Abstract of “Exact and Approximate Algorithms for Partially Observ-
able Markov Decision Processes” by Anthony Rocco Cassandra, Ph.D., Brown

University, May 1998

Automated sequential decision making is crucial in many contexts. In
the face of uncertainty, this task becomes even more important, though
at the same time, computing optimal decision policies becomes more com-
plex. The more sources of uncertainty there are, the harder the problem
becomes to solve. In this work, we look at sequential decision making in
environments where the actions have probabilistic outcomes and in which
the system state is only partially observable. We focus on using a model
called a partially observable Markov decision process (POMDP) and explore
algorithms which address computing both optimal and approximate policies
for use in controlling processes that are modeled using POMDPs.

Although solving for the optimal policy is PSPACE-complete (or worse),
the study and improvements of exact algorithms lends insight into the op-
timal solution structure as well as providing a basis for approximate solu-
tions. We present some improvements, analysis and empirical comparisons
for some existing and some novel approaches for computing the optimal
POMDP policy exactly.

Since it is also hard (NP-complete or worse) to derive close approxi-
mations to the optimal solution for POMDPs, we consider a number of
approaches for deriving policies that yield sub-optimal control and empiri-

cally explore their performance on a range of problems. These approaches

borrow and extend ideas from a number of areas; from the more mathemat-
ically motivated techniques in reinforcement learning and control theory to

entirely heuristic control rules.

EXACT AND APPROXIMATE ALGORITHMS FOR PARTIALLY
OBSERVABLE MARKOV DECISION PROCESSES

BY

ANTHONY ROCCO CASSANDRA
AS., SUFFOLK COUNTY COMMUNITY COLLEGE, 1990
B.S., STATE UNIVERSITY OF NEW YORK AT STONY BROOK, 1992
M.SC., BROWN UNIVERSITY, 1994

A DISSERTATION SUBMITTED IN PARTIAL FULFILLMENT OF
THE REQUIREMENTS FOR THE DEGREE OF DOCTOR OF
PHILOSOPHY IN THE DEPARTMENT OF COMPUTER SCIENCE AT
BROWN UNIVERSITY

PROVIDENCE, RHODE ISLAND
MAY 1998

©Copyright 1998 by Anthony Rocco Cassandra

This dissertation by Anthony Rocco Cassandra is accepted in its present
form by the Department of Computer Science as satisfying the dissertation

requirement for the degree of Doctor of Philosophy.

Date

Leslie Pack Kaelbling, Director
Recommended to the Graduate Council

Date
Thomas L. Dean, Reader

Date
Chelsea C. White, III, Reader

Approved by the Graduate Council
Date

Peder J. Estrup
Dean of the Graduate School and Research

ii

Vita

Name
Born

Education

Honors

Anthony Rocco Cassandra
February 8, 1964 in Huntington, New York

Brown University, Providence, RI
Ph.D. in Computer Science, May 1998.

Brown University, Providence, RI
M.Sc. in Computer Science, May 1994.

State University of New York at Stony Brook, Stony
Brook, NY

B.S. in Computer Science/Applied Math and Statistics,
Summa Cum Laude, May 1992.

Suffolk County Community College, Selden, NY
A.S. in Computer Science, August 1990.

Award for Academic Excellence in Computer Science
(SUNY at Stony Brook, 1992).

Award for Academic Excellence in Applied Math and
Statistics (SUNY at Stony Brook, 1992).

Certificate of Excellence in Academics (SUNY at Stony
Brook, 1991).

iii

Acknowledgments

So many have helped, yet an attempt to acknowledge everyone runs the
risk of overlooking someone. The alternative is to avoid acknowledgments
altogether, but with all the help I have had, this hardly seems fair. Thus, at
the risk of forgetting some, let me proceed to acknowledge those I haven’t
overlooked.

One of the earliest and most profound influences on my academic career
came from Tenny Spofford in high school. His enthusiasm for learning and
solving problems combined with his honesty, showed that education was
about curiosity and open-mindedness and not about the same old regimented
model of a high school classroom.

Non-destructive testing became my first career and there were many
great people I have worked with over these years. This showed me that even
the worst of jobs can be made bearable when the people around you are
enjoyable. In particular, I should thank John Scalice for being a good friend
during those times.

As my computer science academic career began, at night in Suffolk
County Community College, there were many excellent teachers I was for-

tunate to have had. In particular, Morris Strongson and David Stampf’s

iv

encouragement helped to further motivate me into pursuing a Bachelor’s de-
gree. My transition to full time studies at SUNY at Stony Brook benefited
from the encouragement and consideration that Professor Peter Henderson
provided. From his demanding, yet exciting introductory computer science
course, through my graduation he remained supportive and provided me
with my first experience in a research project.

If T had to point to a single person that was the direct cause of me
entering graduate school, it would be Professor Alan Tucker. It was a con-
versation with Professor Tucker which prompted me to apply to graduate
schools, something I would not have ever considered otherwise. Helping with
my application effort, in addition to Professors Henderson and Tucker, were
Professors Mishra and Stark who were all kind enough to agree to write me
letters of recommendation, despite the short notice.

I now come to the hardest part in my acknowledgments: my time at
graduate school in Brown’s computer science department. My first office-
mates, Mitch Cherniak and Hagit Shatkay, became and remained good
friends thought my time at Brown. Aside from friendship, Hagit has been
a valuable resource for helping to work out many technical problems over
the years. Although working in a different area, Mitch’s expertise has often
helped a great deal as well.

As far as technical contributions, not to mention friendship, Michael
Littman deserves to most credit for the final result of my work. While still
floundering in my early grad school days, his research experience, person-
ality and general interest in the area I was working on, made for a unique

relationship, which provided me with the opportunity to collaborate with

and learn from him. My words cannot do justice to how important this was
to my academic career.

The other close collaboration I had a Brown was with Jim Kurien. Work-
ing with Jim was a great experience; one which I would look forward to doing
again. Although predominantly a long-distance collaboration, working with
Nevin Zhang was also a pleasurable and productive experience.

Although most all the professors at Brown had helped to make my stay
there pleasurable and exciting, I would especially like to thank Philip Klein
and John Hughes for the time and efforts they contributed to my questions
over the years.

My committee members Tom Dean and Chelsea White deserve thanks for
agreeing to be on my committee and for providing me with useful feedback
concerning the work contained in this thesis. Tom was especially influential
in helping me get started when I was first at Brown looking for a research
topic.

Lacking eloquent writing skills, I know I will not be able to properly
thank my advisor Leslie Kaelbling for all she has done to help me over the
yvears. Although it is hard for me to generalize, she was the ideal advisor for
me. Her knowledge, down-to-earth approach, experience and patience are
all things I very much appreciated and needed.

Finally, this work would never have been possible without my family:
My mother and sisters, Debbie and Kim, for their constant support and my
uncle Tom for teaching me many valuable things about life. Lastly, the two
people I owe more thanks to than all of the previous people combined: my

wife Ann Marie and my daughter Marie.

vi

Contents

Vita i1
Acknowledgments iv
List of Tables xiii
List of Figures XX
1 Introduction 1
2 The Model 11
2.1 Markov Decision Processes 12
2.1.1 Optimality Criteria 15

2.1.2 Solving MDPs 17

2.2 Completely Observable MDPs 18
2.2.1 Policies e 18

2.2.2 Value Functions 20

2.2.3 Value Iteration 23

2.2.4 Policy Iterationo Lo 26

2.3 Partially Observable MDPs 29

vii

2.3.1 Policies 33

2.3.2 Information States 35
2.3.3 Value Functions oL 37
2.3.4 Value Function Properties 40
2.3.5 Value Iteration 46
2.3.6 Policy Iteration oL 46
2.4 Conclusionso o 48
Exact Algorithms 49
3.1 General Issues oL Lo 51
3.1.1 Parsimonious Representations 51
3.1.2 VectorataPoint 64
3.1.3 Fixed Action Value Functions 67
3.2 Witness Algorithm oo oL 68
3.2.1 Neighbors L o 68
3.2.2 The Algorithm, 71
3.2.3 Witness Optimizations 75
3.3 Incremental Pruning Algorithms 79
3.3.1 Batch Enumeration, 79
3.3.2 Incremental Enumeration 81
3.3.3 Generalized Incremental Pruning 84
3.4 Other Exact Algorithms 94
3.4.1 Sondik’s Two-Pass 94
3.4.2 Sondik’s One-pass 98
3.4.3 Cheng’s Relaxed Region 102

viii

3.4.4 Cheng’s Linear Support 103

3.0 Conclusions L o e 105
Analysis of Exact Algorithms 107
4.1 Computational Complexity of POMDPs 109
4.1.1 Background oL oo 109
4.1.2 Complexity of Exact Algorithms 110
4.1.3 Complexity of Approximations 112
4.1.4 Complexity of POMDP Algorithms 113
4.2 The PRUNE Algorithm 115
4.2.1 Total Constraints 115
4.3 Cross-sum Algorithms 0oL 119
4.3.1 Normal Cross-sum 119
4.3.2 Restricted Region Cross-sum 120
4.3.3 Generalized Cross-sum 125
4.4 Incremental Pruning oo 126
441 Set OrderinginIP 126
4.4.2 IP Analysis Preliminaries 129
4.4.3 Normal Incremental Pruning 130
4.4.4 Restricted Region Incremental Pruning 131
4.4.5 Generalized Incremental Pruning 132
4.5 Witness e 133
46 Two-Pass e 136
4.7 Miscellaneous Issueso oo 138
4.7.1 Saving LPs with Information States 138

ix

4.7.2 Domination Checking 145

4.8 Algorithm Comparisons 146
4.8.1 Cross-sum Comparisons 146
4.8.2 IP vs. GIP vs. Witness 149
483 TwoPass 151

4.9 Exact Empirical Results o0, 152
4.9.1 Random Problems 152
4.9.2 Small Problems 0L 175
4.9.3 Other Algorithms 184

4.10 Conclusions o e 188

Reinforcement Learning 190

5.1 RL/NDP Framework 193
5.1.1 RL/NDP Outline 194
5.1.2 Asynchronous DP oo oo 196
5.1.3 Function Approximation 200
5.1.4 Stochastic Approximation Algorithms 204
5.1.5 Simulation-based DPo 0oL 210

5.2

5.3

5.1.6 Simulation-based DP with Function Approximation . 217

Function Approximators for POMDPs 222
5.2.1 Value vs. Q-functions 222
5.2.2 PWLC Representation 223
523 The Ly Norm 227
RL/NDP Empirical Results 234
5.3.1 Experimental Set-up 234

5.3.2 Small Problems 238

5.3.3 Larger Problems, 240
5.3.4 DBiasing the Training 243
5.3.5 Other Domains 247
5.4 Related Work o oo 253
5.5 Conclusionso o 255
Heuristic Approximations 257
6.1 Most Likely State (MLS) 258
6.2 Action Voting Lo 259
6.3 Q-MDP 260
6.4 Dual Mode Control oL 262
6.5 Weighted Entropy Control 266
6.6 Approximate Value Iteration 269
6.7 Heuristics Empirical Results 271
6.7.1 Experimental Set-up oL 273
6.7.2 Small Problems oo oo 274
6.7.3 Robot Navigation 278
6.7.4 Other Domains 290
6.7.5 Parameterized Heuristics 296
6.8 Heuristics vs. RL/NDP 302
6.9 Related Worko oo 304
6.9.1 Grid-based oL oo oo 304
6.9.2 Finite Memory o oL 305
6.9.3 Exploiting Structure L oL 306

xi

6.9.4 Classical AI Planning 307

6.10 Conclusions oL 309
Conclusions 310
7.1 Contributions Lo o 310
7.2 Future Work oo 313
Baseball in a Nutshell 317
PWLC Properties 321
B.1l Cross-sum o e 322
B.2 Representation Properties 322
Random Distributions 324
Finitely Transient Policies 327
Neighbor Properties 342
Full DP Example 344
F.1 Incremental Pruning 345
F2 Witness o o 350
Policy Graph Construction 362
Example Domains 369
H.1 Large Baseball Domain 370
H.2 Slotted Aloha o 378
H.3 Machine Maintenance 381

xii

H.4 Aircraft Identification (IFF)

H.5 Robot Navigation

I Extra Data Tables

I.1 Exact

I.11

Algorithms oo oo

Total Running Time

.2 Heuristic Algorithms oL

Bibliography

Notation
Symbols .
Operators

Acronyms

Index

xiii

396
396
403
406

415

435
435
438
439

441

List of Tables

2.1

2.2
2.3
2.4
2.5
2.6

2.7

3.1
3.2
3.3
3.4
3.5
3.6

3.7

Transition probabilities, 7(s, a, s'), for simplified baseball ex-

Routine for the value iteration algorithm.
Routine for one step of dynamic programming for a COMDP. .
Code fragment for the policy iteration algorithm.
Code fragment for the policy improvement routine.
Observation probabilities, o(a, s, z), for simplified baseball

example. e
Expected immediate rewards, r(s, a), for simplified baseball

example. e

Routine for the dominationCheck routine.
Routine for the findRegionPoint routine.
Linear program defined by the setUpLP(v,I") routine.

Routine for the PRUNE routine.
Routine for the lexicographicMax routine.

Routine for the bestVector routine using lexicographic or-

Xiv

63

3.8 Routine for the incremental pruning algorithm.
3.9 Routine for the GIP cross-sum genCrossSum..

3.10 The two-pass algorithm for constructing I't.

4.1 Total execution time for constructing all I'? sets for the ran-
dom POMDP problems with |S| = 7. T-test with p = 0.95.
4.2 Total execution time for constructing all I'? sets for the ran-
dom POMDP problems with |Z| = 7. T-test with p = 0.95. . .
4.3 Total execution time for constructing all I'Y sets for the ran-
dom POMDP problems with |S| = |Z]|. T-test with p = 0.95.
4.4 Small problem sizes, parameters and references.
4.5 Execution time in seconds for constructing I',.
4.6 Execution time in seconds for constructing all the I'{ sets. . .
4.7 Total Lps for constructing all the I'? sets.

4.8 Total constraints for constructing all the I'? sets.

5.1 Code fragment for the asynchronous version of the policy it-

eration algorithm.o oL

5.2 Step-size adjustment schedule for 100, 000 training step RL/NDP

experiments.o

83

. 163

165

. 166

177
178
179

183

5.3 Step-size adjustment schedule for 1, 000, 000 training step RL/NDP

experiments.o
5.4 Step-size adjustment schedule for 300,000 training step 3-

PWLC experiments.o e
5.5 Step-size adjustment schedule for 3,000,000 training step 3-

PWLC experiments.o e

XV

5.6

5.7

5.8

5.9

5.10

5.11

5.12

5.13

5.14

5.15

6.1

6.2

Step-size adjustment schedule for 700,000 training step 7-
PWLC experiments. o . v vt i e 237
Step-size adjustment schedule for 7,000,000 training step 7-
PWLC experiments. o . v vt i e 237
LIN-Q and k-PWLC comparison on the suite of small problems
using various numbers of training steps. Initial vector range
[—20 +20]. (mean). T-test with p=10.995. 239
LIN-Q on larger domains with random initialization. 242
LIN-Q on larger domains comparing random initialization and
Q-functions. 244
LIN-Q on larger domains comparing various initial vector values.245
LIN-Q and k-PWLC comparisons on 57 and 89 state POMDP
problems using various initializations and number of training
steps. T-test with p=0.995 246
Various POMDP problem names and sizes. 248
The LIN-Q and k-PWLC algorithms on some robot navigation
problems. T-test with p=0.995. 250
The LIN-Q and k-PWLC algorithms on the suite of larger prob-

lems. (mean) T-test with p =0.995. 252

The heuristic algorithms on the suite of small problems. T-
test with p=0.995.. Lo o 275
Action probability specifications for synthetic robot naviga-

tion domains. e 280

xvi

6.3

6.4
6.5

6.6

6.7

6.8

6.9

6.10

6.11
6.12

6.13

6.14

6.15

6.16

6.17
6.18

Conditional observation probabilities for synthetic robot nav-
igation domains. Lo Lo 281
Experiment 1: Known starting state, standard noise model. 284

Experiment 2: Multiple possible start states, standard noise

Experiment 3: Uniform starting belief, standard noise model. 285
Experiment 1: Known starting state, noisy noise model. . . 286
Experiment 2: Multiple possible start states, noisy noise model.286
Experiment 3: Uniform starting belief, noisy noise model. . . 286

Simulations of real robot office environment, standard noise

Experiments on robot. o000 290
The heuristic algorithms on the 57 and 89 state problems.
T-test with p=10.995. 292
The heuristic algorithms on some robot navigation problems.
T-test with p=10.995. 292
The heuristic algorithms on the robot navigation problems
with uniform initial information state problems. T-test with
p=20.995. . . . 293
The heuristic algorithms on the other large problems. T-test
with p=10.995. 295

Threshold values and the bM-MLS heuristic. T-test with p =

Exponent values and the Wi heuristic. T-test with p = 0.995. 300

Exponent values and the AWE heuristic. T-test with p = 0.995.301

xvil

6.19 Comparison of best heuristic and best RL/NDP variation. T-

C.1

D1
D.2

H.1

H.2

H.3

H.4

H.5

H.6

H.7

H.8

H.9

test with p=10.995 303

Routine for generating a uniformly random discrete probabil-

ity distribution. Lo oL 326
Model parameters for f.t. example. 328
Partition transition function v(-,-) for the e.f.t. example. . . . 338

Statistics for a typical batter which are used as the basis for
the probabilities in the baseball domain. 374
Conditional probabilities for “non-out” outcomes for the hit
and hit-and-run action., 374
Conditional probabilities for “out” outcomes for the hit and
hit-and-run action. 374
Conditional probabilities for hit outcomes for the bunt action.375
Conditional probabilities for out outcomes for the bunt action.375
Stealing base probabilities prior to adjustment for the state
of the catcher.. o oo 376
Optimal completely observable values for one inning variation
of the large baseball domain. 377
Transition probabilities for the change in visibility level por-
tion of the state. Lo oo 386
Immediate rewards for entering the different absorbing states

for the aircraft identification domain. 389

xviil

H.10 Action probabilities for robot actions in terms of primitive
actions. L.
H.11 Conditional observation probabilities used to construct the

observation probabilities. 00 L.

