofthe catcher.To complete the problem description, we must de�ne the semantics ofthe outcomes of various actions given the initial situation. For each ofthe single, double and triple actions all base-runners advance the samenumber of bases as the batter, except if one of three conditions hold: eitherthe action was hit-and-run or bunt or there are two outs. In these threecases, the runners advance one more base than the batter. Naturally, anythat make it to home would result in the state where that many playersscored. For a home-run all runners score and for a walk, only runners thatare forced to advance will change position.For a strike-out, no runners advance if the hit action is speci�ed. How-ever, if the action was either hit-and-run or bunt, if there are any runnerson base and there are less than two outs, then the lead runner is also out,resulting in a double play.For a fly-out, all runners stay put with the exception of a possiblesacri�ce y. When there are less than two outs and a runner is on third-base, a fly-out will result in the player on third scoring with any otherrunners staying on their respective bases. The potential for a sacri�ce ydoes not apply to the bunt action. Here, the fly-out is interpreted as ashort pop-up with no one advancing.Finally, the ground-out outcome is very much dependent upon whether



377Catcher Batter Pitcher Valuebad bad bad 0.574512688bad bad good 0.319788843bad good bad 1.281795868bad good good 0.512531047good bad bad 0.558606169good bad good 0.257343051good good bad 1.275406063good good good 0.489496861Table H.7: Optimal completely observable values for one inning variation ofthe large baseball domain.a hit, bunt or hit-and-run action is speci�ed and where the runners areat the time. For a bunt and hit-and-run, we assume that the base-runnershave gotten a jump and will advance a base on the out, which also precludesany double-play when the outcome is a ground-out. For a hit action, theground-out has the potential to produce a double play. Whenever there isa runner on �rst and the hit action results in a ground-out, the runner on�rst is out at second-base and the batter is out at �rst-base. On a doubleplay any runners on second or third advance a base, if the inning isn't over.If the base situation has no one on �rst, then the ground-out results in thoserunners remaining at their respective bases.The discount factor used is 0:999 and the optimal completely observedvalues (the expected number of runs for a one inning game) for the 8 possiblestarting state are given in Table H.7. Note that the only unknown in thestarting state pertains to the values of the hidden state variables.



378H.2 Slotted AlohaIn a packet switched network, e�ciency is gained by allowing multiple trans-mitters to share a common channel. However, the physical limitations of achannel allow only one packet to be transmitted at a time. If two or moretransmitters attempt to send a packet at the same instant, the messages getgarbled and a collision results. In this case, both packets are assumed to bebacklogged and must be re-sent at a later time.We make the simplifying assumptions that time is divided into �xedintervals called slots, packets can only be transmitted at the beginning of aslot and that all packets require exactly one time slot to be transmitted. Alltransmitting stations are synchronized with respect to the clock, but thereis no other way for them to communicate.The slotted Aloha protocol is a strategy for scheduling packet trans-missions, where each packet waiting to be transmitted is transmitted withprobability a [10]. If at a given time, there are sb backlogged packets and alltransmitting stations have access to the this number, then the optimal strat-egy is to transmit each backlogged packet with probability 1=sb 4. However,the transmission stations do not have access to the total backlog. The onlything the transmission stations have access to is the status of the channeland there are only three possible states of the channel: idle - no packetstransmitted; transmit - a packet was successfully transmitted; collision- two or more packets collided.4The probability of a successful transmission is sba(1 � a)sb�1. Taking the derivativewith respect to a and �nding the critical points, we see that the successful transmissionprobability is maximized when a = 1=sb.



379For our example domain, we assume that packets arrive in the systemaccording to a truncated Poisson distribution with mean 0:9. We �x themaximum number of arrivals at any slot to be 10 and the remaining prob-ability mass of the Poisson distribution is given to the probability that nopacket arrives. We also set a maximum number of backlogged messages inthe system. This maximum number of backlogged messages is adjustableand we used the values 10 and 30 for the empirical comparisons.We now discuss modeling this with a pomdp. The state of the systemconsists of the number of backlogged messages and the status of the channelfor the previous transmission slot. The observations are the three possiblestates of the channel, idle, transmit, collision.The actions are transmission probabilities which we must discretize toensure a �nite set. Since we know that choosing a = 1=sb maximizes theprobability of a successful transmission, we choose the action set to beA = � 1sb j sb = 1; 2; : : : ;M� ;where M is the maximum backlogged allowed.The state transition probabilities account for the individual packet trans-mission probabilities for the given action and the Poisson arrival probabilityof new packets entering the system. When a packet is successfully trans-mitted, the backlog is reduced by one packet (and incremented by howevermany new packets arrived). When the channel is idle or there is a collision,then the backlog stays the same with the possible addition of new arrivals.We assume the observations of the channel status are deterministic basedupon the last channel state.



380For the rewards, we use a reward of zero when the maximum backlog isreached and +1 for each packet below maximum the system is at. Thus, themaximal reward is when there are no backlogged messages.



381H.3 Machine MaintenanceWe assume there is a machine with c internal components that is used toproduce a part. The quality of the part produced is directly related to thecondition or state of these internal components, which are only observableif the machine is disassembled. Each components can be in one of fourconditions: good - the component is in good condition; fair - the componenthas some amount of wear, but would bene�t from some maintenance; bad- the part is very worn and could use repairs; broken - the part is brokenand must be replaced. Thus, the state of the machine is the combined stateof the individual components and there are a total of 4c states. For ourexamples we used c = 4.The actions available to the decision maker are: manufacture - use themachine to produce parts for the day; inspect - allocate part of the day todisassembling the machine and inspecting the internal components; repair- allocate the day to maintenance of the machine's internal components;replace - replace the machine.The state transitions depend upon the action. For the manufactureaction, each component deteriorates with the probability 0:03 after each dayof producing parts. Thus, a component in good condition may transitioninto the fair state, a component in fair condition may become bad anda bad component could become broken. A broken component does notdeteriorate any further.For the repair action we assume that the condition of each componentimproves with probability 0:8. A component in broken condition cannot be



382repaired, so it does not improve. A component in bad condition is likely tobecome fair, a component in fair condition is likely to become good witha good component not getting any better.For the inspect action, the machine does not change state and for thereplace action, all components deterministically move to the good condi-tion.The observations also depend upon the action taken. For the manufactureaction, the observation is that either the machine produced good parts orbad parts for the day. In order for the machine to produce good parts,all components must perform properly during the day. A good compo-nent always performs properly during the day. A fair component producesproperly with probability 0:95 and a bad component has probability 0:75 ofperforming properly. A broken component never performs properly.For the inspect action, the observation is the composite of individualobservations for each component, each of which is observed to be in a eithera good or bad condition. The probabilities of the individual observations aredependent upon the actual condition of the component. A good componentwill yield a good observation with probability 0:97, a fair component looksgood with probability 0:80, bad with probability 0:05 and broken is 0:02.For the repair and replace actions, we assume that no observation ismade, which is the same as deterministically getting the same observation,regardless of the state.The rewards for the problem are 1 when good parts are manufacturedfor the day. Inspecting gives a �1 reward corresponding to the price todismantle the machine and keep it idle. Repairing requires more e�ort and



383has a reward of �3. Finally, replacing the machine is the most costly andhas a reward of �15.