[.1 Total Lps for constructing all I'? sets for the random PoMDP
problems with |S| = 7. T-test with p=10.95..
[.2 Total Lps for constructing all I'¢ sets for the random PoMDP
problems with |Z| = 7. T-test with p=0.95.
[.3 Total Lps for constructing all I'} sets for the random PoMDP
problems with |S| = |Z|. T-test with p=10.95.
I.4 Total constraints for constructing all I'? sets for the random
POMDP problems with |S| = 7. T-test with p =0.95.
I.5 Total constraints for constructing all I'? sets for the random
POMDP problems with |Z| = 7. T-test with p = 0.95.
I.6 Total constraints for constructing all I'{, sets for the random
POMDP problems with |S| = |Z|. T-test with p =0.95.
.7 Total execution time for constructing all I';, sets for the ran-
dom POMDP problems with |S| = 7. T-test with p = 0.95.
[.8 Total execution time for constructing all I';, sets for the ran-
dom POMDP problems with |Z| = 7. T-test with p = 0.95. . .
.9 Total execution time for constructing all I',, sets for the ran-
dom POMDP problems with |S| = |Z]|. T-test with p = 0.95.
[.L10 Threshold values and the ADM-MLS heuristic. T-test with

P=0.995. .

Xix

400

. 403

404

. 405

407

[L.11

[.12

I.13

I.14

I.15

I.16

Threshold values and the pM-QMDP heuristic. T-test with
p=0.995.
Threshold values and the ADM-QMDP heuristic. T-test with
p=0.995.
Percentage of entropy reduction actions taken for the DM-MLS
heuristic. L
Percentage of entropy reduction actions taken for the AbpM-
MLS heuristic. L L o
Percentage of entropy reduction actions taken for the bDMm-
QMDP heuristic. o
Percentage of entropy reduction actions taken for the AbpM-

QMDP heuristic. o

XX

408

409

List of Figures

2.1
2.2

2.3

3.1
3.2

3.3

3.4

3.5

3.6

3.7

3.8
3.9

Relationship between time and DP indices. 21
System structure for a system which can be represented using
aPOMDP. e 33
An example of a PWLC value function for a POMDP with two

states. e 42

An example of a PWLC value function with useless vectors. . 51
An example of the partition imposed by a pwLC value func-

TION. . o e e e e 53
An example of a PWLC function before using the dominationCheck
routine. L. e e e e e e 55

An example of a PWLC function after using the dominationCheck

routine. L. e e e e e e 56
Snapshot of an example of the PRUNE routine. 60
Parsimonious value function for PRUNE example. 61

Parsimonious value function for PRUNE example augmented

with imposter vectors. oL oo 61
Value function and partition for PWLC set A. 85
Value function and partition for PWLC set B. 85

xxi

3.10
3.11

3.12

3.13

3.14

3.15
3.16

4.1

4.2

4.3

4.4

4.5

4.6

4.7

4.8

Partitions for pPwLC sets Aand B.
The final partition for A® B and its relationship to the initial
partitionsof Aand B.
Defining the constraints on a region for Sondik’s two-pass
algorithm where 72(b) = v2%(b) + v2' (b) + v22(b).
The case where the region constraints are adequate for defin-
ing the reglon. Lo
The first case where we must restrict the region.
The case where we must restrict the region even further.

The case where the further restriction is unnecessary.

Total execution time for constructing all I'? sets for the ran-
dom POMDP problems with |[S|=7..
Total execution time for constructing all I'? sets for the ran-
dom POMDP problems with |Z|=7.
Total execution time for constructing all I'? sets for the ran-
dom POMDP problems with |[S|=1[Z].
Total 1.Ps for constructing all I'? sets for the random PoOMDP
problems with |S|=7. oo L.
Total 1.Ps for constructing all I'? sets for the random PoOMDP
problems with |Z|=7..
Total 1.Ps for constructing all I'¢ sets for the random PoOMDP

problems with |S|=|Z|. o L.

xxil

4.9

4.10

4.11

4.12

4.13

5.1

5.2
5.3

6.1
6.2
6.3
6.4
6.5

C.1

C.2

Total constraints for constructing all I'? sets for the random

POMDP problems with |S|=7. 172
Total constraints for constructing all I'? sets for the random
POMDP problems with |Z|=7. 173
Total constraints for constructing all I'? sets for the random
POMDP problems with |S|=|Z|. 174
Running times of the three algorithms over a range of POMDP
random problem sizes. L Lo 0oL 186
Running times of the witness algorithm over a larger range of

POMDP SIZES. .+ . v v v v v e e e e e e e e e e e e e 187

An Ly norm value function with varying values for the expo-

nent k. ..o L 229
HALLWAY domain, a 57 state robot navigation domain. . . . 240
HALLWAY-2 domain, a 89 state robot navigation domain. . . 241
Synthetic office environment A.o 282
Synthetic office environment B.o 0L 282
Synthetic office environment C. 282
Synthetic office environment D. o000 L 283
Real office environment. oo oL 288

Random probability points generated according to a naive
algorithm. Lo 325
Random probability points generated according to the correct

algorithm. Lo 326

xxiil

D.1 Policy regions for f.t. example. 328
D.2 Final constructed partition for f.t. example. 336
D.3 Information state transitions on partition for e.f.t. example. . 337

D.4 Optimal value function for f.t. example. 340

E.1 A vector’s neighbor with a non-adjacent region. 343

E.2 A situation where adjacent regions are not neighbors and

where all neighbors have empty regions. 343
F.1 Value function Vi(-). o L 346
F.2 Full cross-sum for Fg’o &y Fg’l with one useless vector. 347
F.3 Value function Va(+). o oo 348
F.4 Full cross-sum for Fg’o &y Fg’l with 5 useless vector. 349
F.5 Value function Va(-). 350
F.6 An agenda item with a non-empty region over T........ 353
F.7 Another agenda item with a non-empty region over T.....354
F.8 An agenda item with an empty region over L. ... 356
F.9 The value function V(-) for the witness example.. 360

F.10 The final value function Vj(-) for the witness example with

one useless vector from I'} shown. 361
G.1 Finite horizon policy graph structure. 363
G.2 Infinite horizon value function for baseball example. 365
G.3 Repeated policy graph structure. 366

G.4 Policy graph structure shown in relation to information state

space partitions. Lo Lo Lo 366

XXiv

G.5 Redrawing the edges for finitely transient policy.

G.6 Optimal infinite horizon controller for baseball example. . . .

XXV

Chapter 1

Introduction

In a system where a human is the decision maker, the decisions can be
based upon a myriad of factors: knowledge of the immediate circumstances;
specialized knowledge; previous experiences about the effects of various ac-
tions; rules of thumb; established protocols; etc. For many situations, this
approach works well or at least well enough that no one sees a need to change
the manner in which decisions are made. However, as systems become more
complex they impose a greater burden on a decision maker, since the various
components and their interactions become more difficult to reason about.
This difficulty only increases in systems where there is a high degree of uncer-
tainty. This dissertation concerns itself with making sequences of decisions
in the face of significant uncertainty.

One aspect of automated decision making is to ease the burden on the
human by developing tools that are better able to cope with complex, un-
certain processes or that can provide better decisions than their human
counterparts. The field of operations research (OR) is one of the disciplines

that has addressed problems from this perspective. A task such as inventory

control for a large business has many complex interactions between customer
demand, supply availability and monetary/physical resource limitations, all
of which could easily overwhelm even the most dedicated corporate manager.
Operations research has provided useful and successful tools to businesses
for making these kinds of decisions.

Another aspect of automated decision making is motivated by problems
where decisions have to be made, but it is not feasible or desirable to have a
human available to make them. A particular sub-discipline of the artificial
intelligence (A1) community has focused on automated decision making from
this perspective. An interplanetary rover on a distant planet may not have
time to communicate with earth-based controllers when it is faced with
a navigational decision. With more autonomy, the rover can accomplish
more, which is advantageous both from the financial perspective and to the
scientific goals of the mission.

Naturally, regardless of the motivation for seeking automated decision
making systems, the same basic problem is being addressed. It is no surprise
that one finds many connections between areas in OR and Al. One area of
Al is concerned with the problem of making a sequence of decisions over
time given a model of the system. This area is typically referred to as
planning and roughly corresponds to the problem of optimal controlin OR.
The problems that this thesis addresses fall roughly into the overlap between
planning and optimal control.

Specifically, we are focused on sequential decision tasks where there are
two major forms of uncertainty: the results of our decisions may not always

have the same effects; and our perceptions of the system being controlled

are not always very accurate. We will focus on a specific mathematical
model that allows both of these forms of uncertainty to be modeled using
probabilities.

The work in the OR community has been focused on the underlying the-
ory with little emphasis on algorithmic development. The Al community
has done much to develop algorithms, but often addresses simplified ver-
sions of the problems using ad-hoc strategies to patch their algorithms to
enable them to handle the more general cases; specifically, there is often a
deterministic assumption about the domains and dealing with uncertainty
is an afterthought. In this thesis, we take a more algorithmic view of the
OR research, motivated by work which originated in the A1 community, and
develop algorithms which have a basis in theory and account for uncertainty

in a natural, motivated and consistent manner.
Sequential Decision Making Example

We will introduce a simple, yet illustrative example of a sequential decision
making task which will help motivate the model in Chapter 2. This example
is based on baseball, but is simple enough that only a vague familiarity with
the sport is required. Appendix A gives a brief explanation of baseball for

readers that are entirely unfamiliar.

Example We consider a very small portion of the decision making tasks
of a baseball manager. In this problem, the manager has to decide when
to remove the current pitcher as the game progresses. On any given day,
the pitcher may be a favorable choice against a given opposing team, or
the pitcher may be a poor choice.

The dynamics of a pitcher’s ability and psyche as well as the opposing
team’s abilities and psyches are highly complex, so the manager does not
necessarily know for sure whether the particular game’s pitching match-
up is favorable or not. However, as the game progresses, events during
the game will provide hints about that day’s match-up. Specifically, the
manager knows when a pitcher has done a good job against a particular
batter (e.g., the batter strikes out) and when they have not (e.g., the
batter hits a home run).

This is a sequential decision making process, because as each opponent
comes to bat, the manager must decide whether to let his pitcher pitch, or to
replace the pitcher with someone from his pitching reserves in the bull-pen.
There are immediate rewards and costs for any individual outcome, but the
long term effects are what is most important; e.g., it is more important
to win the game than to strike out a particular batter. This example is
deliberately over-simplified and does not account for dozens of other factors
that normally go into a baseball manager’s decision, but its simplicity will
allow us to illustrate the basic concepts of the model and algorithms much

more lucidly.
Applications

Naturally, uncertainty is not limited to the game of baseball and there are

1'in which decisions have uncer-

many other real and important problems
tain outcomes and uncertain perceptions of the current state of the system.

Below is just a small sample of problems of the type addressed in this thesis.

'We do not mean to imply that baseball is not a real and important problem.

Machine Maintenance A milling machine or lathe producing aircraft
parts or a machine for assembling integrated circuits both have a myriad of
internal components, all of which affect the tolerances and general quality
of the parts being produced. However, the state of the internal components
in the machine is not directly observable. There may be some general pre-
dictability based upon the age of the components or the number of operating
hours, but parts wear and fail in a very non-deterministic fashion. Replac-
ing the worn components before they produce defective parts is economically
desirable, but accessing the actual state of the components requires disas-
sembling the machine and a loss of revenue while the machine does not
produce parts.

The decision task here is to develop a maintenance schedule: when to
manufacture parts, inspect and/or replace internal components. This is
not simply a matter of establishing a schedule such as every Tuesday be-
ing internal component inspection day, since the quality of the parts being
produced provides an indirect, probabilistic observation about the internal
components. If a machine is producing predominantly defective components
on Thursday, waiting until Tuesday could cost the company a significant
amount of revenue. Similarly, if the machine is still producing perfect parts
all day Monday, it will be desirable and it may be possible to continue man-
ufacturing parts on Tuesday, thereby saving the inspection costs. There has
been a great deal of work using the models addressed in this thesis to address
just such a problem [106, 99, 105] and we present a specific example of this
in Appendix H.3, which we use in evaluating the techniques developed in

this thesis. This inspection, maintenance and repair problem has a broader

application than simply toward manufacturing machines; developing policies
for infrastructure systems must also deal with stochastic state transitions
(e.g., structural deterioration) and partially observable components (e.g.,

surface coatings mask the crucial structural components) [41].

Medical Diagnosis Doctors are constantly faced with sequential deci-
sions making tasks under uncertainty [46, 125]. They must prescribe medicines
and recommend tests or treatments based upon the internal state of the pa-
tient. However, accessing the true internal state of the patient is either
impossible or highly undesirable, resulting is significant cost and risk to the
patient. Lab tests provide some indication of the patient’s internal state,
but these are subject to errors and incur some cost. Additionally, the treat-
ments prescribed do not always succeed or have varying results for different
patients. Thus, the state of the system being controlled is only partially ob-
servable, though symptoms, lab tests, and the decisions (drugs, operations,
etc.) are subject to probabilistic effects. Thus, determining good policies
for patient diagnosis in the face of these uncertainties is a challenging, real
and important problem. In addition to these individual patient decision-
making tasks, the models used in this thesis are applicable to the higher

level problem of developing health care system policies [115].

Computer Networks Although high-speed computer networks are likely
to make significant bandwidth improvements in the coming years, the im-
provements in data storage and computer capabilities will continue to make

the communication channel the major bottleneck in future information pro-

cessing tasks. Additionally, the amount of information that will be elec-
tronically available will continue its explosive growth. There are, and will
continue to be, a host of important decision making tasks in these do-
mains [111, 10]. From routing decisions to distributed database queries,
the need to account for uncertainty will be the key to robust systems. Re-
gardless of the capacity of the network, the hardware will be prone to failure
(e.g., power outages) the network configuration and the availability of in-
formation will change over time. Although there are many hints about the
current configuration of the network, accessing the complete state of the
system is often unneeded and/or undesirable due to the enormous band-
width required to query all components in the network. Given that packets
can get lost or dropped, the effects of a routing request or query will not
necessarily have deterministic effects. Thus, computer or data networks are
only partially observable and the results of decisions are not deterministic.
Good policies for dealing with these uncertainties will translate into more
efficient and productive network applications. We will present a particularly

simple network application in Appendix H.2.

Other Domains The examples above are but a small portion of the do-
mains where the techniques of this thesis are applicable. Additional appli-
cations include: cost control in accounting [56]; corporate structure internal
audit timing [50]; learning processes [57]; teaching strategies [114]; moving
target search [101]; fishery policies [64]; electric distribution network trou-
bleshooting [123]; questionnaire design [128]; behavioral Ecology [77]; and

elevator control [32].

Thesis Outline and Summary

The remainder of this thesis is organized as follows:

Chapter 2 presents the basic model for sequential decision making that
will be used throughout this thesis. It breaks down roughly into an initial
section that presents a simpler model and a following section which gener-
alizes this model to the problems this thesis addresses. There are no new
contributions in this chapter, since its purpose is to provide the general
background required for the remainder of the thesis.

Chapter 3 discusses exact algorithms for solving problems formulated
with the model defined in Chapter 2. It first develops the necessary back-
ground and concepts required to understand the nature of the algorithms
and common issues that arise in all of them. The chapter then discusses
two new algorithmic developments, which were jointly developed with other
researchers, that have better theoretical and empirical properties than the
previously existing algorithms. Here we present the algorithms, discuss some
implementation concerns and show that they do indeed produce the correct
answers. We conclude this chapter with discussion of some of the previous
algorithms, including an intriguing variation of one algorithm that has pre-
viously received little attention, but which has interesting potential to be
effective in practice.

In Chapter 4 we begin by reviewing the existing computational com-
plexity results for the class of problems considered in this thesis. Here we
see that a few different algorithms and variations of the algorithms lie in

the same general complexity class. We then proceed with a more detailed

analysis of the previous chapter’s algorithms to more clearly define their
differences. This will show that one of the novel variations developed here
actually has an asymptotic improvement to the other algorithms. This chap-
ter then discusses some miscellaneous issues and some minor optimizations
to the algorithms which are only partially explored and developed at this
time. We conclude this chapter with a series of empirical evaluations of these
algorithms to validate the analysis, connecting the best and worst case com-
plexity to some problem instances. We will see that the practice and the
theory coincide nicely for these algorithms.

Chapter 5 presents our first approach to developing approximate solu-
tions for these problems. It uses the techniques from reinforcement learning,
shows some new approaches and develops some novel variations on existing
approaches. We then present empirical results showing the potential ben-
efits of these reinforcement learning schemes and discuss other variations
which may add to the effectiveness of these techniques.

Our next approach to developing approximate solutions is discussed in
Chapter 6 and concerns itself with heuristic approaches. While there is some
underlying theory upon which these are based, it is not nearly as solid as
the reinforcement learning approaches previously presented. Despite their
lack of theoretical guarantees, these heuristics have the advantage of being
extremely simple and fast, making them applicable to much larger problems
than any of the previous approaches. We then compare and demonstrate the
effectiveness of these heuristic approaches on a range of problems including
the real problem of autonomous robot navigation. Aside from the effective-

ness of these heuristics, we see that we can apply the models considered in

10

this thesis to some real applications.

We conclude the main part of the thesis with a chapter of conclusions,
contributions and future research directions. Following this is an extensive
set of appendices, where some additional ideas and related concepts are dis-
cussed. Among them is a novel extension to an interesting class of solutions
to these problems, though at this time it is unclear how useful this extension

will prove to be.

Chapter 2

The Model

In this section we develop the formal model and review some of the well
known results pertaining to this model. We use the terms process and system
interchangeably to refer to the particular problem domain that is represented
by the model.

The formal model we use is the Markov decision process (MDP) and is
treated much more thoroughly in many texts [102, 9]. The model itself is
fairly simple and it is only when trying to use these models to determine
optimal behavior that any complications arise. We will first introduce a
simpler version of the model, then discuss some of the existing theory and
results for this simpler version, and finally discuss how to extend the MDP to
handle the more general class of problems which this thesis addresses. The
remainder of this thesis will look at algorithms for this more general class

of problems, although further generalizations are possible [127, 129].

11

12
2.1 Markov Decision Processes

We are concerned with sequential decision problems where there is a need to
make many decisions in the lifetime of the system. We assume that there is
either a discrete, finite or infinite, sequence of time points at which we get to
make decisions. It is possible to consider continuous time processes [102, 9],

but we will not discuss the issues that arise from this added complexity.

Example Each time a batter comes to bat is a decision point. Note
that the “time” points are based more upon logical organization than
upon some fixed increment of a clock.

Regardless of the system we are trying to model, we assume that at any
given decision point in time, ¢, it is in one of a set of states, §. We will use
the random variable S! to represent the state of the system at decision time

t.

Example The state of the process is whether or not the current pitching
match-up is favorable. In this case we would denote the state set as
S = {good, bad}.
Since at each time point there is a decision to be made, the whole problem
is to decide the proper action to take at a given time point. In the literature,
control and decision are alternative names for the action choice. We define

A to be the set of actions we have to choose from. We will use the random

variable A! to represent the action chosen at time .

Example In our simple example, the only choice facing the manager
is either to leave the pitcher in or replace the pitcher with someone
from the bullpen. Here we would define this action set to be A =
{pitch, bullpen }.

13

We assume that the set of states and the set of actions are both finite.
Note that these assumptions are not necessary for MDPs in general, but
without them the theory and the algorithms become much more complex [12,
13, 9]. We will see later a specific instance of an MDP with a continuous state
set, but this will be the only time we consider MDPs without finite sets.

The system evolves as follows: at each time point, the system is in a
particular state, s, an action a is taken and there is a transition to another
state s’. However, we require that the state depend only upon s and a.
In addition, s and a only give probabilistic information about what the

resulting state will be.

Example When a manager decides to replace the pitcher, there are no
guarantees that the next pitcher will have a good or bad match-up with
the opposing team’s batters. Thus, whether or not the current pitcher
is a good match-up, the new state of the system when the next pitcher
enters the game is equally likely to be good or bad.

To formally describe this evolution of states over time, we define the state
transition function, 7 : § x A — II(S), to map each state-action pair into
a probability distribution over the state space. We will use the notation
Pr(S't! = §/|S' = s,A"' = a) = 7(s,a,s) for the individual transition
probabilities. The fact that the next state probabilities only depend upon

the current state and action is the Markov property of the process.

14

(s, pitch, §') s 7(s, bullpen,) s
good | bad good | bad
s | good 0.9 0.1 s | good 0.5 0.5
bad 0.0 | 1.0 bad 0.5 0.5

Table 2.1: Transition probabilities, 7(s,a, s’), for simplified baseball exam-
ple.

Example Table 2.1 gives the state transition probabilities for our simple
example. The transition function models the fact that occasionally a
good match-up turns into a bad one during the course of a game. For
instance, pitchers can get tired or start to suffer from some physical
problem and could be reluctant to inform the manager of their condition.
In this example, after each batter, there is a 10% chance that a good
match-up becomes a bad match-up due to such factors. A more realistic
example might have these probabilities dependent upon the time, since
a pitcher is much more likely to tire later in the game than earlier.
However, our example keeps things simple for expositional purposes.
Also notice that a bad match-up never becomes a good match-up during
the course of the game. We make the assumption that when the manager
goes to the bullpen, the pitching match-up for the new pitcher is equally
likely to be a bad or a good match-up. This could be altered to represent
the manager’s prior beliefs about the pitchers in his bullpen.

Thus far, there is nothing in the model to indicate that any one action
should be preferred to another. We introduce a reward function that will
indicate the immediate value of performing an action in a given state and
then making a transition to some other state. We define the function, R :
S X AxS — R, to be a real valued function over state-action-state triplets.
Although this gives immediate values for guiding the action choices, we will
normally be concerned with more long range effects of the decisions. We will
discuss how we define the tradeoff between immediate and future rewards

in Section 2.1.1 below.

15

Example In reality, replacing a pitcher can have a certain cost involved
with it, since the manager has only a limited supply of pitchers and must
ensure none of them ever pitches too often. Our model is too simple to
build in anything as complex as this, so we use a much simpler model
for the immediate rewards which we will discuss on page 32 when we
discuss extending this basic model.

We will be able to represent the immediate reward slightly more suc-
cinctly with the function r : § x A — R that depends only on the current
state and action chosen. With the transition probabilities, we can simply
compute the expected immediate reward for a given state-action pair using

r(s,a) = Z 7(s,a,8\R(s,a,s) . (2.1)
s'eS

To summarize, the full model presented is defined as = = (S, 4, R, T),
where S is the set states, A is the set of actions, R is the immediate reward
function and 7 is the state transition function. This model is a Markov
decision process (MDP), though we will refer to it as a completely observable
MDP (COMDP) to distinguish it from the more general, partially observable

model we discuss in Section 2.3.
2.1.1 Optimality Criteria

The immediate reward function, R or r, helps to guide the decisions, but if
we were simply interested in the immediate effects then, given the model, the
problem would have a trivial solution of always choosing the action with the
highest r(s,a). The problem is more complex due to the trade-off between
immediate short term rewards with the rewards that occur in the future.
There are many ways we could make the tradeoff between immediate

and future rewards, but the one we will use is expected future discounted

16

reward
T—-1

Z ptT‘(St, At)

t=0

E 0<p<1, (2.2)

where S and A! are the random variables for the state and action chosen
at decision point t. Other optimality criteria used for making this tradeoff
are discussed elsewhere [49, 48, 100, 102, 42], though not all are directly
applicable to the methods discussed in this thesis.

With this criterion, rewards received later in time will have less value
than an equivalent reward received closer to the present. The aim in solving
the MDP is to find a control policy which maximizes this quantity.

Equation 2.2 specifies an expectation over T decision steps. When we
are interested in optimizing this quantity, then we are solving a finite hori-
zon problem where the horizon length is T'. This criterion is adequate if the
number of decision steps is known in advance. However, often the horizon
length is not known in advance, or the decision process never actually ter-
minates. For the indefinite or infinite horizon problem, we simply optimize

with respect to the infinite sum

0

> o ptr(sh A
t=0

where now we must impose the constraint 0 < p < 1 to ensure that the

E , (2.3)

expectation is bounded. There are other criterion that can be used, such
as average reward, which is sometimes more natural for a given problem.
These tend to add complications to the theory and os we do not explore
these alternatives here.

Aside from the mathematical convenience of yielding a finite sum, the

discount factor often has more natural interpretations. When the problem

17

is an indefinite horizon problem, the discount factor can be viewed as the
probability that a subsequent decision will be required, i.e., the process
terminates after each decision with probability 1 — p. For problems with
a more monetary basis, economic discounting over future returns becomes

quite natural.
2.1.2 Solving MDPs

The model defined in Section 2.1 can be used to automatically determine
the best choice of action to take at each point in time. However, the vast
majority of MDP research makes the assumption that the actual state of the
system at any time, S!, is known to the decision maker when a decision is
to be made. For many systems, this assumption is valid or close enough to
correct to allow the results and algorithms to be useful.

We will briefly present some of this theory and algorithms for the com-
pletely observable case (comMDPs), though we are ultimately interested in

problems with partially observable system states (POMDPSs).

18

2.2 Completely Observable MDPs

In this section we discuss some of the theory and algorithms for solving com-
pletely observable Markov decision processes (COMDPs). In these processes
the decision maker has access to the current state of the system at each de-
cision point. Many more extensive and mathematically rigorous treatments

have been given. [7, 49, 12, 102, 9].
2.2.1 Policies

The entire problem to be tackled in solving an MDP is to find a good policy
based upon the past history, H, of the process. This history will include
the starting state, each subsequent state and the action taken up until the
current decision point, t. Thus, a policy should provide us with an action
to take based upon the previous history: # — A. Note that the decision
maker has no access to future events and must restrict its basis for decision
to past information.

For an finite horizon problem, the number of possible histories is (|S]].A])! !
and for the infinite horizon problem there are an infinite number of histories.
However, it can be shown that when the processes state is fully observable,
optimal performance can be achieved by using only the current state to de-
cide what action to take [102]. A policy that uses only the current state
is called a Markov policy and all cOoMDP policies we will consider will be
Markov.

We define a decision rule as a complete mapping from the set of states to
the set of actions, d' : § — A. A complete Markov policy for a finite horizon

COMDP is a sequence of decision rules, 7 = (d° d',...,d"~"), where d* is

19

the decision rule for the #*" time step. In general, we will want to know
the best or optimal policy for an MDP and the process of determining the
optimal policy is typically referred to as solving the MDP.

When the state set is finite, a decision rule can be easily represented with
a finite-length vector of size |S|. Since we also assume that the action set is
finite, there is a finite number of different decision rules, |A||‘S|7 exponential
in the size of §. Correspondingly, there is a large, but finite, number of
finite horizon policies.

A policy where a different decision rule is applied for each time step is
called a non-stationary policy and is typically required for optimal behavior
in a finite horizon cOMDP. A non-stationary infinite horizon policy poses a
number of difficulties: not only are there an infinite number of such policies,
but it may be impossible to represent such a policy using finite resources.

Therefore, for the infinite horizon case, it will be convenient to use a
stationary policy, # = (d,d,d,...), where the same decision rule is applied
at each decision point. It turns out that for an infinite horizon coMDP there
is always a stationary Markov policy that is optimal. This overcomes both
problems, since there is a finite number of such policies and we can represent
the policy with a finite vector of size |S|. Although we have used 7 for both
stationary and non-stationary policies, in subsequent formula the context
should prevent any confusion.

Policies where each decision rule completely determines the action to
take are called deterministic policies. Randomized or probabilistic policies
use a chance mechanism to decide on the action to choose. We will only

need to consider deterministic policies since for the MDP models we consider

20

an optimal deterministic policy always exists.
2.2.2 Value Functions

In this section we will briefly review the optimality equations for cCOMDPs
which are covered with significantly more depth in many texts [102, 9] and
early research papers [7, 49, 12]. The results in this section will serve as the
basis for the remainder of the discussion.

Although the policy is the item of interest in solving an MDP, most of
what we will discuss concerns itself with the value of a policy or the value
function. We note that, although the optimal value function for an MDP
is unique, there can be more than one policy that leads to the optimal
value function. In general, we will be satisfied with any policy whose value

function is optimal.
Finite Horizon

For a non-stationary finite horizon policy, 7, we can compute the expected
rewards for starting in a state s and following that policy for T steps. We
define V(7, s) as the value of starting in state s and executing the policy =
for T'—t time steps. We can compute this value with the recursive equation

Vi, s)=r(s,d'(s +'OZ s,d'(s), sV (x,s) | (2.4)
s'eS

starting with ¢+ = 0, ending the recursion with ¢+ = T — 1 and letting
VT (x,s) =0 for all states s.

Evaluating a policy using Equation 2.4 directly, working from time 0
to time T — 1, results in a very inefficient procedure, since there is much

duplication of effort down in the recursion tree. The preferred method takes

21

t=0 t=1 t=2 t=T-2 t=T-1
— —> e
4 - st[zzlges

n;T n:f-l n;T-Z n¥2 n¥1

decision points

Figure 2.1: Relationship between time and DP indices.

advantage of the principle of optimality [7] and uses dynamic programming
(DP) to compute a policy’s value by working from time t = T — 1 down to
decision time t = 0. When viewed “bottom up”, Equation 2.4 is essentially
the dynamic programming equation for determining the value of a policy
though we prefer to use

Valm,s) =r(s,dn(s)) +p Z 7(s,dn(s), 8)Vaei(m,) | (2.5)
s'es

where we define Vy(7, s) = 0 for all states s.

Comparing Equations 2.4 and 2.5, notice the change from superscripted
value functions and decision rules to subscripted value functions and decision
rules. This is necessary, though often confusing, since dynamic programming
works backwards in time. Figure 2.1 shows the relationship between time
and the DP indices pictorially.

In Equation 2.4, V¥(r,s) is the value of starting in state s when there
are T — t decisions to go, whereas V,, (7, s) in Equation 2.5 is the value of
starting in state s when there are n decisions to go. We will likewise use

the interchanged indices in the decision rules so that d* = dy_;. Most of the

22

remaining equations use the “number of steps to go” notation, but keep in
mind that even though dr will be the last decision rule computed for the
finite horizon, in the execution of the policy it is the first one that would be

used.
Infinite Horizon

There is a corresponding equation for the value of a stationary policy over
the infinite horizon which is given, without a time index, by
Vir,s)=r(s,d(s))+p Z 7(s,d(s),s"\V(r,s) . (2.6)
s'es
Note that the finiteness of the state set makes this a system of |S| equations
with |S] unknowns. The nature of the model parameters and 0 < p < 1
guarantees that this set of equations has a unique solution. A value function
without a time index is assumed to be an infinite horizon value function.
Note that we could evaluate a stationary policy with Equation 2.5 over

a finite horizon and, in fact, for a stationary policy ©

fim [V (. 5) = V(x.5)]| =0 . (2.7
where || - || is the supremum norm. In this case, Equation 2.5 is just a

successive approrimation scheme for solving the system of equations given
in Equation 2.6. The proof of this uses the fact that the one-step DP operator
is a contraction mapping when 0 < p < 1, though we defer an explanation
of this part of the theory to the more rigorous treatments [102, 9]. However,
we will later use the fact that Equation 2.7 holds for both discrete and

continuous space COMDPS.