384H.4 Aircraft Identi�cation (IFF)This example is loosely based upon a model used by D'ambrosio and Fung [33].The scenario involves an incoming aircraft where using various forms of sen-sors available at a base, the task is to determine if the aircraft is a threat ornot. If the aircraft is a threat and nothing is done, then when the aircraftgets close enough, the base may be destroyed. However, if the aircraft is at-tacked and is not a threat (i.e., it is a friendly aircraft), then a signi�cantpenalty is accrued. The tension of deciding between the various sensors isthat the better sensors tend to make the location of the base more easilyidenti�able or visible to the aircraft, while the more stealthy sensors tendto be less accurate. The sensors give information about both the aircraft'stype and distance, though the distance information is generally more reliablethan the aircraft type information.State Space The state space of this problem is comprised of three maincomponents:� aircraft type - either the aircraft is a friend or it is a foe;� distance - how far the aircraft is currently from the base discretizedinto an adjustable number, D, of distinct distances;� visibility - a measure of how visible the base is to the approachingaircraft, which is discretized into 5 levels.For the example domain we used D = 10. In addition to all combinationsof these values, there are 4 extra states, which serve as zero-cost absorbing



385states:� base-safe - results from a friend type aircraft reaching the base oran enemy reaching the base, but failing to destroy the base;� base-destroyed - corresponds to a foe getting close enough and suc-cessfully attacking the base;� foe-destroyed - results from successfully attacking a foe aircraft;� friend-destroyed - results from attacking a friend aircraft and de-stroying it.This brings the total number of states tojSj = 10D + 4 :State Transitions The transitions between the states depend upon theactions taken. There are jAj = 4 actions available� active - a sensing action using the more reliable sensor, which alsorenders the base more visible;� passive - a sensing action using the less reliable sensor, but whichdoes not make the base too visible to the incoming aircraft;� no-op - employ no sensors;� attack - attack the incoming aircraft;The distance of the aircraft is measured in discrete locations from thebase. Unless an absorbing state is reached, as described below, on a single



386Pr(svt+1 = jjsvt = i)action j = i � 1 j = i j = i+ 1no-op 0.25 0.75 0.00passive 0.00 0.90 0.10active 0.00 0.05 0.95attack 0.00 0.20 0.80Table H.8: Transition probabilities for the change in visibility level portionof the state.step the aircraft will always advance a single discrete location with probabil-ity 0:8 and not advance with probability 0:2. It is impossible for the distanceto get larger or to decrease by more than 1 discrete location. The change indistance is independent of the action chosen (assuming an absorbing stateis not entered), the visibility level of the base and the type of aircraft.The visibility level change depends upon the type of action chosen. Thereare 5 visibility levels and the visibility level can only change by at most onediscrete unit per step. Letting svt be the current visibility level and svt+1 bethe next visibility level, Table H.8 shows the probability of the visibility levelfor each action. If the maximum/minimum visibility level is achieved, thenthe probability that the visibility level increases/decreases is zero. makinga change in the visibility level of the base that much more probable. Forthe attack action, these probabilities are conditioned upon the aircraft notbeing destroyed and, for all of them, it is conditioned on the aircraft notdestroying the base. Note that the aircraft type portion of the state neverchanges.This de�nes the normal state transitions in terms of how the aircraft'sdistance changes and how the visibility level of the base changes. However,



387these transitions are all predicated on not arriving in one of the absorbingstates.Absorbing States For the attack action, the probability that the aircraftis destroyed is a function of how far away the aircraft is, independent of thebase's visibility level or the aircraft's type. The probability that the aircraftis destroyed when the attack action is taken is given by(D � sd)2D2 ;where D is the number of discrete distances used in the model and sd is thedistance of the aircraft in terms of the number of discrete locations it is awayfrom the base. The range on sd is the interval [ 0; D� 1 ]. If successful, theresulting state is either the foe-destroyed or friend-destroyed absorbingstate depending on the aircraft type. If unsuccessful, then the state changesaccording to the previously discussed, though they are conditioned on theattack action failing, so their probabilities must be scaled by the probabilitythat the aircraft was not destroyed.If a friend aircraft is at sd = 0, then on the next transition, withprobability 1 the resulting state is the base-safe absorbing state. If afoe aircraft is at sd = 0, then on the next transition, the state will be inthe base-destroyed absorbing state with a probability proportional to thevisibility level of the base given by0:1 � sv + 0:25 ;where sv is the current visibility level of the base. This make the probabilityrange for destroying the aircraft [ 0:25; 0:65 ]. If a foe aircraft fails to destroy



388the base, then the state becomes the base-safe absorbing state. Note thisdoes not pertain to the attack action, since at sd = 0, with probability 1the plane is destroyed.Observations The observations consist of two independent components:the aircraft type and the aircraft distance. In addition to these 2D possi-ble observations, there are 2 additional observations: nothing which resultsfrom the no-op action with probability 1 and absorb which is the observa-tion made in the four absorbing states with probability 1. We also assumethat the attack action, if unsuccessful, returns the same information asthe active sensing action, though the probabilities are then conditionedupon the attack failing and so must be multiplied by the probability of anunsuccessful attack.For simplicity, we assume that the distance the sensors report is nevermore than 1 discrete location away from the true distance. An activesensing action will detect the true distance with probability 0:9 whereas apassive sensing action only detects the true distance with a 0:8 probability.The remaining probability mass for both actions are equally distributedamong detecting the distance as being one location too close and one locationtoo far. Since there are maximum and minimum distances, the boundaryconditions are handled by adding the impossible distance's probability tothe probability of detecting the true distance.The sensors' detection of the plane type is independent of the distancesreported by the sensors. An active sensing (or attack) action will detectthe correct type with probability 0:8 and a passive sensing succeeds with



389State Rewardbase-safe 0base-destroyed -100foe-destroyed +20friend-destroyed -30Table H.9: Immediate rewards for entering the di�erent absorbing states forthe aircraft identi�cation domain.probability 0:6.Immediate Rewards The only rewards that are de�ned are for transi-tions into one of the 4 absorbing states, corresponding to the �nal outcome.Table H.9 shows the immediate rewards for this domain.