23

2.2.3 Value Iteration

The dynamic programming approach does more than give us a way to eval-
uate a policy. By working from time 7' — 1 to time 0, we can simultaneously
compute the optimal policy and the optimal values. The intuition here is
that with n steps to go, deciding on the optimal n-step policy is easy if we
know what the optimal n — 1%!-step policy, since we can simply consider the
immediate next action for the current state and assume we know the optimal
policy for the subsequent states. The additivity of the rewards in our opti-
mality criteria and the Markov property makes this dynamic programming
approach possible.

To compute the optimal value function for a finite horizon coMmbpDP, we
use the dynamic programming equation

Vi(s) = max r(s,a)+p Z T(s,a, YV ()] (2.8)
s'eS

where V7 (s) represents the value of an optimal policy, 7*, when the starting
state is s and there are n decision steps remaining. Note that the dynamic
programming approach to finding the optimal value/policy in MDPs is re-
ferred to as value iteration (V1), or sometimes as iteration in value space.

It will be convenient to write the value function of Equation 2.8 in terms

of other, related value functions

Vis) = max Vi (s)

where

Viot(s) =r(s,a) +p Y T(s,a,8) Vi, (s) (2.9)
s'eS

24

valuelteration(=,p,T)
for each s € S
Vo(S) =0
end for each s
for each n € {1,2,...,T}
V., := oneStepDP(Z, p, V1)
end for each n
return Vr(-)
end valuelteration

Table 2.2: Routine for the value iteration algorithm.

The value V,;" has the interpretation: the value of performing action a with
n steps remaining and performing optimally for the remaining n — 1 steps.
The functions will take on more significance in Chapter 5 where they will
be referred to as Q-functions or Q-factors.

We can simultaneously compute the optimal policy 7* = (d%, d5_4, ..., df)
with

d’(s) = argmax V,%(s) .
a€A

Tables 2.2 and 2.3 shows the general structure of a routine for the value
iteration algorithm for the coMDP model = with discount p and a finite
horizon T'. Note that the value iteration routine only returns the last value
function computed and that the policy, though computed, is never stored
explicitly. The bookkeeping required to maintain the policy and/or the

intermediate value functions is omitted to keep the exposition simple.

25

oneStepDP(Z, p, V)
for each s € 8§
for each a € A

Va(s) i=r(s,a)+ pcs T(s,a,8)V(s)
end for each «
V/(s) := maxqea V(s)
end for each s
return V()
end oneStepDP

Table 2.3: Routine for one step of dynamic programming for a cOMDP.

VI for the Infinite Horizon

There are many ways in which the infinite horizon value function can be
computed, but one of these uses the same basic mechanisms of value iteration
from the finite horizon problems. Recall that in section 2.2.2 we stated that
an infinite horizon MDP is the limiting case of the finite horizon MDP.
Equation 2.6 defines the value of any policy, including the optimal policy,
7*. Since V*(s) is the value of following the optimal policy for an infinite
number of steps, adding one additional step of rewards will not change its

value and we have

V*(s) = max [r(s, a)+p Z 7(s,a,s)V*(s) (2.10)

S
“ s'eS

From this we can compute an optimal infinite horizon policy, given the

optimal value function with

9

d*(s) = argmax |r(s,a) + p Z (s, a, SI)V*(S/)
acA s'eS

when the optimal stationary policy 7* = (d*,d*,...).

26

The main results of applying the value iteration algorithm to solve in-
finite horizon problems are that both the value function and the policy
converge and that they converge to the optimal stationary policy and value
function. The value function converges in the limit or can converge to be
within some € of the optimal values in a finite number of iterations for
which loose upper bounds on the number of iterations exist. The policy
always converges in a finite number of iterations and we can put a loose
upper bound on the number of iterations required. The rates of conver-
gence, stopping criteria, upper bounds and many other results relating to
the convergence behavior of MDPs are interesting by themselves, though not
discussed here [102]. We also note that these results apply to a much more

general class of MDPs than the comDPs thus far discussed.
2.2.4 Policy Iteration

The policy iteration (P1) method for solving infinite horizon comDPs is based
upon an iteration over policies and is sometimes referred to as iteration in
policy space. We will discuss using the policy iteration idea in Chapter 5,
but provide a simple overview of policy iteration for coMDPs here.
Although a policy’s value function is a vector of values, it can be shown
that there is guaranteed to be at least one policy 7 with the property:
Vs, V7', Vi(s) > Vu(s). Thus, a naive way to implement policy iteration
is to iterate over the finite number of possible policies, use Equation 2.6 to
compute their values and choose the policy with the highest value. However,
this is terribly inefficient since there are an exponential number of policies.

The more efficient and practical approach, attributed to Bellman [7]

27

and Howard [49], finds a sequence of policies of increasing quality and thus
avoids the consideration of many suboptimal policies. This savings is purely
empirical or average case, since it is possible to construct cOMDPs where
policy iteration would have to evaluate every possible policy. However, real
problems tend not to have the structure required to force policy iteration
into its worse case behavior.

The general structure of the policy iteration algorithm is shown in Ta-
ble 2.4. Here the call to the function evalPolicy(w) is simply a routine
that solves the systems of equations given by Equation 2.6. The routine
improvePolicy(w) is given in Table 2.5 and amounts to using a greedy
one-step look-ahead value calculation,

d'(s) = argmax |r(s,a) + p Z 7(s,a,s"\Va(s')|
acA s'eS

over all states where 7/ = (d’,d’,...). The routine of Table 2.5 uses the
current value function and ensures that, when updating the policy, the policy
only changes in states where an action is strictly better than the current
action for that state.

The main result of applying this algorithm is that the sequence of policies
generated by this algorithm is guaranteed to be monotonically increasing in
value. Since there are a finite number of policies, this algorithm will converge

on the optimal solution in a finite number of steps.

policyIteration(Z, p)
d' := any decision rule
do
d:=d
V := evalPolicy(Z, p, d)
d':= improvePolicy(Z, p, V,d)
until d = '
return d
end policylteration

Table 2.4: Code fragment for the policy iteration algorithm.

policyImprovement(=, p, V,d)
for each s € §
for each a € A
VA(s) = 15, @) £ p Ees (5 @,) Vals)
V(s) = maxgzea V*(s)
if V(s) > Vib)(s)
then d'(s) = argmax,c 4 V(s)
else d'(s) = d(s)
end for each «
end for each s
return d’
end policyImprovement

Table 2.5: Code fragment for the policy improvement routine.

28

29

2.3 Partially Observable MDPs

Although we can effectively solve comDP problems, the solutions (policies)
have limited use and generally cannot be applied when the system does not
permit access to the state directly. A more general MDP model, a partially
observable Markov decision process (POMDP), does not make the assump-
tion that the states are directly observable. We will see that this added

expressiveness comes at a significant cost in complexity.

Example In our simple example, the manager does not know for sure
whether or not they have a favorable or unfavorable match-up. It may
have been an unfavorable match-up from the start due to factors of which
the manager is unaware, or at some point the pitcher might become
fatigued possibly causing a good match-up to become a bad match-up.

In a poMDP, we still assume that the system behaves in the same fashion
as the MDP discussed previously: there are states, actions, rewards and state
transitions based upon the current state-action pair. However, a set of ob-
servations, Z, is added to the model so that after each state transition of the
system, one of these observations is produced by the system and is accessi-
ble to the decision maker. The observation produced is correlated with the
state transition, but does not generally allow us to completely determine the
current state. We use the random variable O for the observation received

at decision time ¢.

30

Example Although the manager does not have access to the underlying
state, he can monitor the progress of the game and get some indication
about whether or not the match-up is favorable. Again, for simplicity,
suppose that each time a pitcher faces another batter, there are only
two possible outcomes: a hit or an out. The game of baseball is not
deterministic, so even the best pitchers give up hits. Likewise, even
the worst pitchers can force some batters to make an out. However, if
a pitcher is in a good match-up, then batters are less likely to get a
hit than they would in a bad match-up. The manager can use these
outcomes to gauge when they should remove the pitcher. Returning to
the addition of the set of observations, in this example the observations
are whether a batter gets a hit or makes an out. Thus, Z = {out, hit}.

In addition to the observation set, we need to add an observation func-
tion, O : A x § — II(Z), to the model. This function maps the action at
time t — 1 and the state at time t to a distribution over the observation set,
which means that the observation is dependent upon the resulting state in
the state transition'. We define Pr(O! = z|S" = s, A"™! = @) = o(a, s, 2) for

the individual observation probabilities.

Example The observation probabilities for our example are given in
Table 2.6 and show that these probabilities happen not to be dependent
upon the action. They also show that a batter is more than twice as likely
to get a hit in a bad match-up (0.350) than they are in a good match-up
(0.150). This would roughly correspond to the opposing batters’ batting
averages for the two different states.

Finally, we note that the immediate reward function r(s,a) is still ap-
plicable. However, recall that these were derived from a more expressive
reward function where we used Equation 2.1 to define r(-,-) as an expecta-

tion over the more general structure. This same technique can be applied in

'Tt is possible to make the observations dependent upon the initial state of the transi-
tion, or both the initial and final state, but these alternative formulations are expressively
equivalent. [87]

31

o(pitch, ¢, 2) z o(bullpen, ¢, z) z
out | hit out | hit
s' | good 0.85 | 0.15 s' | good 0.85 | 0.15
bad 0.65 | 0.35 bad 0.65 | 0.35

Table 2.6: Observation probabilities, o(a, s, z), for simplified baseball ex-
ample.

the POMDP model, though here we are allowed an even more general immedi-
ate reward structure. The most general form of a POMDP model’s immediate
reward, R : SXAXS x Z — R, makes the reward value dependent on every
aspect of the state transition, including the observation received. We then
define a simpler expected value version, similar to Equation 2.1, with
r(s,a) = Z Z 7(s,a,s)ola,s', 2)R(s,a, ¢, z) .
s'€S 2€Z
Also note that we will occasionally represent the immediate rewards with a

column vector, r(a), where the s'* component of the vector is (s, a).

32

r(s,a) a

pitch | bullpen
s | good 0.065 | —0.375
bad | —0.925 | —0.375

Table 2.7: Expected immediate rewards, r(s, a), for simplified baseball ex-
ample.

Example Because our example is so oversimplified, it is hard to derive
a meaningful reward function. The various aspects of the game and the
complicated interactions that a real baseball manager considers cannot
be captured in such a simplistic model. Therefore, we will opt for a
simple reward model where each hit and each out has some immediate
reward. We define an out to have a value of 1.0 and a hit to have a
value of —4.5. The motivation for this reward structure comes from an
argument that uses the following facts: there are 27 outs in a game; on
average, every two hits leads to a run; on average, if a pitcher gives up
3 or fewer runs in a game, then we consider it to be a good match-up.
Therefore, over the course of a game, in a good match-up we would
expect 6 hits. If we define a out to have value 1.0, then a game will
result in a reward of +27.0 and if we want a bad game to have negative
value, then more than 6 hits should cost us more than —27.0 in reward,
thus 1 hit equals —4.5. Anything less than 6 hits and we would gain;
anything more than 6 hits and we would lose.

In this example, we do not exploit the full generality available in the
POMDP reward structure. In fact, the only dependency the rewards use
is on the observations. Therefore, Vs, a, s’ we have R(s,a,s’,out) = 1.0
and R(s,a, s’ hit) = —4.5. This translates into the expected immediate
rewards shown in Table 2.7.

To summarize, the full POMDP model is formally defined by the 6-tuple
==(S5,42,R,T,0) where: §, A and T are the same as their coMDP
counterparts; Z and O are the observation set and related probabilities; and
R generalizes the COMDP rewards to add a dependency on the observation.

The system structure modeled by a POMDP is given in Figure 2.2.

33

™| State b

Policy
Estimate

—

Figure 2.2: System structure for a system which can be represented using a
POMDP.

2.3.1 Policies

Asg in any MDP, our goal is to find the optimal policy. From first principles,
recall (from page 18) that, in general, a policy was defined over the entire
history of the process: H — A. The properties of a compp allowed us
to simplify the problem to finding a simple mapping from states to actions
which we called a Markov policy. A comDP-type policy defined over § will
be of little use when we do not have access to the system states.

Since it is generally infeasible to record the entire history of a process,
and since a POMDP has many more possible histories, one approach is to
look for a similar simplification used in the comMDP model. Since we only
have access to the observation, we could consider defining a POMDP policy
to be mapping from the last observation to an action, 7 : Z — A. However,

this type of policy can be very poor.

34

Example Supposed the manager in our baseball problem defined the
policy: d(out) = pitch and d(hit) = bullpen. Every hit will cause them
to make a pitching change. If the pitcher got 15 outs in a row, then it
is very likely to be a good match-up for the manager. Removing the
pitcher after the first hit is not necessarily going to be desirable, since
they are equally likely to end up with a bad match-up after the pitching
change.

For a poMDP there may be no policy of this type which is optimal [51].
Some research exploring policies based upon the last observation only can
be found in work by Littman [69].

A slightly better approach than the deterministic observation-based pol-
icy is to define the policy, 7 : Z — II(A), as a mapping from observations
to a distribution over actions. This is commonly referred to as a proba-
bilistic policy and is slightly more general since it includes the deterministic
observation-based policies. Although there has been some research into these
types of policies [51], these too can be arbitrarily poor.

It turns out that the optimal policy for a POMDP is not necessarily a
Markov policy with respect to observations or any finite history of obser-
vations. In general, to behave optimally in a poMDP, the policy must be
able to remember the entire history of the process. Since this history can be
arbitrarily long, one might imagine that events far in the past might have
minimal effects on our current decision. For this reason, researchers have
explored policies based on a finite history of the process [133]. Although
these methods can yield good solutions, they too can be arbitrarily poor.
As a example of how a finite history can be poor, consider the simple case
where knowledge of some sort of parity in the history will be required to

behave optimally. No matter what finite history size is chosen, information

35

will be lost and optimal behavior will be unachievable. The only way for
a policy to specify truly optimal behavior is for it to remember the entire

history.
2.3.2 Information States

As mentioned, optimal behavior in a POMDP is going to require access to
the entire history of the process. It is possible to derive a summary statistic
for the entire history of a process. We will refer to this statistic as an
information state or belief state. Unlike the entire history, the information
state size is of fixed dimension. An information state is a sufficient statistic
for the history, which means that optimal behavior can be achieved using
the information state in place of the history [120, 2, 117].

An information state, b, is simply a probability distribution over the
set of states, II(S), with b(s) being the probability of occupying state s.
We define B = II(S) to be the space of all probability distributions over
S. A single information state can capture the relevant aspects of the entire
previous history of the process, and more importantly can be easily updated
after each state transition to incorporate one additional step into the history.

We can derive the formula for updating an information state from first
principles using basic rules from probability theory, Bayes rule and the inde-
pendence assumptions inherent in the POMDP model. Given a information

state vector b, we would like to compute the resulting information state, b¢,

36

after a transition in the process, which, for the s** component, is derived

b(s') = Pr(s'|b, a, 2)
_ Pr(s,b,a,2)
- Pr(b,a,z)
_ Pr(z|s', 0, a)P1(s'|b, a)Pr(b, a)
N Pr(z]b, a)Pr(b, a)
B Pr(z|s', a)Pr(s'|b, a)
o>, o Pr(2[b, a, s, 5")Pr(s, s"[b, a)
~ Pr(z]s’,a) X0, Pr(s'|b, a, s)Pr(s]b, a)
Y, Pr(zla, s")Pr(s"[b, a, s)Pr(s|b, a)
_ Pr(z]s',a) 32, Pr(s'|a, s)Pr(s[b)
2, Pr(zla, s")Pr(s"|a, s)Pr(s|b)

where Pr(s|b) = b(s), Pr(s"|a,s) = 7(s,a,s"”) and Pr(z|s",a) = o(a,s”, 2)

making the information state update equation

bi(s) = o(a,s',2) >, 7(s,a,s)b(s)

2575” o(a,s", 2)7(s, a,s")b(s) (2.11)

By basing the PoMDP policies on the information state, we have regained
the Markov property for our policy: the next information state depends only
upon the previous information state and the immediate transition taken (i.e.,
the action and observation received). In fact, the information state process

is itself a Markov process, which we will discuss in Section 2.3.3.
Information State Equations

It will be convenient to define some extra notation related to information

states that allows concise formulation of the optimality equations and algo-

37

rithms. We define the conditional probability of an observation as

o(b,a,z) = Pr(z]b, a)

=33 b(e)r(s,a,8)0(a, %) (2.12)

SES s'eS
where we are conditioning on the current information state and action choice.
Note that this simplifies Equation 2.11 to

bo(s) = 20002) z;s(/;s (> a,5)b(5"

(2.13)

Next, we define the state transition probabilities for information states.
The state transition function defines the probability of a particular successor
information state, given an initial information state and action. Since each
observation can yield a different succeeding information state, the informa-
tion state transitions can be specified

G(bya,) =" o(b,a,2) IV,) (2.14)
z€EZ

where

1 ifa=y

0 otherwise. (2.15)

I(wyy)z{

In words, the probability of an information state is the sum of the probabil-

ities of all the observations that would lead to this information state.
2.3.3 Value Functions

The most interesting result concerning the use of information states is that,
having regained the Markov property, the POMDP can be reformulated as a

continuous space COMDP [2, 1, 109]. The fact that Equations 2.8 and 2.10

38

still apply to the continuous space problem (as do the related equations)
means that we can borrow many of the theoretical results and algorithmic
ideas to apply to the PoMDP problem.

To actually derive the dynamic programming equation from Equation 2.8,
we need to describe the full transformation of the discrete space POMDP into
the continuous space coMDP. The state space for this continuous space
problem is the information space B and the action set is the original POMDP
action set.

Given an information state, since the action set and observation set
are finite, there are only a finite number of possible successor information
states. The state transition function for information states is given by Equa-

tion 2.14. We define the set of possible successor states as
B/(ba) = {t]: € 2} .

The rewards for our information state COMDP need to be defined for each
state-action pair, which in this case means for each information state and
action. Since the POMDP rewards are based upon actual POMDP states, the
reward for a information state is

w(bya)=> " b(s)r(s,a) , (2.16)
SES
which simply uses the information state in an expectation over all states.

We can now make the following substitutions in Equation 2.8: b for s;

B'(b,a) for 8&'; (b, a,V) for 7(s,a,s’); and w(b,a) for r(s,a). This yields

39

the dynamic programming equation for a POMDP,
Vi(b) = max [w(ba)+p D w(b,a,)V (0)] . (2.17)
a€A
bEB! (b,a)
From Equation 2.14, it follows that the sum over the possible successor
information states can be replaced with a sum over all observations, so that

Vi (b) = max w<b7a>+p§a<b7a7z>v;_1<b:> (2.18)

is equivalent to Equation 2.17.

Although this is a continuous space coMDP and much of the existing
work on continuous space problems would be applicable, there are certain
properties of the converted POMDP problem that can be exploited, which can
make it amenable to techniques not available for general continuous space
coMDPs. One property is that, though the state space is continuous, the
number of succeeding states is finite.

Here we rewrite Equation 2.17 in the more explicit, though more clut-

tered, manner which uses the POMDP model parameters directly:

Vi) = max b(s)r(s,a)
SES

+0>) b(9)7(s,a,8)0(a, 8,)V (09 . (2.19)

s€ES s'eS z€Z2

We re-emphasize that Equations 2.17, 2.18 and 2.19 are all equivalent and
the infinite horizon optimality equations for a POMDP can be adapted in
the same manner though it would use Equation 2.10 as the basis for the
conversion.

For many of the algorithms discussed in Chapter 3, it will help to break

down the optimal finite horizon POMDP value function of Equation 2.18 into

40

a series of related value functions? as follows:

V() = max Vi (0) (2.20)
Vot (b) =Y Vit (b) (2.21)
z€EZ
1
Vi (b) = EW(@ a)+ po(b,a, z)Vi_4(0%) . (2:22)

Equation 2.22 uses the identity
expreward(b,a) = sumz1/|Z|w(b,a) so that the proper immediate reward
is recovered for the Vi;"* () V;*(b) value functions.

The value function V,;*(+) is the POMDP counterpart to the coMDP Equa-
tion 2.9 and has the same interpretation: the value of performing action a
when there are n steps to go and then performing optimally thereafter. The
value function V,;"*(-) has a slightly more complicated interpretation: it
is the expected reward attributable to making observation z when action a

is performed in state b when there are n decisions remaining and when the

optimal actions are performed thereafter.
2.3.4 Value Function Properties

We now return to the question of how we might compute and represent
POMDP policies and value functions. Recall that the main difficulty is that
our state space is the infinite continuous space of probability distributions
over §. We break down the discussion into finite and infinite horizon value

functions, since there are slightly different properties for each.

2This particular decomposition was proposed by Michael Littman.

41

Finite Horizon Properties

Sondik showed that the optimal finite horizon value function is piecewise
linear and convex (PWLC) for any horizon T [117, 116]. This piecewise linear
property is useful because it allows the value function to be represented
using finite resources. It was this insight that allowed the development
of the first exact algorithm for general finite horizon pomDPs. We will
show a proof for the PWLC property below, since it will allow us to develop
additional formulas that we will require in later discussions. However, before
proceeding with the proof, we provide some intuition and properties of PWLC
functions.

Recall that the value function is a function over B which is an |S| — 1-
dimensional space. Thus, in a PWLC value function, each linear segment
is a hyper-plane in |S|-space and can be represented by an |S|-vector of
coefficients. We will use v to represent a single linear segment of a value
function, v(s) for the s component of that vector, and T' to represent the
set of vectors or hyper-planes that comprise a PWLC value function V' (-).

The convexity (or concavity, if you like) property means that the value
function is the upper (or lower) surface of those linear value planes, where
if " represents the value function V', then the value of an information state

can be computed with

= b-vy . 2.23
ne 223

42

Yo

r

Y1

V(b)

2

0 b(s.) 1

Figure 2.3: An example of a pwLC value function for a POMDP with two
states.

Example As simple example of a PWLC value function, consider Fig-
ure 2.3, which is a value function for a two state POMDP where |I'| = 5.
In this figure, the state space is along the horizontal axis and values are
along the vertical axis. Although the information space is specified with
two probabilities, the constraint that b(sg) + b(s;) = 1 results in a 1-
dimensional space and allows us to use a single number to represent any
information state. In the figure, only the value for b(sg) is represented
along the horizontal axis; b(s1) = 1 — b(sp). In this figure, each linear
segment of I' is shown with a thin line and the upper surface of the value
function is shown with a heavier line.

There are some useful properties of PWLC functions which we will be
exploiting in the proof of the piecewise linearity and convexity of the optimal
finite horizon value function. We list two of them here, though Appendix B

has a complete list.
Proposition 2.3.1 The sum of two PWLC functions is a PWLC function.
Proposition 2.3.2 The max over two PWLC functions is a PWLC function.

Additionally, we will be needing the following fact:

43

Theorem 2.3.1 If Va,z, V,,*(+) is PWLC, then Ya,Vy;“(+) is PWLC and

V() is PWLC.

n

Proof When V,""*(.) is PWLC, using Proposition 2.3.1 and Equation 2.21
we can conclude that each of the value functions for V,;"*(-) are PwLC. When
Vi“(+) is PwLc, Using Proposition 2.3.2 and Equation 2.20 we conclude that

Vi(-) is PWLC. [|

n

We now have all the required information to present and prove the fol-

lowing theorem which was first proven for the general case by Sondik [117].

Theorem 2.3.2 For any T, the optimal finite horizon value function for a

POMDP %8 PWLC.

Proof The proof proceeds by induction on the horizon length. For a finite
horizon problem, after the last action is taken, no more rewards are accumu-
lated. Our induction base case is when there is a single decision remaining
at n = 1. Here only immediate rewards matter, since the future has no value

and

Therefore, each of the V;""*(-) functions are linear and a linear function is
trivially convex. Using this fact and Theorem 2.3.1, we get that V{*(+) is
PWLC.

The inductive step assumes that V,"_;(-) is PWLC and represented with

the set of vectors I',,_;. From Equation 2.23 we conclude that

Voo (b%) = max b -

'YEFn 1
If we let
Xn-1(b) = argmaxb -~y ,
'Yern—l
then we get

Vi1 (02) = 0% - X1 (09)
and substituting into Equation 2.22 we get

Vit (8) = (b)+ pa(b,0.2) 62 ot ()

44

(2.24)

Substituting Equations 2.13 and 2.16 into this and canceling out the o (b, a, z)

terms we are left with

Voo |Z|Zb (s,a) —I—pZZb (s,a,8)o(a, s, 2)xn_1(b2,5)

SES sES s'€S

|Z| Zb 5 a)+,027(57@75/)0(‘173/7 Z)Xn—l(b278/)

SES s'eS

9

where y,,_1(b%, s) is the s component of the vector y,_;(b%). Letting

T (by5) =

we have

Vi () = b-7,7(0)

1
Er(s, a)+p ZT(S, a,sola, s, 2)xn_1(02,5") |

(2.25)

Since there are only a finite number of possible v5,"*(b) vectors, as in the base

case, we use Theorem 2.3.1 to conclude that V;*(-) is PwLC, which completes

the induction.

45

As developed in this proof, we will define a series of vector sets, 'Y, I');;”
and I';y?, each representing one of the value functions in Equations 2.20,
2.21 and 2.22 respectively, and all of which have been shown to be pwLC for

all n.
Infinite Horizon Properties

Although V*(-) is piecewise linear, and

this does not imply that V*(-) is piecewise linear and there are POMDP prob-
lems whose optimal value functions are not piecewise linear [117]. However,
there are a class of infinite horizon pOMDP problems for which the opti-
mal value function is piecewise linear. Since V*(-) is PwWLC and the infinite
horizon problem is the limiting case for V,,(-), using vI and a large enough
horizon, we can get as close as desired to V(). This issue is of theoret-
ical importance, but practically we can use a piecewise linear function to
approximate any non-linear value function as closely as desired.

The property of infinite horizon POMDP policies alluded to above is called
finite transience, which was originally defined by Sondik [117]. When a pol-
icy is finitely transient, then its value function is piecewise linear. However,
there are policies with piecewise linear value functions that are not finitely
transient as well as policies whose value function is not piecewise linear at
all. Finitely transient policies allow for a compact representation as we will
see in Appendices D and G . Unfortunately, there is no easy general way to

determine when the optimal infinite horizon policy is finitely transient. How-

46

ever, all policies can be approximated with a finitely transient policy, which
is exploited in an infinite horizon policy iteration algorithm by Sondik [118].

Despite the uncertainty about the optimal infinite horizon value func-
tion’s piecewise linearity, the convexity of V*(-) is preserved. This property

will be exploited in some approximation schemes discussed in Chapter 5.
2.3.5 Value Iteration

Value iteration in cOMDPs consists of an iteration over time, and for each
time step and iteration over the states and actions, computing new values
from the dynamic programming equation. Table 2.2 showed the code for
performing viin coMDPs. For POMDPs, value iteration retains the iteration
over time steps; however, the continuous state space prohibits the iterations
over information states. Thus, the main difficulty in implementing value
iteration for POMDPs lies in the problem of computing V() from V;*_;(-).
Chapter 3 is devoted to algorithms that perform this one-step of dynamic
programming. Aside from being the basis of a vI algorithm, this one step
DP step is used in many approximation schemes that are not directly based

upon value iteration.
2.3.6 Policy Iteration

The two main steps in policy iteration, value determination and policy im-
provement, do not easily generalize from the coMDPs to the poOMDPs. For
an arbitrary infinite horizon policy, it is not even known if its value func-
tion is finitely representable [95], which calls into question the existence of

an algorithm for the value determination step. Thus, exact policy iteration

47

algorithms for general POMDPs do not exist and approximation methods are
required.

Although we do not address policy iteration techniques in this thesis, two
approximate PI algorithms, one by Sondik [117, 118] and one by Hansen [45],
use the single DP step of value iteration in their policy improvement phase.

The next chapter addresses the single DP step for POMDPs in detail.

48

2.4 Conclusions

This chapter has given the basic framework for Markov decision process
formulations and solutions. These are the basic building blocks which we will
use in subsequent chapters. This chapter barely scratches the surface of the
theory and formalisms for MDPs and research in this area fills many volumes,
though the majority of the research has been on compps. Good starting
references for compPs are Puterman’s text [102] and Bertsekas’ text [9],
with the latter touching upon the work in PomDPs. Sondik’s thesis [117]
and the survey articles by Monahan [87], Lovejoy [76] and White [131] give
nice overviews of both the history of the study of POMDPs, as well as the

existing work in the operations research field.

Chapter 3

Exact Algorithms

All the exact algorithms for solving finite horizon PoOMDPs discussed in this
thesis use value iteration as the basic framework and the algorithms them-
selves are simply different ways of computing a single dynamic programming
step. For this reason, we will discuss the exact algorithms in the context of
how they compute V7 from V*_; or, equivalently, how they compute the set
Iy from the set I'_,. With an algorithm to perform this single exact pp
step, embedding it in an iteration over time is all that is needed to solve a
finite-horizon POMDP exactly.

The discussion in this chapter does not dwell on implementation issues
or cover many of the details of the previous algorithmic approaches. Details
of this sort are covered at length in earlier work [22]. Since we only discuss
optimal value functions in this chapter, we will drop some of the notational
clutter and let V;, = V. with the related functions being similarly simplified.
Additionally, summations and unions for s, a and z will implicitly be defined
over the state, action and observation sets respectively.

This chapter is organized into four major topics. First we will cover

49

50

some concepts and issues that are common to all of the exact algorithms.
We follow this with discussion of a number of exact algorithms from the
algorithmic perspective. The penultimate topic presents analysis of these
algorithms and we conclude this chapter with empirical results to support

the analyses.

51

Yo

\3

6 b(s,) i

Figure 3.1: An example of a PWLC value function with useless vectors.

3.1 General Issues

We have discussed representing a piecewise linear and convex value function
with a set of vectors I', but there are a number of issues that will continually
arise concerning this representation in the algorithmic approach to the single
DP step of value iteration. We will first present these common issues before

moving onto the specific exact algorithms.
3.1.1 Parsimonious Representations

Given a set I' representing a value function V as in Equation 2.23, if we
construct a vector ¥ such that Vb € B, b-5 < max,er b- v, then I'U {7} will
represent the exact same value function as I'. We will refer to vectors with
this property as useless or dominated vectors in the representation. As an
example, Figure 3.1 shows a value function with useless vectors, vs, v3, ¥s,
~e, in the representation.

Since there is an infinite number of vectors that could be added without

changing the value function, for any pwWLC value function there is an infinite

52

number of sets that could be used as the representation. The unfortunate
aspect of this is that there would not seem to be a one-to-one correspondence
between a PWLC value function and its representation, nor between the size
of the representation and the complexity of the value function.

In fact, it can be shown [72, 74] that any PwLC value function does have
unique minimal representation. We use the term parsimonious set' when
referring to the unique minimal set of vectors representing a value function.
The next few sub-sections are devoted to precisely defining a parsimonious
set and to presenting a reduction or pruning procedure for computing this
set. We will see that there are some subtle issues that arise in implementing

this reduction procedure.
Regions

Given a set of vectors, I') representing a value function over information
space, we can define a partition of the information space where the partition
has a finite number of elements, one for each v in I'. Additionally, each v € T’
has a set or region of information states, R(y,I') C B, where it dominates,

that is,

R(v,T)={bb-v>b-v,7el —{~v},be B} . (3.1)

Note that because of the strict inequality in this definition, some infor-

mation states can be in the region of none of the vectors in I'; which makes

it not quite a true partition of the information state space?. The set of

"This term is borrowed from Nevin Zhang [138].
2This can be made more mathematically precise, using measure theory, by eliminating
consideration for regions with Lebesque measure of zero

53

| r /Yo

3 -,
V(b) ' 1

: % -y,
R(Y,.) R(Y,) [ROV,F)
0 b(s,) 1

Figure 3.2: An example of the partition imposed by a pwLC value function.

points which are not in any region define the borders of the partition and
are points where more than one vector gives the same maximal value. Points
on these region borders will pose a problem when we need to construct vec-
tors from information states, but we defer this discussion until Section 3.1.2.
Figure 3.2 shows a value function over information space with the partition
it imposes on the information space along the horizontal axis.

These regions are all that are needed for our definition:

Definition 3.1.1 A parsimonious representation, I', of a PWLC value func-

tion is one where, for all v € I', the region R(y,T') is non-empty.