390H.5 Robot NavigationThe robot navigation problems concern themselves with a simpli�ed robotwith fairly crude sensors, navigating in an environment that is fairly struc-tured as in an o�ce environment. Although any reward structure can beincorporated into the pomdp, we use the simple idea of there being a singlelocation the robot is trying to navigate to, which we refer to as the goal orgoal state.The crude sensors of the robot force it to have a simpli�ed view of theworld and in our case the robot only has the capability to make a simpleobservation directly in front of it and on either side of it. These three simpleobservations individually consist of either detecting a wall, a door, free space(open) or some undetermined sensor status. Thus, the full observation set forthe robot consists of the four possible observations in the three directions,making a total of 64 possible observations. The observations the robotgets from these sensors are subject to noise and can result in the wrongobservation being made with some probability.The robot has a few fairly abstract actions which consist of moving for-ward, turning either left or right, doing nothing (no-op) and declaring thatit has reached the goal state. Because of hardware limitations and otherexternal conditions, the movements of the robot are subject to noise andare not completely reliable. Furthermore, the environment is assumed toconsist of a �nite number of discrete locations and a forward movement, ifit succeeds, results in the robot moving one discrete location in the direc-tion it is currently facing. The pomdp state of the robot consists of two



391components: its physical location in the discreteized world, and its orienta-tion. We assume that the orientations themselves are discretized into fourpossible values, roughly corresponding to the four main compass directions.The actual number of states depends upon the actual physical layout of theenvironment. There is the addition of a zero-cost absorbing state which isentered when the robot issues the declare-goal action.The immediate rewards for this pomdp are zero for all state-action pairsexcept for the pair consisting of declaring the goal when the robot is inthe goal state. For this the immediate reward it receives is 1. If the robotdeclares itself to be in the goal when it is not, a penalty in the form of a �1reward is received.The pomdp models for a robot navigation problem are easy to specifycompactly, despite the potential for a fairly large state space. The reasonis that for the most part, the observation and transition probabilities areindependent of the actual physical layout of the navigation domain. The onlydependency on the transitions and observations is the local con�gurationimmediately surrounding the robot's current location. Therefore, given thelayout of the physical arrangement of the discretized environment and localtransition and observation probabilities and semantics, the full transitionand observation function of the pomdp is completely determined. Thisshould become clearer below.Transition ProbabilitiesTo de�ne the semantics of a robot's movement we will de�ne some primitiveactions, which should not be confused with the actions the robot executes,



392Action Outcome (probabilities)move-forward n (0.11), f (0.88), f-f (0.01)turn-left n (0.05), l (0.9), l-l (0.05)turn-right n (0.05), r (0.9), r-r (0.05)no-op n (1.0)declare-goal a (1.0)Table H.10: Action probabilities for robot actions in terms of primitiveactions.i.e. those in the pomdp model. The primitive actions are:� n - no robot movement,� f - robot movement forward one discrete location,� l - a change in robot orientation 90 degrees leftward and� r - a change in robot orientation 90 degrees to the right.� a - the robot, conceptually, goes into the absorbing state.With these primitive actions we can specify the noise model for a givenrobot action by given a sequence of primitive actions and a probabilitythat that sequence results. For example, consider Table H.10 where we seethe move-forward action speci�ed as having three possible outcomes: withprobability 0:11 the robot will not change its state (location and orientation)at all; with probability 0:88 the move-forward action succeeds in movingthe robot forward one location; and �nally, with probability 0:1 the robotactually moves one location too far, which corresponds to two primitive factions. The remaining actions are interpreted similarly.The only complication that arises is that a particular location's con�gu-ration could render some of the possible outcomes impossible. The semantics



393we de�ne is that the sequence of primitive actions proceeds are far as possi-ble until an infeasible primitive action is encountered. The probability massof the sequence of primitive actions is then added to the transition proba-bility between the starting state and the �nal resulting state. For example,using the probabilities from Table H.10, suppose the robot was in a locationwhere it could move forward one location, but a wall blocked it from movingforward two locations. The probability that the robot moves forward onelocation would be 0:89 which corresponds to the sum of two of the primi-tive action sequences, since the f-f sequence can only progress as far as oneforward movement.Observation ProbabilitiesThere are only four basic things the robot can see: a wall, a door, open spaceor undetermined. We can completely specify the observational probabilitieswith a small table of conditional probabilities and some simple semantics fortheir application.We consider every discrete location in the environment to either beingpart of hallway or part of a room. Between two adjacent locations of thesame type, the space is open, navigable and the robot would, without noise,observe an open space in that direction. When two di�erent types of loca-tions are adjacent, we assume that it is navigable, but that the robot mustpass through a door and so the observation received by the robot, againwithout noise, would be a door in that direction.With these semantics, a small table of condition probabilities can com-pletely specify the observational probabilities for the pomdp model. As an



394Actual Observedza zo P (zo j za)wall wall 0.90wall open 0.05wall doorway 0.05wall undetermined 0.00open wall 0.03open open 0.90open doorway 0.07open undetermined 0.00doorway wall 0.15doorway open 0.15doorway doorway 0.70doorway undetermined 0.00undetermined undetermined 1.00Table H.11: Conditional observation probabilities used to construct the ob-servation probabilities.example, Table H.11 gives the conditional probabilities for each observationbased upon the true con�guration and what its sensors are liable to report.Thus, the full probability for a given observation in a given state can becomputed by examining the locational layout to see what the true observa-tions would be for that state, then computing the conditional probabilitiesonce for the three directions its sensors report it, and �nally multiplyingthese all together. Note that this assumes that the observations are allindependent, which is not necessarily a valid assumption for a real robot.Speci�c DomainsAll of the example pomdps constructed used all the previous rules for build-ing the pomdp model. The only variables are the layout of the discretizedlocations, the initial state and the goal state. These are problem speci�c



395and described in Section 6.7.3.



Appendix IExtra Data TablesThis appendix contains extra tables for the empirical studies done throughthis thesis. They are included here for completeness, and to keep the mainbody of text uncluttered.I.1 Exact AlgorithmsSection 4.9.1 showed most of the data in the form of a line graph, herewe present the actual numbers and have done a simple two-sided T -test togauge the signi�cance of the di�erences. Tables I.1 through I.3 show thetotal number of lps for constructing the �an sets and Tables I.4 through I.6show the total number of constraints.
396



397
Obs. IpRr IpNcs TwoPass Witness3 150.800 117.160 525.520 564.8404 351.240 298.800 1176.440 12555 807.400 733.800 2740 2899.4006 1377.760 1282.520 4797.800 5053.4407 2989.726 2880.493 10896.137 11368.1378 3917.040 3820.560 13963.800 14548.6409 5710.680 5585.680 21989.560 22524.76010 8775.960 8674.360 29999.680 30482.96011 13977.360 13565.480 52762.800 38906.96012 20639.200 18584.040 77682.400 46657.44013 25558.920 22982.640 98905.280 50200.84014 32469.880 26716.560 1.513e+05 52681.60015 44727.080 31763.800 2.002e+05 50458.840Table I.1: Total lps for constructing all �an sets for the random pomdpproblems with jSj = 7. T -test with p = 0:95.



398
States. IpRr IpNcs TwoPass Witness3 537.160 508.120 1038.680 11004 1070.440 1014.760 2696.240 2829.2805 1423.560 1359.040 4065.120 4265.4406 1589.400 1508.840 4613 4848.6007 2989.726 2880.493 10896.137 11368.1378 3965.840 3840 16047.080 16088.5209 4882.600 4730.720 20933.840 21764.96010 5382.600 5233.880 24049.320 24175.16011 7344.480 7156.400 36143.920 30195.20012 10102.960 8761.760 56960.440 32591.28013 10987.560 9905.840 60794.320 36203.16014 14982.440 13116.880 82408.280 32967.60015 16849.280 14395.840 1.056e+05 39311.640Table I.2: Total lps for constructing all �an sets for the random pomdpproblems with jZj = 7. T -test with p = 0:95.



399
States/Obs. IpRr IpNcs TwoPass Witness3 75.391 63.913 178.304 194.8704 221 195.565 566.913 611.5225 589.783 540.783 1726 1831.3486 1103.391 1041.435 3460.087 3645.4357 2989.726 2880.493 10896.137 11368.1378 7098.652 6957.870 29132.261 29929.3919 17539.261 15900 80523.304 43977.26110 35760.391 22676.217 1.833e+05 39589.04311 48863.652 24591.304 3.454e+05 33812.34812 40611.565 22932.609 4.442e+05 29497.69613 42541 24036.304 4.267e+05 27809.30414 34272.304 18397.130 4.820e+05 19970.08715 32184.696 16241.087 4.114e+05 17003.174Table I.3: Total lps for constructing all �an sets for the random pomdpproblems with jSj = jZj. T -test with p = 0:95.



400
Obs. IpRr IpNcs TwoPass Witness3 974.840 1758.880 5481.840 13025.2804 2975.520 7217.680 16206.160 53991.8405 10570.640 29034.960 46633.680 2.255e+056 20453.400 62946.840 91369.920 5.175e+057 70838.438 2.769e+05 2.646e+05 2.395e+068 1.094e+05 4.373e+05 3.527e+05 3.461e+069 2.270e+05 9.157e+05 6.494e+05 8.684e+0610 4.054e+05 1.538e+06 9.045e+05 1.199e+0711 1.090e+06 3.889e+06 1.892e+06 1.937e+0712 2.048e+06 7.073e+06 3.112e+06 2.874e+0713 3.316e+06 1.0e+07 4.152e+06 3.326e+0714 4.779e+06 1.190e+07 6.854e+06 3.619e+0715 7.523e+06 1.507e+07 9.651e+06 3.845e+07Table I.4: Total constraints for constructing all �an sets for the randompomdp problems with jSj = 7. T -test with p = 0:95.



401
States. IpRr IpNcs TwoPass Witness3 3812.280 7619.280 18035.360 30382.1604 11495.120 33590.240 58241.040 1.793e+055 19550.640 57306.240 84982.800 3.702e+056 23230.640 68220.240 94734.880 4.509e+057 70838.438 2.769e+05 2.646e+05 2.395e+068 1.337e+05 5.717e+05 4.121e+05 5.263e+069 1.678e+05 6.841e+05 5.460e+05 6.626e+0610 2.096e+05 9.145e+05 6.364e+05 8.722e+0611 4.445e+05 2.107e+06 1.041e+06 1.4e+0712 9.587e+05 3.138e+06 1.806e+06 1.690e+0713 8.671e+05 3.879e+06 1.921e+06 1.951e+0714 1.411e+06 6.367e+06 2.666e+06 2.030e+0715 1.914e+06 6.514e+06 3.332e+06 2.527e+07Table I.5: Total constraints for constructing all �an sets for the randompomdp problems with jZj = 7. T -test with p = 0:95.



402
States/Obs. IpRr IpNcs TwoPass Witness3 368.478 474.522 1617.565 20904 1369.087 2408.783 6688.609 12121.3045 5345.087 12772.087 28049.826 81469.8266 13605.913 42373.261 65884.609 2.778e+057 70838.438 2.769e+05 2.646e+05 2.395e+068 3.573e+05 1.443e+06 8.391e+05 1.326e+079 1.615e+06 6.742e+06 2.817e+06 2.983e+0710 5.692e+06 1.264e+07 7.390e+06 3.232e+0711 1.042e+07 1.679e+07 1.518e+07 3.385e+0712 1.056e+07 1.553e+07 2.077e+07 3.0e+0713 1.051e+07 1.621e+07 2.115e+07 2.993e+0714 1.147e+07 1.481e+07 2.519e+07 2.605e+0715 1.026e+07 1.304e+07 2.413e+07 2.212e+07Table I.6: Total constraints for constructing all �an sets for the randompomdp problems with jSj = jZj. T -test with p = 0:95.