Since there is a single unique hyper-plane that can be fit over any particular
region, the parsimonious representation is unique [72]. Next, we develop the

routines necessary for reducing a set to its parsimonious representation.
Simple Domination Checking

There is a very simple procedure, first discussed by Eagle [39], to remove

some useless vectors from a non-parsimonious set I'. This procedure looks

54

dominationCheck(T)
if I <2
then return I
=0
do

v := removeElement(T)
if Ay elst.y >x

then
I={yIyel',v2+7}
I'=Tu{y}
end if
until ' =0
return [

end dominationCheck

Table 3.1: Routine for the dominationCheck routine.

for vectors vy € I' where there exists some other vector v € I such that for
every s € S, v(s) < 7(s). This is not guaranteed to reduce the set at all,
and rarely would result in a parsimonious set all by itself, but in practice it
is very effective in quickly reducing the size of the set L.

The effectiveness of this technique lies in the fact that very little compu-
tational effort is exerted when a vector is removed from the set I'. Contrast
this to the general case where determining if a vector is useless is the same
as determining whether a region is empty or not, which requires setting up
and solving a linear program. Table 3.1 gives a simple routine to eliminate
dominated vectors from a set, though there are more efficient ways that
this procedure could be implemented. In this routine the vector compari-
son v > v’ is a component-wise comparison where every component of v is

greater than or equal to the corresponding component of /.

55

0 b(s.) 1

Figure 3.3: An example of a PwLc function before using the
dominationCheck routine.

Figures 3.3 and 3.3 show a PWLC representation before and after this
domination check to remove useless vectors. Notice that vectors vp and ¢
are not removed, even though they are not useful, since there is no single

vector that dominates either of them.
Vector Pruning

Although the simple domination check is useful, it is not sufficient for reduc-
ing a set to its parsimonious representation. We will need a more general
routine which can take an arbitrary set of vectors, f, and reduce it to a
parsimonious set, I', where Cand T represent the same value function and
TCT.

We will first define a subroutine that explicitly encodes the definition of
a region. It simply checks whether a given region is empty or not and, if
it is not empty, returns an information state that lies within that region.
Table 3.2 gives a routine for doing this; it takes a vector, v and set of vectors

I and returns null if the region R(y,T") = @) or, when the region is not empty,

56

0 b(s,) 1

Figure 3.4: An example of a PWLC function after using the dominationCheck
routine.

findRegionPoint(vy,T)
L := setUpLP(v,T)
solveLP(L)
if infeasible(L)
then return null
if objectiveValue(L) <0
then return null
return solution(L)
end findRegionPoint

Table 3.2: Routine for the findRegionPoint routine.

returns an information state b such that b € R(v,I'). This routine sets up
and solves a linear program (LP) [137] to find such a point, where the LP is
shown in Table 3.3. When the Lp is infeasible or the objective function is
not greater than zero, then null is returned, otherwise the solution point of
the LP is returned.

Although this routine and Lp are fairly straightforward in theory, ex-

treme care must be used in actual implementations. Floating point compar-

57

variables: Vs € S, 2(s);e
maximize: ¢
subject to:

z-(y=7)>¢e , V€T, 7#~
z € II(S)

Table 3.3: Linear program defined by the setUpLP(v,I") routine.

isons, machine precision and the ranges of the vector coefficients can cause
severe stability problems in the LPs, requiring a stable and robust Lp solver.

The simplest approach towards finding a parsimonious set is to look
at the regions R(’y,f’) for every vector . Those with non-empty regions
are then added to the parsimonious set. This is the method described by
Monahan [87], but is not the most efficient method. Table 3.4 gives a more
efficient routine that will reduce a set of vectors to its unique parsimonious
set. This pruning procedure was first proposed by Lark and White [131],
though there is a subtlety involved in implementing the bestVector routine
which is discussed below.

The algorithm works by building up the parsimonious set one vector
at a time. It starts with an empty set T and loops over the vectors in L.
At any given point in the algorithm, the set T is a subset of the parsimo-
nious representation I'. Within the loop it removes a vector from ' with
the removeElement routine, and compares this vector against the vectors
currently in T. Specifically, it looks to see if the region R('y,f’) is empty or

not using the routine findRegionPoint from Table 3.2. If the region is not

empty, then it will return an information state that lies within this region;

PRUNE(T)
T:=10
while T # ()
v := removeElement(T)
b := findRegionPoint(y,)

if b # null
then
T:=TU{y}
y* = bes‘c\/ector(f7 b)
[:=T—{y"}
r:=Tru{y}
end if
end while
=T
return I’
end PRUNE

Table 3.4: Routine for the PRUNE routine.

58

59

if the region is empty it will return null.

If the region is empty, then we are sure that v is a useless vector since
the vectors in the set T already dominate it at every point, and since T CrT.
If the region is not empty, then we know that Ic I', which means that there
must be a vector in I' that should be included in T'. The subtlety here is
that it is not necessarily the case that v should be added to f; it only says
that T is not vet complete. However, the findRegionPoint routine provides
a point, b, where the value function represented by T is not the same as the
value function represented by I'; i.e., maxaefb -4 < maxqerb-y. It is for
this reason the vector v must be put back into the T set before finding the
best vector for the returned information state b.

In practice, the most efficient version of pruning a set to get its par-
simonious representation would either preface a call to PRUNE with a call
to dominationCheck (Table 3.1), or incorporate this call into the PRUNE
routine itself.

Given a point where the value function for Tis incorrect, we can then
find the proper vector from T to add by maximizing over the set. However,
there is a very subtle issue that arises. Figure 3.5 shows the situation where
we are checking the region R(v, f’), it shows both the current form of ' and
the information state b returned by the findRegionPoint routine. Suppose
that the true final representation, I', looks like Figure 3.6. We see that at
point b there are two vectors that give precisely the same value, both of
which would have to be in I' when we executed bes‘c\/ector(f7 b). In this
situation, the bestVector routine will be left with a choice of two equally

maximal vectors to return. For the case of Figure 3.6 it could arbitrarily

60

-1>

V(b)

0 b

Figure 3.5: Snapshot of an example of the PRUNE routine.

decide which one to return, or we could alter the code slightly so it could
return both. However, for the general case, the bestVector routine cannot
be implemented in either of these ways.

Figure 3.7 shows the same true final parsimonious representation as in
Figure 3.6 except we have augmented the figure with two other vectors,
shown with dashed lines, that are in f, but not in I'. When the best vector
routine executes bes‘c\/ector(f,b)7 it will find itself with a choice of four
vectors. Two of these vectors, which we term #mposters, are not in I,
Although there is a single point where they vield a maximal value, there is no
point where they dominate every other vector, i.e., they have empty regions.
The schemes of arbitrarily selecting one and returning all vectors are both
wrong and will result in the PRUNE routine producing a non-parsimonious
set. The next section presents the correct implementation of the bestVector

routine that insures that no imposter vectors are returned.

61

-1>

V(b)

0 b ‘

Figure 3.6: Parsimonious value function for PRUNE example.

-1>

V(b)

0 b ‘

Figure 3.7: Parsimonious value function for PRUNE example augmented with
imposter vectors.

62

Lexicographic Ordering of Vectors

As shown, there can be information points where more than one vector from
I’ will provide the same maximal value, i.e., 3y # v € T' such that b-y = b-7.
We would like a procedure for deterministically selecting one of these and,
furthermore, to select one that is guaranteed to have a non-empty region
in the final parsimonious set. To accomplish this, we define a lexicographic
ordering scheme [72] over S. The bestVector routine will use this ordering
to deterministically decide which vector to select when more than one vector
produces the same maximal value.

We define an arbitrary, though fixed, ordering over the elements in § such

that s < s’ when state s comes before state s’ in the ordering relationship.

Definition 3.1.2 The vector v is lexicographically greater than ~' if there

erists a state s such that v(s) > ~'(s) and y(s') = ~/'(s') for all s < s.

We will use the notation ~ £ 7' to denote that vector v is lexicographically
greater than 4'. Table 3.5 gives a routine that returns the lexicographic
maximum of two vectors. We will use this routine when faced with two
vectors that yield equivalent values at an information state.

Table 3.6 shows the routine which will select, for a given information
state, a vector from a set. When there is a single clear dominating vector
at the point b, then this vector is returned. If one or more vectors result in
the same maximal value, then the components of the vector are compared in
lexicographic order until the tie is broken. It is assumed that the for each
s € § loop selects states in the fixed order defined over the set of states.

We now want to show that the bestVector routine always returns a

63

lexicographicMax(vy,7)
for each s € §
if 5 (s) > 75
then return v
if 4 (s) < (5
then return 5
end for each s
return -y
end lexicographicMax

Table 3.5: Routine for the lexicographicMax routine.

bestVector(I',)

*

v* = —00
for each vy €T
vi=b-vy
if v = v*
then 7" := lexicographicMax(y*,v)
if v > v*
then
v* =
V=
end if
end for each «
return v*

end bestVector

Table 3.6: Routine for the bestVector routine using lexicographic ordering.

64

vector that is in the parsimonious representation of a given set. If there is
only one vector v* € I' where b - v* = max,er b - v, then b € R(v*,I') which
means that v* must be in the parsimonious set by definition. We are left to
show that when there is more than one vector which achieves the maximal
value at b, then the lexicographic maximum choice ensures a vector in the
parsimonious representation is returned.

Let I be any set of vectors and b be any information state. We define

A:{’thF,b-'y:maxb-'y} :
~el

i.e., the set of all vectors that yield the same maximal value at b. We then

have the following;:

L
Theorem 3.1.1 If there exists A* € A such that * > X for all other A\ € A,

then R(*,T') is non-empty.
Proof This is proved in Appendix G.2 of Littman’s thesis [72]. |

Since A* is the vector returned by bestVector and it has a non-empty

region, it must be part of the parsimonious representation of I.
3.1.2 Vector at a Point

Recall that we are only concerning ourselves with a single DP step to compute
Vi (b) from V;,_1 (b); in terms of representation, we are trying to compute the
set I',, from the set I',,_;. A very important concept, which can easily be
overlooked due to the myriad of formulas presented in Chapter 2, is the ease

with which we can compute V,,(b) for a given information state and given

Vo1 ().

65

Equation 2.19 (or either Equation 2.17 or 2.18) can be used to compute
the value of an information state using the model parameters and a few
summations over finite sets, which is relatively little effort. However, the
value of a single information state is not going to be useful by itself. We
will not be able to compute and store the value for each information state,
which is why the finitely representable PWLC property becomes important.
Instead of computing the value of an information state, we would prefer to
find an element of I',, for an information state, which is easy to calculate
by using Equation 2.25 from the proof of Theorem 2.3.2. We will find it

convenient to rewrite Equation 2.25 in vector form as

a,z 1 a,z a
Tn' (b) = Er(a) + pP ' Xn—l(bz)) (32)

where r(a) is a column vector of immediate rewards for action a and P** is

an |S| x |8| matrix where the element in row s and column s is given by
a
5

PY =1(s,a,5)o(a, s, 2) . (3.3)

Recall that x,—1(b) is the vector from I',,_y which gives the maximal value
for information state b and was defined in Equation 2.24.
As a result of Theorem 2.3.2, the V,¢(-) value functions are PwWLC and

for a given information state, the element of I'? for that state is given by
HOED PRGOS (3.4)
Finally, with a 2 for each action, we use

d,(b) = argmaxb - v, () (3.5)

a

66

to see which is the optimal action for b at step n, which makes the vector in

I',, for information state b

Yu(b) = 7" (b) . (3.6)

We note that 7, (s) is the s component of the vector v,, and v, (b) is the
vector in I',, that is maximal for &. This is a notational convenience and
since the arguments are of different types, the context will disambiguate the
two. Also note that the s component of the vector v, (b) would be v, (b, 5).

Therefore, for a given information state and the n — 1%!-step value func-
tion representation I',,_q, it is easy to compute its m-step value and the
corresponding value hyper-plane in I',,. Furthermore, having computed the
individual values for each action in the maximization of Equation 3.5, we
have computed the optimal decision for that information point, which shows
that each hyper-plane will have a specific associated action representing the
policy over that hyper-plane’s region.

Computing this vector, although relatively easy, presents the same prob-
lem that arose in Section 3.1.1. There may be more than one action that
achieves the same maximal value, or even for the same action, there could
be ties in the x,—1(-) choices from the I',,_; set when constructing the in-
dividual v,,%(b) vectors. When either of these situations occur, we can use
the same lexicographic ordering scheme that was presented in Section 3.1.1.
When we are faced with the equivalent values for the x,,_1(b%) vectors, we

will be finding the lexicographic maximum over the I',,_; set.

67

3.1.3 Fixed Action Value Functions

The two exact POMDP algorithms we focus on in this chapter construct
the V)!(-) value functions individually. This approach was suggested by
Sondik [117], but first taken with the witness algorithm (Section 3.2) and
subsequently used by the incremental pruning algorithm (Section 3.3.2).
Therefore, both algorithms share the common operation of constructing I,
from the I'¢ sets.

For our representation of V,,(-) we could simply use | J, I'?, since for all

b we have

max b+ = max [maxb-'y]
~el,Te a |~vel'g
= max V)
a

=V,(b) .

Since the complexity of computing V,,+1 will be directly related to the size of
the representation of V,,, we prefer to have the parsimonious representation
for V,,, i.e.,

I',, = PRUNE (U FZ)

a

Thus, both the witness and incremental pruning algorithms, after construct-
ing the I'? sets, use the PRUNE routine from Section 3.1.1 to compute I';,.
Algorithms that attempt to construct I',, directly from I',,_; benefit from
not having to perform this extra PRUNE operation. However, the removal of
the maximization by considering the I'¢ sets individually often simplifies the
problem and can allow techniques which would otherwise not be applicable.

This issue will be discussed further in Chapter 5.

68

3.2 Witness Algorithm

There are a number of papers related to the witness algorithm; from when it
was first proposed by Cassandra, Littman and Kaelbling [23], to elaborations
on its implementation [22], and in a more formal treatment where it was
proved correct [70, 74, 72]. The witness algorithm computes I'¢ and is based
upon the idea of exploring a finite number of regions in information state
space. These regions are a partition of the state space imposed by the PwLC
property of the value function. Exactly how the witness algorithm does this
will be elaborated upon below, but we note that some previously proposed
techniques [117, 116, 26] also employ a region-based approach, though they
construct I',, directly.

The witness algorithm is given in Table 3.7 but before discussing the al-
gorithm in detail, we will discuss a particular relationship among the vectors

that are manipulated by the algorithm and present some of its properties.
3.2.1 Neighbors

For each vector in I'? we define a set of vectors which we will call its neigh-
bors, though this neighboring relationship only loosely coincides to a geo-
metric relationship. It is neighboring vectors that will comprise the set T,
which we call the agenda in the witness algorithm. Recall that we use the
notation v%(b) to refer to the vector in I'? that is maximal for b and which is

constructed using Equations 3.2 and 3.4. We will use the notation without

69

the information state argument and define its construction as

Y=Y "
= Z ir(a) _I_ pPa7Z’)/Z 1 (3-7)
- \jz])

where v7_, is the vector from I',_; that was used for observation z to
construct v,"*. Without the dependency on a particular information state,
it is possible to construct vectors v that are not in I'?; i.e., v2 is not maximal
for any b. We define FZ to be the set of all the v? we can possibly construct
using Equation 3.7. We similarly define f(:l’z as the set of all vectors that
could be constructed from Equation 3.2. Note that |T| = |[T_y|I?], since

each v¢ is constructed by selecting a vector from I',_; for each observation.

Definition 3.2.1 A vector v is a neighbor of the vector v& =3 5~ if

’
_ E a,z ~a,z
V= 7n7 +7n7 ?
zF£z!
~a,z’

for 2 € Z, 307 = 1/|Z|r(a) + pP* vu_s, for some 1 € Ty and

S/JG,Z/ % Pya,z'
n n .

The definition shows that a neighbor is any vector that differs by a single
term in the summation over the observation set. Using T, to represent the
set of all possible 2 vectors, we see that all neighbors of any vector in
T, are included in the set T,.. Since there are |Z| possible observations
and |T',,_1| — 1 possible choices for each observation, we see that each vy~
vector has | Z|(|I',—1] — 1) total neighbors. The usefulness of this neighbor
relationship lies in the following theorem. We define the set of all neighbors

of a vector v as N (7).

70

. —a .
Theorem 3.2.1 The neighbor theorem. For any v} € I',,, there exists a

be B and a7 €T, such that
b-Ap>b-7n
if and only if there exists a v € N (v2) where
b-v>b-7, .

Proof b-v > b-~%: implies -2 > b-v5 Proof in this direction is easy,
since each neighbor itself is an element of T,,.
b-42 > b-~y% implies b-v > b-v2: Here we will show that such a neighbor

exists by constructing it. We are given
b7 > b
Y b > Y byt
z z

Since one summation is larger than the other, there must exist a z’ such

that

~a,z'

b-AET > by n?