403Obs. IpRr IpNcs TwoPass Witness3 1.126 0.983 0.992 1.7184 2.622 2.516 2.123 4.3545 6.139 6.620 4.847 12.8196 11.220 12.772 9.042 25.8607 28.087 38.388 22.463 100.4988 38.697 55.178 30.261 135.4469 66.162 104.318 52.009 342.91010 109.606 169.262 77.995 457.26111 264.084 371.350 184.213 722.96812 379.709 596.626 237.799 1075.50313 542.768 840.177 319.090 1241.83114 732.718 987.782 488.382 1351.31315 1077.523 1222.523 826.304 1455.357Table I.7: Total execution time for constructing all �n sets for the randompomdp problems with jSj = 7. T -test with p = 0:95.I.1.1 Total Running TimeAlthough we presented the running time for simply building the �an sets,Tables I.7 through I.9 show the total mean running time for constructing�n required by each of the algorithms on this data set. This include theadditional time the prune routine using to merge the set. Although thistime is predominantly the same for the algorithms, using the prune routineto merge the �an into �n means that the total number of constraints issensitive to the order in which the vectors are processed.



404
States. IpRr IpNcs TwoPass Witness3 3.036 2.902 1.316 2.4884 6.618 6.972 3.615 8.7835 9.804 10.790 6.198 17.0536 11.401 12.897 7.430 21.6027 28.087 38.388 22.463 100.4988 50.155 77.846 42.457 231.3389 66.903 98.801 58.880 308.01710 90.424 140.467 82.312 422.91711 194.620 331.244 176.911 720.64012 355.842 486.314 339.195 954.09413 407.308 584.145 388.002 1124.45914 668.434 934.044 623.117 1254.96915 878.698 1183.329 843.705 1602.123Table I.8: Total execution time for constructing all �n sets for the randompomdp problems with jZj = 7. T -test with p = 0:95.



405
States/Obs. IpRr IpNcs TwoPass Witness3 0.474 0.409 0.337 0.4904 1.343 1.227 0.856 1.4975 3.758 3.768 2.613 5.4426 7.672 8.496 5.570 14.0137 28.087 38.388 22.463 100.4988 100.680 164.842 79.480 548.8939 448.249 725.270 359.523 1316.60510 1056.990 1291.559 920.050 1573.24411 1714.217 1755.611 1562.737 1803.74712 1643.082 1665.157 1593.402 1691.94113 1758.537 1820.684 1663.758 1803.52914 1835.887 1821.383 1814.387 1803.51115 1684.703 1674.622 1659.929 1673.424Table I.9: Total execution time for constructing all �n sets for the randompomdp problems with jSj = jZj. T -test with p = 0:95.



406I.2 Heuristic AlgorithmsSection 6.7.5 discussed the results obtained by varying the entropy thresh-olds in the dual mode controllers. There the full table of results for thedm-mls heuristic was presented. Here, Tables I.10 through I.12 show theresults for the other dual mode controllers used in the emprical results.



407
ThresholdDomain 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.94x3 0.971 1.665 1.731 1.760 1.739 1.760 1.732 1.726 1.7544x4 0 0 0 0.104 3.714 3.709 3.707 3.709 3.707cheese 3.417 3.424 3.428 3.417 3.436 3.440 3.440 3.433 3.443paint 1.416 1.756 2.011 2.017 0.913 -8.515 -8.479 -8.546 -8.488shuttle 32.702 32.627 32.688 32.658 32.782 32.725 32.672 32.634 32.552tiger 15.897 19.353 19.745 -73.340 -74.279 -74.161 -894.410 -897.218 -893.218network -594.924 -595.161 -436.487 -314.882 -225.196 -47.685 18.387 39.504 42.827nonlin 6.694 6.678 6.682 6.655 6.685 6.682 6.311 6.282 6.284saci -80.657 -52.901 -48.926 -31.757 -32.067 -31.939 -32.914 -32.345 -32.088hallway 0.470 0.527 0.593 0.605 0.823 0.815 0.812 0.804 0.804hall.-2 0.013 0.014 0.012 0.024 0.153 0.206 0.213 0.215 0.176cit 0.028 0.348 0.306 0.197 0.687 0.796 0.805 0.806 0.807mit -2.465 -0.197 -0.020 0.270 0.816 0.851 0.854 0.859 0.857suny. -42.653 -41.498 -8.017 -1.377 -0.112 0.677 0.751 0.764 0.766pent. -4.765 -2.646 -0.365 0.115 0.693 0.780 0.785 0.795 0.793fourth -3.138 -1.376 -0.419 -0.203 0.220 0.558 0.573 0.585 0.588iff 3.677 6.178 5.932 7.677 8.238 8.071 8.194 8.347 8.300bb 0.468 0.558 0.572 0.623 0.637 0.628 0.632 0.644 0.623machine -123.617 -33.045 1.667 17.018 20.458 49.620 56.875 57.063 57.395aloha10 90.217 92.489 97.725 102.932 106.940 112.516 116.099 119.006 124.652aloha30 679.141 684.598 689.384 694.387 702.627 728.664 770.127 833.304 850.332cit-u -27.744 -27.275 -27.222 -24.151 -7.825 -0.827 -0.760 -0.311 0.625mit-u -31.144 -30.988 -30.383 -29.963 -14.465 -2.553 -0.631 -0.337 0.531suny.-u -20.806 -19.940 -15.771 -15.172 -10.252 -0.225 0.180 0.492 0.490pent.-u -28.153 -27.896 -27.448 -24.072 -4.804 -0.703 -0.656 -0.238 0.692fourth-u -26.836 -25.355 -24.234 -23.703 -12.214 -0.136 0.054 0.451 0.456Table I.10: Threshold values and the adm-mls heuristic. T -test with p = 0:995.



408
ThresholdDomain 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.94x3 1.387 1.431 1.503 1.514 1.774 1.812 1.796 1.790 1.7904x4 3.491 3.485 3.492 3.491 3.494 3.491 3.651 3.659 3.708cheese 3.213 3.207 3.460 3.465 3.466 3.461 3.462 3.465 3.460paint 1.643 2.128 2.778 2.788 3.127 2.299 2.261 2.304 2.291shuttle 32.550 32.639 32.655 32.743 32.650 32.663 32.667 32.691 32.783tiger 16.192 19.470 19.258 19.651 19.197 19.292 19.221 18.494 19.690network -595.332 -595.064 -595.218 -595.097 -595.177 -435.335 -410.796 -235.787 187.911nonlin 6.669 6.688 6.680 6.300 6.295 6.329 6.277 6.279 6.255saci -81.677 -81.525 -81.781 -80.996 -80.693 -80.639 -77.985 -65.096 -56.146hallway 0.258 0.489 0.528 0.598 0.466 0.355 0.348 0.344 0.356hall.-2 0.014 0.080 0.164 0.193 0.171 0.142 0.130 0.124 0.122cit -58.072 -0.175 0.759 0.826 0.833 0.832 0.834 0.833 0.832mit -0.172 0.802 0.815 0.809 0.810 0.810 0.808 0.814 0.811suny. -9.166 0.482 0.743 0.760 0.759 0.758 0.759 0.760 0.758pent. -7.051 0.117 0.717 0.804 0.821 0.821 0.821 0.821 0.821fourth -9.686 0.327 0.584 0.594 0.592 0.590 0.591 0.592 0.592iff -3.101 -2.974 -2.073 -1.313 2.323 4.552 4.419 4.532 5.004bb 0.350 0.322 0.094 0.101 0.099 0.100 0.099 0.093 0.103machine -408.124 -286.247 -124.016 -41.201 5.903 21.258 33.379 52.097 59.694aloha10 92.184 97.971 104.935 112.146 119.541 126.803 126.311 128.061 127.217aloha30 686.231 687.099 696.308 711.341 754.577 839.081 846.941 850.651 849.892cit-u -26.730 -15.061 -6.567 -0.233 -0.160 0.063 -0.747 0.358 0.370mit-u -22.904 -13.267 -6.576 -5.842 0.345 0.408 0.543 0.556 0.554suny.-u -26.827 -19.301 -14.816 -11.970 -4.979 0.090 0.305 0.328 0.330pent.-u -27.536 -26.804 -15.377 -1.797 -0.424 -0.766 -1.395 0.575 0.580fourth-u -36.943 -17.536 -10.910 -5.625 -3.784 -0.599 -0.966 0.338 0.347Table I.11: Threshold values and the dm-qmdp heuristic. T -test with p = 0:995.
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ThresholdDomain 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.94x3 0.947 1.680 1.718 1.763 1.807 1.812 1.863 1.863 1.8794x4 0 0 0 0.222 3.711 3.713 3.707 3.711 3.714cheese 3.423 3.428 3.423 3.422 3.463 3.466 3.467 3.459 3.465paint 1.416 1.755 2.017 2.023 0.873 -0.477 -0.447 -0.483 -0.487shuttle 32.673 32.609 32.685 32.584 32.643 32.625 32.701 32.676 32.710tiger 16.250 19.253 19.636 19.547 18.858 18.893 18.600 18.919 19.351network -595.253 -595.001 -436.661 -313.824 -224.401 -48.206 19.763 187.312 187.746nonlin 6.665 6.658 6.667 6.672 6.686 6.673 6.283 6.289 6.302saci -81.432 -72.988 -68.831 7.457 7.713 7.548 7.651 7.583 7.562hallway 0.465 0.521 0.602 0.540 0.515 0.382 0.357 0.351 0.345hall.-2 0.016 0.014 0.013 0.026 0.179 0.224 0.140 0.132 0.103cit 0.049 0.367 0.328 0.234 0.701 0.821 0.827 0.833 0.832mit -2.027 0.019 0.043 0.304 0.763 0.802 0.808 0.809 0.810suny. -42.626 -42.075 -7.967 -1.441 -0.251 0.627 0.686 0.758 0.757pent. -5.056 -2.345 -0.745 -0.205 0.647 0.803 0.811 0.822 0.821fourth -8.650 -5.874 -1.176 -0.217 0.331 0.574 0.591 0.590 0.592iff 3.067 4.415 5.684 5.435 5.654 4.641 4.613 4.873 4.369bb 0.461 0.240 0.227 0.127 0.117 0.119 0.097 0.100 0.097machine -123.453 -33.170 1.882 17.058 20.265 51.112 59.354 59.725 59.460aloha10 89.948 92.684 96.829 102.581 106.651 112.249 117.271 118.960 125.947aloha30 680.278 684.565 687.499 695.593 704.424 731.142 770.233 840.747 847.335cit-u -27.746 -27.146 -26.907 -24.644 -7.916 -0.894 -0.816 -0.563 0.369mit-u -31.223 -30.725 -30.362 -30.286 -14.900 -4.204 -0.620 -0.402 0.553suny.-u -20.595 -19.940 -15.764 -14.995 -11.849 -0.202 0.053 0.320 0.326pent.-u -28.260 -27.932 -27.434 -24.013 -5.002 -0.679 -0.656 -0.380 0.570fourth-u -26.839 -25.371 -23.910 -23.693 -12.434 -0.183 -0.004 0.347 0.341Table I.12: Threshold values and the adm-qmdp heuristic. T -test with p = 0:995.



410We presented the results for various entropy thresholds for the dual modecontrollers, dm-mls, adm-mls, dm-q-mdp and adm-q-mdp in Section 6.7.5and used a black background to indicate settings for which the entropynever exceeded that level. Tables I.13 through I.16 show the percentage ofentropy actions taken for the dual mode controllers; i.e., the number of stepsfor which the information state entropy exceeded the threshold.



411ThresholdDomain 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.94x3 34% 31% 22% 21% 15% 1% 1% 1% 1%4x4 77% 77% 67% 53% 53% 53% 38% 38% 20%cheese 26% 26% 6% 6% 1% 1% 1% 1% 1%paint 85% 80% 72% 72% 50% 33% 33% 0% 0%shuttle 0% 0% 0% 0% 0% 0% 0% 0% 0%tiger 81% 73% 73% 73% 73% 73% 50% 50% 50%network 50% 50% 50% 50% 50% 34% 32% 22% 1%nonlin 27% 27% 27% 0% 0% 0% 0% 0% 0%saci 82% 77% 75% 66% 64% 64% 25% 4% 4%hallway 93% 81% 76% 31% 21% 7% 3% 1% 1%hall.-2 100% 88% 62% 23% 14% 8% 2% 1% 1%cit 95% 9% 1% 0% 0% 0% 0% 0% 0%mit 20% 2% 0% 0% 0% 0% 0% 0% 0%suny. 50% 6% 0% 0% 0% 0% 0% 0% 0%pent. 43% 9% 2% 1% 0% 0% 0% 0% 0%fourth 82% 3% 0% 0% 0% 0% 0% 0% 0%iff 71% 28% 9% 1% 0% 0% 0% 0% 0%bb 100% 95% 0% 0% 0% 0% 0% 0% 0%machine 33% 25% 14% 9% 6% 4% 4% 1% 0%aloha10 53% 40% 26% 11% 5% 0% 0% 0% 0%aloha30 69% 54% 40% 34% 25% 4% 0% 0% 0%cit-u 95% 81% 58% 19% 16% 13% 14% 4% 3%mit-u 93% 82% 63% 58% 11% 8% 5% 3% 3%suny.-u 94% 83% 72% 61% 43% 6% 4% 2% 2%pent.-u 96% 94% 77% 32% 28% 30% 34% 6% 4%fourth-u 95% 66% 51% 36% 28% 10% 10% 3% 2%Table I.13: Percentage of entropy reduction actions taken for the dm-mlsheuristic.