Using this fact we construct v and show that it satisfies the theorem with

the derivation

Dbt =3 b

zF£z! zF£z!
Db AT > D b b
zF£z! zF£z!

R IR I R
zF£z!

71

witness([',_1,a)
b := any information state
I':={yn(b)}
T :=N(77(0))

while T # ()
v := removeElement(Y)
ifvel
then b := null
else b := findRegionPoint(v, f)
end if
if b # null
then
B = FU a0}
T:=TU{v}
Ti= TUN ()
end if
end while
re =T

return I'?
end witness

Table 3.7: The witness algorithm for constructing I'?.

In words, Theorem 3.2.1 says that if there is a point where a better
vector exists, then one of the neighbors must also be better at this point.

Appendix E discusses some properties of neighbors, though it requires some

of the notation and concepts from Section 3.3.

3.2.2 The Algorithm

The witness algorithm shown in Table 3.7 begins by selecting any infor-

mation state, then constructing the maximal vector for it as well as all of

72

its neighbors. It is important that the v2(b) vector be constructed using
the lexicographic ordering scheme (Section 3.1.2) for the final result to be a
parsimonious set. The set T is used to store the vectors that comprise I'?
as they are discovered by the algorithm; at all times T C I'? and the value
function, ‘7, represented by T is an underestimate so that: Vb, V(b) < V(D).
The neighbors are put into a set of agenda items T, which serves as the basis
for the iteration.

The loop removes neighbor vectors from T one at a time and terminates
when the set is empty. After a neighbor v is removed from 7T, if it is not
already in f, we determine whether or not an information state exists where
this neighbor would be better than all the vectors in our current T set.
Formally, we are checking the region R(v,f’) and returning an information
state in the region if one exists.

If the region is empty or the v is already in f, then we discard v and
select a new one from our agenda. When the region is not empty, using any
point b from within the region, we construct the maximal vector for that
point (using Equation 3.4) and add it to . We then put v back into the set
T and add all the neighbors of the new vector y2(b) to the agenda. Putting
v back into T is an important step in ensuring the algorithm’s correctness.
Putting v back into T is important because although we have found that
v is not maximal at b, we have not demonstrated that it is useless over the
entire region.

The intuition behind why this algorithm works lies in Theorem 3.2.1.
No matter what vectors are in [at any point in time, if there is a vector

in FZ which would give a higher value at a belief point b, then one of the

73

neighbors v of the vector ¥ € T that is currently best at b also gives a
larger value at this point and thus has a non-empty region R(v, f) Since
we ensure that all neighbors are checked, we will not miss any vector in FZ
that belongs in I'?. The actual proof that this algorithm is correct becomes
a little more complex, since we have to ensure it works for any particular
order the vectors are added and any particular order that the neighbors are

checked.

Theorem 3.2.2 The witness algorithm correctly constructs the parsimo-

nious representation, I'C, for the value function V.

Proof The proof breaks down into four steps:
1. If v is added to T, then v € I'®.
2. If v is added to f, then v ¢ T just before it is added.

3. The algorithm terminates in a finite number of iterations.

o~

4. When the algorithm terminates, I' = I'¢

n

Step 1: We first show that any vector added to T must be a vector
in I'?. Any vector added to T is constructed directly from an information
state using Equation 3.4 and ties are broken using the lexicographic ordering
scheme of Section 3.1.1. The fact that v2 € I'? follows from Theorem 3.1.1
which assures that we select a vector with a non-empty region in I'?.

Step 2: Next we show that it never adds the same vector twice to T. We
prove this by contradiction. Assume that findRegionPoint(v,f) routine

returns a b such that y2(b) € T, then we know that b-y2(b) > b-7,V7 €T,.

74

It must also be the case that b-v > b-5,V7 € f, since the algorithm ensures
that all v considered are not in I'. Because v € T, and v2(b) € T we have
a contradiction, since we cannot have b-~v2(b) > b-v and b-v > b-v2(b)
simultaneously.

Step 3: We now show that the algorithm terminates. Each iteration
through the loop either removes a vector from T or adds a vector to T and
its neighbors to T. We know that I'¢ is finite and we only add vectors to
T that are in I'?. Since we never add the same vector twice to f, we only
attempt to add a vector to T afinite number of times. Since each vector only
has a finite number of neighbors, we only add a finite number of neighbors
to T. Therefore, the loop can only execute a finite number of times.

Step 4: Finally, we show that the final T = I'* with a proof by con-
tradiction. Assume that the algorithm terminates with I # ' then there
must exist an information state b and a vector 7 € T, where b-7 > b -7,
where 7 = argmaxﬁefb -+. Using this and Theorem 3.2.1, we know that
there must be a neighbor, v, of ¥ such that b-v > b-%. However, we have
added all neighbors of ¥ to T when we added ¥ to T and only removed v
from T when R(v,T) = . But if R(v,T) = §) then Vb we must have b-v < b-3

for all 4 € T. This contradicts the statement that b-v > b - 7. |

The proof that the witness algorithm correctly computes I'? first ap-
peared elsewhere [72]. Appendix F.2 shows an example of how this algo-
rithm works on the simple baseball problem which was introduced in the
previous chapters. The witness algorithm has some appealing theoretical

guarantees which are discussed further in Section 4.1.4. The main result is

75

that constructing the set I'? can be done in time polynomial in S, A, Z,

I'y—1 and T'¢.
3.2.3 Witness Optimizations

As presented in the previous section, the witness algorithm is not in its
most efficient form. This section briefly discusses some of the optimizations
that can be incorporated into this algorithm to help reduce the amount
of computation required. Some of these optimizations are applicable for
other algorithms and are discussed further in Section 4.7 in the context of

analyzing the algorithms.

Initializing T The witness algorithm initializes T with a single vector and
all other vectors added to I' will be the result of solving an Lp. A simple
optimization is to check every vertex of the information space simplex and
initialize T to be each vector computed at these points. If |I'¢| > 1, then we
are ensured of finding at least two vectors this way, and in practice it can
be considerably more. A slight generalization of this idea is to initialize r
with vectors generated from some set of random information states. This
isn’t guaranteed to find more than one vector, but could save a reasonable

amount of time in practice.

Discarded Neighbors After a neighbor v is removed from T, it is pos-
sible that a vector v subsequently added to T will result in v being added
back into T; i.e., v € A'(y). Because we only removed v when R(v,T') was
empty, by adding more vectors to T it is not possible for this region to be-

come non-empty. A simple optimization keeps tracks of neighbors that have

76

been removed from T to ensure they are not again added to T.

Domination Checking The simple domination check discussed in Sec-
tion 3.1.1 can be used in conjunction with the witness algorithm and, on a
small sample of problems, has reduced the computation time by as much
as 50%. Its incorporating into the witness algorithm checks each v before
the findRegionPoint routine. Applied to this case, it simply looks to see if
there is a vector in ' which already dominates v. If v is already dominated
by f, we proceed as if the findRegionPoint routine returned null. An
alternative is to check an item against T before it is put into T rather than

when it is taken out, which leads to the idea for the next optimization.

Redundant Neighbors In the description of the witness algorithm when
adding v to T we are required to add all of its neighbors, which is sufficient
for correctness but not entirely necessary. All the witness algorithm really
requires is that for every b € R('y,f’), where b -y < V4(b), that we add a
vector ¥’ to T such that b-4" > b-~. Adding all neighbors guarantees this by
Theorem 3.2.1, however, for a given neighbor v, if for all those information
states there is another vector 7/, either in T or in N(v), where b-+' > b-v
then adding v is not necessary, since v/ is just as sufficient as 7 in finding
these points. For each v € ./\f('y)7 we can compare it to the vectors currently
in T or with the other vectors in A'(v), using either the simple domination
check, or more completely with an LP. The former is likely to save time,
while the latter may only have diminishing returns. Avoiding putting an

item in T is done for the sake of saving an LP, so the requirement of an LP

7

to decide whether to put the item into T may be of little help. If the Lp
determines that the item must be added, then we have done two LPs where

normally one would have sufficed.

Region Adjacency Information There is an optimization that Small-
wood and indexSondik, Edward J.Sondik [116] propose for their one-pass
algorithm which uses information about the adjacency of regions to reduce
the amount of computation that is required. Givan [43] has pointed out
that this same idea could be applied to other algorithms, including witness,
which search in information space.

Suppose we find a vector ¥¢ = > _~5" and we are considering adding
all | Z||T},—1] vectors of N (%) to Y. The purpose of this is to ensure that
if R(vg, f) is too large, then we will have a vector in T that will lead to a
witness point. The observation needed here is that if the region is too large,
then there must be some point on the border of its true region, R(y%,T%),
that would be a witness point. For each observation, z, instead of considering
all |T',,_1| neighbors in 'y, it suffices to limit ourselves to those 75, € I'y”
where R(7,7,I'n7) is adjacent to R(vyn”, I'w7).

To implement this optimization requires generating and storing the ad-
jacency information for each I'y*. This is not as bad as it sounds since
this adjacency information is essentially derived from the adjacency infor-
mation from I'),_;. For Smallwood and Sondik’s algorithm, this adjacency
information must be computed anyway, so there is no extra work involved.
Unfortunately, the witness algorithm does not generate regions in a way that

immediately gives the adjacency information. Therefore, this information

78

must be explicitly computed which leads to the potential problems with this
optimization. We must ensure that the time spent computing adjacency in-
formation does not exceed the time saved from eliminating vectors that are
added to T. This will be directly related to the relative adjacency of regions
in high dimensional space for typical POMDP problems, which is mostly un-
known at this point, though Zhang [139] has some preliminary results which

point to this relationship being relatively sparse.

79

3.3 Incremental Pruning Algorithms

The incremental pruning algorithm was first proposed by Zhang and Liu [140]
and was subsequently analyzed, compared and improved [24]. Like witness,
it breaks down the problem into constructing the I'? sets individually. Un-
like the witness algorithm, this method does not search in regions of the
state space; instead, it considers constructing each possible v2 € I'¢. How-
ever, it constructs each vector in an incremental fashion which reduces the

computational complexity significantly.
3.3.1 Batch Enumeration

To understand to basic approach of the incremental pruning algorithm, it
helps to first discuss the batch enumeration algorithm as presented by Mon-
ahan [87]%, since it is conceptually the simplest of all the exact algorithms.

The witness algorithm, and the algorithms to be discussed in Section 3.4,
search in information space for a set of points that are able to yield the full
parsimonious representation of the value function. This approach required
defining regions in the information space and performing some sort of search
to find points in other regions. The alternative approach comes from looking
at Equation 3.2 in a slightly different manner. We repeat this equation here

for convenience:

T (b) = Er(a) + PP X1 (07)

The only function that the specific information state plays in this formula

3Sondik [117] actually proposes such a scheme, but never presents it as an algorithm
in its own right. Curiously, Monahan presents this algorithm under the guise of Sondik’s
one-pass algorithm.

80

is in the y,—1(:) term, which does nothing other than select a vector from
[',,—1. Regardless of the specific information state, there are only |I';,_1| pos-
sible values for x,,—1(b¢), which means that there are only as many possible

)

a,z . . .
~vn'~ vectors for a given action @ and observation z. We define

=a,z 1 @,z
L, = {ET(Q) + pP* 7n—1|7n—1 € Fn_l} ’

—=a,

which is the set of all possible v4* vectors. Note that |T | = [Th_y.

Since 72 = Y _vn", we define T, to be the set of vectors obtained for
all ways of selecting a vector from FZ’Z, for each z. Appendix B defines
the cross-sum operator and some of its properties. The cross-sum operator,
which we denote with @, operates on two sets of vectors, A and B, and

produces a set of vectors that comnsists of all pairwise additions of vectors

from both sets. Using this operator we can define f(:l more precisely as

T, =T, . (3.8)

a,z

Since all possible combinations of the ~u'* vectors are in L.,

n, the maxi-

mal vector for any information state point will also be there; i.e., V4(b) =
MaXzcre b-7.

This is exactly the approach of the enumeration-type algorithms; they
ignore information states and simply generate every possible vector. To
complete the enumeration from above, we need to repeat this for each action

and so we define

Fn = UFZ ’
a
which is the complete enumeration of all possible vectors that could be in

L.

81

This complete, or batch, enumeration algorithm as presented in Mona-
han [87] gives a simple linear programming scheme for reducing the T, set
to its parsimonious representation. Subsequent improvements to this batch
enumerative scheme were merely ways to do this reduction (or pruning)
phase more efficiently. Eagle [39] added the domination checks discussed
in Section 3.1.1 and Lark [131] devised a more efficient linear programming
approach which is the basis of the PRUNE routine of Section 3.1.1.

Thus the batch enumeration algorithm can be summarized succinctly as:

', = PRUNE (U @f‘;z)

This batch enumeration scheme has the computation complexity of being
exponential in the size of Z regardless of the size of I',,. For POMDP problems
with more than 3 or 4 observations, this technique is impractical. However,
we will see in the sections to follow that this same enumeration idea can be

performed incrementally to yield a much more effective algorithm.
3.3.2 Incremental Enumeration

As discussed in Section 3.1.3, the incremental pruning (1p) algorithm con-
cerns itself with constructing the T'% sets. Since T'Y = prUNE(T,,), from

Equation 3.8 we have

I'" = PRUNE (@f‘;z) ,
=
which shows a batch enumeration-type method for computing the FZ sets
followed by a pruning phase to yield I'¢.
One improvement that can be made uses some properties of the cross-

sum operator (see Appendix B) and moves the PRUNE routine inside the

82

cross-sum operator yielding

I'" = PRUNE (@ PRUNE (fflz))

z

= PRUNE (@ F‘,‘ﬁ) . (3.9)

=
Note that although we can safely move the pruning step inside the cross-sum
operator, it is still required on the outside. The fact that any vector in f(:l’z
that gets pruned never needs to be considered anywhere else can actually
be exploited in other algorithms (see Section 3.2.3). For the remainder of
this section, we will always assume that we prune the f(:l’z sets and always
deal directly with I';y*.

The incremental pruning algorithm’s insight is the simple, yet elegant
idea of interleaving the PRUNE routines with the cross-sum operators in
Equation 3.9. This is possible due to properties of the cross-sum operator.

Here we show the progression, starting with Equation 3.9

['! = PRUNE (@ F‘,‘ﬁ)
— PRUNE (F‘,‘;O erelere?g... ¢ F‘,‘;'Z|_1)
= PRUNE (..PRUNE (PRUNE (T2 @ TS & T4?) ... 4 F‘,‘;'Z|_1)
(3.10)
Equation 3.10 is essentially the incremental pruning algorithm. The
algorithm is summarized in Table 3.8 and an example of it working on a
simple problem is given in Appendix F.1.
The algorithm in Table 3.8 is fairly straightforward, but some explana-

tion will be useful. The elements of the set ¥ are sets of vectors, so ¥ merely

83

incrementalPrune(l',_1,a)
U= AW}
while |¥| > 1
;= removeElement(¥)
:= removeElement(¥)
‘= PRUNE(A & B)
= U J{D}

end while

(SHwv IS

return ¥
end incrementalPrune

Table 3.8: Routine for the incremental pruning algorithm.

serves to hold the I'y” sets and the intermediate results of the cross-sum op-
erations. The routine removeElement () simply extracts one of the vector
sets from W. Note that a routine for the batch pruning algorithm is nearly
identical to the routine shown in Table 3.8. The only change is to replace
the line D := PRUNE(A @ B) with D := A$ B and add ¥ := PRUNE(¥) just
before returning W.

Although Equation 3.10 shows one particular grouping of the sets in
the cross-sum, there are many such groupings. To accomplish any other
grouping requires no changes in the algorithm, just a simple change in the
removeElement routine. In general no one grouping is preferable to any
other, but for given assumptions about the structure of the solution, some
are preferable to others. This issue is explored further in Section 4.4.1.

An interesting aspect of the algorithm given in Table 3.8 is that by
removing the PRUNE calls, the algorithm becomes the batch enumeration

algorithm for constructing the I'? sets.

84

3.3.3 Generalized Incremental Pruning

The generalization of the incremental pruning algorithm discussed in this
section grew out of trying to refine the incremental pruning algorithm and
was first presented by Cassandra, Littman and Zhang [24]. The basic struc-
ture of the incremental algorithm is the same; the main difference lies in the
way the individual PRUNE(A & B) operations are performed.