412ThresholdDomain 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.94x3 45% 28% 24% 21% 1% 1% 0% 0% 0%4x4 50% 50% 50% 50% 0% 0% 0% 0% 0%cheese 10% 10% 10% 10% 5% 1% 1% 1% 1%paint 85% 80% 72% 72% 50% 33% 0% 0% 0%shuttle 0% 0% 0% 0% 0% 0% 0% 0% 0%tiger 81% 73% 73% 50% 50% 50% 0% 0% 0%network 50% 50% 34% 26% 21% 14% 11% 1% 1%nonlin 27% 27% 27% 27% 27% 27% 0% 0% 0%saci 56% 11% 5% 0% 0% 0% 0% 0% 0%hallway 81% 78% 71% 68% 11% 5% 2% 2% 0%hall.-2 100% 100% 100% 98% 29% 12% 4% 2% 0%cit 15% 10% 9% 12% 4% 2% 1% 0% 0%mit 37% 21% 20% 15% 5% 1% 1% 0% 0%suny. 80% 79% 43% 22% 13% 3% 1% 0% 0%pent. 49% 41% 20% 15% 5% 2% 1% 0% 0%fourth 15% 11% 7% 6% 4% 1% 1% 0% 0%iff 54% 38% 38% 17% 15% 0% 0% 0% 0%bb 23% 16% 16% 2% 1% 1% 0% 0% 0%machine 14% 8% 6% 5% 5% 2% 0% 0% 0%aloha10 61% 52% 41% 25% 18% 12% 8% 5% 1%aloha30 70% 62% 47% 40% 36% 30% 21% 4% 0%cit-u 94% 94% 94% 89% 71% 45% 43% 3% 0%mit-u 99% 98% 98% 98% 69% 44% 38% 3% 0%suny.-u 83% 82% 78% 76% 57% 40% 31% 3% 0%pent.-u 98% 98% 98% 96% 71% 47% 46% 4% 0%fourth-u 94% 92% 90% 89% 62% 45% 41% 0% 0%Table I.14: Percentage of entropy reduction actions taken for the adm-mlsheuristic.



413ThresholdDomain 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.94x3 34% 31% 22% 21% 16% 1% 1% 1% 1%4x4 77% 77% 67% 53% 53% 53% 38% 38% 20%cheese 26% 26% 6% 6% 1% 1% 1% 1% 1%paint 85% 80% 72% 72% 50% 12% 0% 0% 0%shuttle 0% 0% 0% 0% 0% 0% 0% 0% 0%tiger 81% 73% 73% 73% 73% 73% 37% 37% 37%network 50% 50% 50% 50% 50% 34% 32% 22% 1%nonlin 27% 27% 27% 0% 0% 0% 0% 0% 0%saci 82% 80% 76% 66% 63% 62% 53% 26% 16%hallway 93% 81% 75% 18% 10% 3% 2% 1% 1%hall.-2 100% 80% 52% 11% 7% 5% 2% 1% 1%cit 95% 10% 1% 0% 0% 0% 0% 0% 0%mit 20% 2% 0% 0% 0% 0% 0% 0% 0%suny. 48% 4% 1% 0% 0% 0% 0% 0% 0%pent. 49% 10% 2% 0% 0% 0% 0% 0% 0%fourth 34% 2% 0% 0% 0% 0% 0% 0% 0%iff 78% 58% 38% 20% 6% 1% 0% 0% 0%bb 100% 46% 0% 0% 0% 0% 0% 0% 0%machine 33% 25% 14% 9% 6% 4% 4% 2% 0%aloha10 53% 40% 26% 12% 6% 0% 0% 0% 0%aloha30 69% 54% 40% 34% 25% 4% 0% 0% 0%cit-u 95% 73% 45% 12% 9% 7% 10% 2% 2%mit-u 93% 82% 53% 44% 7% 6% 4% 2% 2%suny.-u 94% 77% 58% 44% 27% 4% 2% 2% 1%pent.-u 97% 94% 77% 31% 19% 18% 20% 3% 2%fourth-u 94% 64% 47% 32% 24% 10% 10% 3% 1%Table I.15: Percentage of entropy reduction actions taken for the dm-qmdpheuristic.



414ThresholdDomain 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.94x3 45% 28% 24% 21% 1% 1% 0% 0% 0%4x4 50% 50% 50% 49% 0% 0% 0% 0% 0%cheese 10% 10% 10% 10% 5% 1% 1% 1% 1%paint 85% 80% 72% 72% 50% 0% 0% 0% 0%shuttle 0% 0% 0% 0% 0% 0% 0% 0% 0%tiger 81% 73% 73% 37% 37% 37% 0% 0% 0%network 50% 50% 34% 26% 21% 14% 11% 1% 1%nonlin 27% 27% 27% 27% 27% 27% 0% 0% 0%saci 62% 41% 32% 0% 0% 0% 0% 0% 0%hallway 81% 78% 71% 56% 4% 2% 1% 1% 0%hall.-2 100% 100% 100% 98% 16% 5% 2% 1% 0%cit 15% 10% 9% 11% 4% 2% 1% 0% 0%mit 34% 17% 16% 12% 4% 1% 0% 0% 0%suny. 80% 79% 42% 22% 14% 3% 2% 0% 0%pent. 50% 39% 24% 18% 6% 2% 1% 0% 0%fourth 32% 26% 12% 7% 3% 1% 0% 0% 0%iff 47% 34% 29% 17% 10% 0% 0% 0% 0%bb 15% 1% 1% 0% 0% 0% 0% 0% 0%machine 14% 8% 6% 5% 5% 1% 0% 0% 0%aloha10 61% 52% 41% 25% 18% 12% 8% 5% 1%aloha30 70% 62% 47% 40% 36% 30% 22% 4% 0%cit-u 94% 94% 94% 90% 71% 42% 40% 2% 0%mit-u 99% 98% 98% 97% 65% 43% 31% 2% 0%suny.-u 83% 82% 77% 76% 59% 41% 29% 2% 0%pent.-u 99% 98% 98% 96% 71% 46% 45% 2% 0%fourth-u 94% 92% 89% 89% 62% 45% 40% 0% 0%Table I.16: Percentage of entropy reduction actions taken for the adm-qmdpheuristic.
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NotationSymbolsA The set of actions or decision choices in a process.At The action chosen at time t.a, a0 A particular action in the set AAH Expected action entropy. (Equation 6.7)B Space of information states, or space of probabilities distribu-tions over S.B̂ A �nite set of information states, such that each leads to aseperate linear segment in the parsimonious representation ofa value function.B0(b; a) The set of succesor information states of the state b underaction a.b An information or belief state, which is a probability distribu-tion over S.baz The belief transformation function, or the next belief state,given the currentinformation state b, action a and observationz.dn A decision rule mapping each state to an action when thereare n steps to go.d�n An optimal decision rule mapping each state to an action whenthere are n steps to go.d1 A stationary policy employing the same decsion rule at everytime step. 435



436H Entropy of a probability distribution. (Equation 6.5)H Normalized Entropy of a probability distribution (Equa-tion 6.8)~H Scaled version of the normalized entropy of a probability dis-tribution. (Equation 6.9)I The Kronecker delta or indicator function. (Equation 2.15)N () The set of all \neighbors" of a vector.n Index for iterations of dynamic programming.O Asymptotic big-oh notation.Ot The observation seen at time t.O The observation function mapping action-state pairs into dis-tributions over Z .o(a; s; z) The observation probability of seeing observation z, when theaction a resulted in a transition to state s.P a;z A matrix of probabilities capturing the state transition and ob-seravtion probabilities for action a and observation z. (Equa-tion 3.3)Pr(X) The probability of event X .R The real numbers.R The immediate reward function.r(s; a) The expected immediate reward for performing action a instate s.R(;�) A subset of B where the vector  dominates all other vectorsin � � fg. (Equation 3.1)S The set of states of a process.St The state of the system at time t.SH Expected state entropy. (Equation 6.6)s, s0, s00 A particular state in the set S.T The horizon length in a �nite horizon problem.T The state transition function mapping state-action pairs intodistributions over S.t A time step or decision point.Vn(�; s) The n steps-to-go value of executing policy � starting in states.V (�; s) The in�nite horizon value of executing policy � starting instate s.V �n (s) The optimal n steps to go value of executing an optimal policystarting in state s.



437V �(s) The optimal in�nite horizon value of executing an optimalpolicy starting in state s.eV (s) An approximation to the optimal value function.w A function coverting a distribution over states into a distribu-tion over actions. (Equation 6.4)Z The set of observations in a process.z, z0 A particular observation in the set Z� A set of jSj-vectors representing a set of hyperplanes of di-mension jSj. An jSj-vector of real numbers representing a linear hyperplaneof a value function.� The step-size or learning rate for incremental parameter ad-justment methods.� Asymptotic big-theta notation.� Entropy threshold in dual-mode control heuristics. (Page 265)� A \neighbor" of a vector. (De�nition 3.2.1)� A decision process model.�(A) A probability distribution over the action set.�(S) A probability distribution over the state set.�(Z) A probability distribution over the observation set.� A policy or sequence of decision rules for an mdp..�� The optimal policy for an mdp.�CO A decision rule for a comdp derived from a pomdp. (Page 259)� The discount factor.�(b; a; z) The probability of getting observation z, given that the currentbelief state is b and action a is taken. (Equation 2.12)�(s; a; s0) The transition probability of ending in state s0, given the start-ing state s and action a was chosen.�(�) A mapping from observations to a set of vectors representinga particular choice of vectors from the set. (Equation 2.24) (b; a; b0) The transition function on information states. The probabilitythat the resulting information state is b0, given the currentstate is b and action a is taken. (Equation 2.14)!(b; a) The expected immediate reward accrued when the informationstate is b and the action a is taken. (Equation 2.16)



438Operatorsa � b The vector dot product of vectors a and b.A� B The cross-sum of two sets of vectors, which is all ways ofadding vectors from A to vectors in B.L> ; L< Lexicographic comparison of two vectors as de�ned in De�ni-tion 3.1.2.



439Acronymsai Arti�cial Intelligence. (Page 2)av Action voting pomdp control heuristic. (Page 260)cec Certainty equivalent controller. (Page 257)comdp Completely observable Markov decision process. (Page 15)cumdp Completely unobservable Markov decision process. (Page 267)dm Dual mode pomdp control heuristic. (Page 266)dp Dynamic programming. (Page 20)e.f.t. Extended �nitely transient property of a stationary policy.(De�nition D.0.3)f.t. Finitely transient property of a stationary policy. (Page 45)gcs Generalized cross-sum, used in gip. (Page 88)gip Generalized incremental pruning. (page 84)ip Incremental pruning. (Page 81)ip-ll Incremental pruning where the two largest sets are always cho-sen. (Page 128)ip-ncs Incrmental pruning using ncs cross-sums. (Page 131)ip-rr Restricted region incrmental pruning. (Page 132)ip-sl Incremental pruning where the smallest and largest sets arealways chosen. (Page 128)ip-ss Incremental pruning where the two smallest sets are alwayschosen. (Page 128)lin-q Linear Q-functions; a reinforcement learning algorithm forpartially observable Markov decision processes. (Page 225)lp Linear programming. (Page 55)mdp Markov decision process. (Page 15)mls Most likely state pomdp control heuristic. (Page 259)ncs Normal cross-sum, used in ip. (Page 119)ndp Neuro-dynamic programming. (Page 190)or Operations research. (Page 1)pi Policy Iteration. (Page 26)pomdp Partially observable Markov decision process. (Page 29)p.w.l. Piecewise linear.



440pwlc Piecewise linear and convex. (Page 41)q-mdp Control heuristic for a pomdp using the optimal Q-functionsfor the underlying completely observable mdp. (Page 261)rl Reinforcement learning. (Page 190)rr Restricted region cross-sum. (Page 120)spova Smooth partially observable value approximation. (Page 227)vi Value Iteration. (Page 23)we Weighted entropy pomdp control heuristic. (Page 268)
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