In the normal application of the PRUNE operation, there is nothing but
a set of vectors to work on. However, in computing PRUNE(A & B) we
have some intimate knowledge about the way in which the set being pruned
is constructed. The generalized incremental pruning algorithm (GIp) is a
technique that can exploit this knowledge.

Before presenting the full Gip algorithm, we present one motivating ex-
ample of the approach. Consider the simple problem of computing PRUNE(A®
B) where A and B are both parsimonious representations. We are looking
for the parsimonious representation of the cross-sum of these two sets, which
we will refer to as D. We will use D = A @ B, which is the full, possibly
non-parsimonious cross-sum. Recall, that to be parsimonious means that
for every vector, ¢ in the set, D, R(d, D) # 0.

Let us first focus on a single vector, o + 3 from the cross-sum. If we did
the full cross-sum and then pruned the set, it is possible that to determine
whether or not R(a + 3, D) = () we will have to compare it against all the
other |D| — 1 vectors. In the pruning routine, this will translate into an LP
with roughly |D| = |A||B| constraints. We note that comparing it to this

many is often not necessary with the PRUNE operation, but in the worst case

85

) oy a,

= -

0 b(s,)

Figure 3.8: Value function and partition for PWLC set A.

B

Bo Bl BZ
0 b(so) 1

Figure 3.9: Value function and partition for PWLC set B.

this might happen.

To reduce the size of the LP, we can exploit the geometry of this problem.
Figures 3.8 and 3.9 shows an example of two sets of vectors for A and B.
The division on the horizontal axis shows the partitions that are imposed by
these sets with the symbol for the vector in each region. Figure 3.10 shows
just the two sets’ partitions aligned.

Looking at the region, R(ag, A), imposed by the vector ag in Figure 3.8,

86

A ao Gl GZ

B | B B B,
0 b(s,) 1

Figure 3.10: Partitions for PWLC sets A and B.

consider what possible combinations of vectors will yield a maximal vector
within this region. The first thing that becomes clear is that over this region,
for all #in B no oy + 3 or ag + § will be larger than ag+ 3 in R(ag, A). The
next thing that becomes clear is that ag + 2 cannot be maximal anywhere
over this region either.

In two dimensions, it is visually easy to see which combinations from A
and B will comprise D: any two vectors whose regions overlap. Figure 3.11
shows the final partitions imposed by A ¢ B; notice how the region bound-
aries of A @ B are defined by the region boundaries of A and B. This can
also be made geometrically precise. Therefore, if we want to determine if
R(a+3, D) = (), it is equivalent to check the whether R(a, A)NR(S3, B) = 0.
In rough terms of linear program size, the former will have | A|| B| constraints
and the latter will have |A| 4 |B| constraints. More precise and thorough
analysis are provided in Section 4.4.5.

Although this provides the main motivation for the Gip algorithm, it is
not entirely accurate and hides many of the more subtle aspects. First, the
PRUNE routine is more efficient than always checking R(a + 3, D) = () for
each vector. Second, this approach always requires |A|+ |B| constraints and

the PRUNE routine will do many LPs which are smaller than this, since it

87

A Go al a 2
B | B B B,
APB| o8 |og B az By at B ot B,
0 b(s,) 1

Figure 3.11: The final partition for A ¢ B and its relationship to the initial
partitions of A and B.

processes the vectors in a more efficient manner.

The real contribution of the Gip algorithm is that it is able to incorporate
the same insights from the PRUNE routine into this geometric intersection
region-based view.

We will be using the following notation in the presentation of the Gip

algorithm:
D=A®B
D = prUNE(D)
DCD

Dy ={a+j|j € B, (a+p3) e D}

Dg={a+p8lae A (a+p5)eD} .

The GIP algorithm uses the same routine as 1P except that the PRUNE(A®
B) line is replaced with a call to the routine genCrossSum(A4, B). The rou-
tine for this new cross-sum routine is given in Table 3.9. It is nearly identical

to the PRUNE routine (Table 3.4) with the exception of some notation and

88

genCrossSum(A, B)

D=0
D=A0B
while D # ()

v := removeElement(D)
b := findRegionPoint(y, A)

if b # null
then
D:=DuU{y}
= bes‘c\/ector(ﬁ7 b)
D:=D—{y}
D:=Du{y}
end if
end while
D:=D
return D

end genCrossSum

Table 3.9: Routine for the GIP cross-sum genCrossSum.

the line b := findRegionPoint(y, A). We call this the generalized cross-
sum (Ges) algorithm. Note that in the algorithm D itself is a subset of
D which serves as the set holding those vectors in D which have not been
checked.

At any given iteration of the while loop, a vector v = o+ is selected. It
is important to note that the implementation of this algorithm now requires
keeping track of how each 7y vector was constructed. Any of the following

sets can be used in the call to findRegionPoint:
1. A=D

2. A= ({a}@B)U (A3 {5})

89

3.A=D

4. A=DyU(Ad {8}
5. A= ({a} @ B) U Dg.

Using the first set is equivalent to using Monahan’s original pruning algo-
rithm on the cross-sum set. The second case corresponds to the motivating
example we gave for cip and effectively is computing the intersection of
R(a, A) and R(3, B). The third case corresponds to the original 1P algo-
rithm where the PRUNE routine is used to prune the set. The last two cases
combine the ideas of the second and third cases. The best ¢ip algorithm
would choose whichever A was smallest when a given v is checked. In Chap-
ter 4 we will analyze and empirically evaluate a slightly less efficient form of
GIP which always chooses one of the last two sets. Nonetheless we will find
this version to be more effective than the normal 1P algorithm.

The correctness of using either of the last two cases is not intuitively
obvious from simply looking at their definitions. What these cases amount
to is a PRUNE operation with some additional constraints. For example,
suppose we want to find all the vectors in B which yield useful vectors when
combined with the vector o from A. This corresponds to using the fourth set
from above. From our GIP motivating example, we know that we only need
to examine the set B over the region R(a, A). The example then searched
the entire set B, one vector at a time, comparing it to all the other vectors
in B. However, using the same insight that is used in the PRUNE routine,
we can gradually build up a set of the useful 5 € B and compare each

subsequent vector only to the current approximation instead of the entire

90

set.

This effectively does a PRUNE operation on the set B subject to the ad-
ditional constraints imposed by R(a, A). Given a particular vector, o + 3,
to check in the GIp algorithm, we see that R(a, A) = R(a+ 3, A®&{5}). Ad-
ditionally, if we are simply filtering the set B (with additional constraints),
then the current approximation Dis comprised of some number of vectors
from B and we iteratively compare all the vectors in B to D. However, if
in this comparison, we simply shifted all the vectors in B upwards, then the
results will not change, since shifting all the vectors simulataneously does
not change their region boundaries. If we view a as the amount we shift
then the filtering algorithm can be viewed as operating on the set {a} ® B,
where the current approximation D has components « + B for the B thus
far found*. This is precisely the notion that the set lA)a captures, and we
see that R(f, ﬁ) = R(a+ 3, lA)a)

In the discussion above, we would refer to A as the resticting set since
it defines the sub-regions over which we look for useful vectors from B. In
Sections 4.3.2 and 4.4.4, we will discuss in more detail a variation of the aip
algorithm which always chooses one of these last two cases.

The following two theorems show that all of the sets above are valid to

use to construct the parsimonious representation of the cross-sum.
Theorem 3.3.1 If R(y,A) =0 then v ¢ D.

Proof To prove this theorem, we use the fact that for all the cases we have

*Although adding an arbitrary vector to this set does not shift the vectors upwards
equally at all points, the shifting does not change the partition boundaries, which is all
that matters for this search.

91

A C D. If the region is empty over a subset of D, then it certainly will be
empty over the entire D set. By definition, v € D if and only if R(y, D) # 0.
|

This theorem shows that all vectors discarded are useless vectors. Next

we show that all vectors added to D are in D.
Theorem 3.3.2 If 3b € R(v, A) then Iv* € D such that b € R(y*, D).

Proof Lety = a+ B = argmax_.p b - v, which is simply the best vector
in our current approximation D at information state b. Because we are
checking the vector v = a 4 3, we know that v ¢ 13, since every time we
add a vector to D we remove it from D. Let 7" = argmax. 55 b7, which is
the best vector at b among all possible vectors in A @ B, then we know that
b-v* > b-~ for any other v. If we can show that b-v* > b-5 then we know
that v* ¢ D and could not have been removed from D since R(y*,A) #£ 0
for any subset A of D.

We now show that b-~* > b-75 for each A.

1. A=D
Since b € R(y, D), this implies ¥ = v* and since v is not in D, b-y*>
b-7.

2. A= ({a}& B)U (46 {3})
By nature of this set we have V3 # 3 € B

be(a+p)>b(a+])

b-3>b-03

92

and Voo £a € A

b-(a+5)>b-(@+))

b-a>b-a .

Therefore, b-(a+/3) > b-(a+43) for all other vectors (@+3) € AGB and
v =~*. As in the first case, showing v = v* implies that b-~v* > b-7.

-~

.A=D
Since'ygﬁ, ibeR('y,lA)) then b-~ > b-4. Since b-v* > b-~, by

the transitive property, b-~v* > b - 7.

. A =Dy U (A {5})
This breaks down into two cases: @ = @ and a # a. If @« = @ then
7 € lA)o” which means ¥ € A and we revert to the argument of the

previous case where b -y > b -5 implied b-~v* > b-7.

When a # a we compare v against A & {§} and, since the region
R(v,A)is non-empty, we know that, as in the second case, Voo # o € A

that
be(a+3)>0b-(@+p)

b-a>b-a .

This implies that b - (a+5) >b- (a+3) and since b-y* > b- (a+5),

by transitivity we get b-v* > b- 7.

. A= ({a}®B) U Dg.

This case follows from the previous case by symmetry.

93

Since each pass through the loop removed a vector from 15, the algorithm
will terminate. Each vector removed from D is either discarded or added to
D and Theorems 3.3.1 and 3.3.2 show that only useful vectors are added to
D and all vectors discarded are useless; therefore D =D.

We note that although choosing A = D or A = ({a} & B) U (A& {5})
results in a sound algorithm, there is not much need to ever choose these
when the other choices are available. We know that D C D, so choosing D
would always be better than choosing D. Likewise, the last two sets both

satisfy

DaU(A®{B}) € ({a} & B)U (A {5})

({a}&B)UDs C ({a} @ B)U (A& {B}) |

making either a more preferable choice. However, without either of these
last two choices, there are situations where choosing ({a} & B) U (A& {5})
would be preferable to choosing D; specifically when |lA?| > |A|+|B|. This is
important since one might not want to add the extra bookkeeping complexity
required for implementing the most general form of the generalized cross-

SuIn.

94

3.4 Other Exact Algorithms

In Section 3.3, we covered the previous enumeration-based algorithms so,
in this section, we will focus on the algorithms more directly related to
the witness algorithm, which search over information-space regions. We
discuss four algorithms; two developed by Sondik [117] and two developed
by Cheng [26]. Although the witness and incremental pruning algorithms
were advances over the previous exact algorithms, they owe a great deal
to the previous algorithmic approaches. More detailed discussion of these

algorithms and their drawbacks can be found in other work [22, 74].
3.4.1 Sondik’s Two-Pass

The witness, 1P and GIP algorithms compute the value function one action at
a time and then merge the resulting sets. This approach allows them to use
techniques which would not be directly applicable if they tried to construct
I, directly. Although the witness algorithm was the first to use the single
action value function approach by design, Sondik [117] uses this idea to
motivate the design of the one-pass algorithm. The first pass sweeps through
the information space to construct I'¢ and the second pass is required to
merge these sets. Sondik refers to this as the one-pass algorithm applied
to the single action problem, but since the one-pass algorithm requires a
slightly different approach, we use the name two-pass when referring to this
algorithm.

Section 3.4.2 presents the one-pass algorithm, but very little attention
has been paid to the two-pass algorithm. Section 4.9 presents some empirical

results concerning this algorithm, and here we present the algorithm both

95

for its own merits and as the first step in explaining the one-pass algorithm.

Recall from Section 3.3.3 concerning the computation of the cross-sum
of two sets, that we could determine if a vector a + 3 would be useful by
defining the region R(«, A)(R(S, B) and checking to see if it was empty.
From Equation 3.8 we see that all the vectors we need to consider in con-
structing I'¢ are simply elements of a cross-sum over all observations. Simply

extending the argument we see that to determine if the vector

=)

=ttt

is useful, it is enough to check if the region

ﬂR'YgZ7PaZ _ PynOl—waO ﬂR7n17Fa1 ﬂRPVnz Fa2 m

is empty or not. Even more useful is the fact that

ﬂR vw® Tw®) = Ry, T4

which simply defines the actual region for a given vector in I'Z. This rela-
tionship is shown in Figure 3.12.

Sondik uses this fact to search the information space by defining a region
for a vector, and then finding all the adjacent regions. Table 3.10 shows a
routine for computing I'¢ using the two-pass algorithm. The two main sets
of interest are: I' which holds the vectors we have found and whose regions
we have already explored; and T which holds vectors which we have found,

but whose regions we have not yet explored. Note that implementing this

96

r vab)
a,l : a
R y2(b)
rna,z y:z(b)
L y2 (b)

0 b 1

Figure 3.12: Defining the constraints on a region for Sondik’s two-pass al-
gorithm where y4(b) = 4&°(b) + v (b) + 742 (b).

algorithm will require maintaining the information about how the individual
v& vectors were constructed; i.e., which v,'® vectors were used.

The outer loop of the algorithm is over the vectors whose regions we
have not yet explored, and the inner loop is responsible for exploring the
region. For each region, it looks at all the potential region borders; each
neighbor vector (see Section 3.2.1 and Appendix E) may form one of the
borders. For each neighbor it finds whether it forms a border of the region,
and if so, adds it to T for later exploration.

The two-pass algorithm explores a region using an LP set up by the
setUpTwoPassLP routine. The LP here has the variables b(s), one for each
state. The objective function is b - (v — 72) with the constraints b € R and
b € II(S). If a neighbor vector defines a border, then this Lp should be
feasible with solution points all along the border.

The main problem with the two-pass routine as shown is that there is no

guarantee that it will return a parsimonious set. Vectors, which we termed

97

twoPass(n—1,0)
0

F =
b := any information state
T :={7:(0)}
do
¢ := removeElement(Y)

[:=Tu{y
R =), R(5", %)
for each v € N'(72)
L := setUpTwoPassLP(y2, v, R)
if feasiblelP(L) and v ¢ T
then T :=T U {v}
end for each v
until ¥ =0
return [
end twoPass

Table 3.10: The two-pass algorithm for constructing I'?.

imposters (see Page 60), could be present in the final I'} set. In fact, it is
necessary to include these imposter vectors, since not all adjacent regions are
formed by neighbors as the counter-example of Appendix E shows. For the
cases where adjacent regions to R(y,I'?) are not formed by neighbors, there
are neighbors of v which will be imposters. These imposters will have their
own neighbors, different from <, which will eventually lead to the adjacent
region’s vector.

It may be possible to avert this problem by moving just beyond the
border of a region. This would ensure that we actually get an information
point that lies in the interior of the adjacent region. However, there is

the potential for missing regions if we move too much beyond the region’s

98

border. We have not explored any sophisticated methods for how this might
be accomplished, so we are left with the unsatisfactory result of the twoPass
routine possibly returning a non-parsimonious set.

As we will see in Section 4.1.4 that the witness algorithm has a worst
case running time that is polynomial in the model size and the sizes of I'),_
and I'¢. If not for the imposter vector problem, we could say the same for
thing for the two-pass algorithm; in theory, there could be an exponential

number of imposters even when the size of I'! was relatively small.
3.4.2 Sondik’s One-pass

The one-pass algorithm® is based on the same ideas as the two-pass algo-
rithm, but constructs I';, directly, thus foregoing the second pass required to
merge the I'Y sets. In the two-pass algorithm the region (), R(yn'", I'n7) is
sufficient to describe the actual region R(y%,I'?) of a vector. This region is
useful in the one-pass algorithm, however, it is not sufficient, since it must
consider the effects of the other actions.

We do know that R(v¢,Ty,) C R(72,I'?) and so this region constraint be-
comes the starting point for defining the regions that the one-pass algorithm
imposes.

When we are finding the vector for a point b, we must construct a vec-
tor for each action and see which is maximal. Let 4% (b) be the maximal

vector with a™ being the best action. Restricting our attention to the region

R(72"(b),T9"), if the v*(b) for a # a* are always as shown in Figure 3.13,

®The one-pass algorithm is presented in both Sondik’s thesis [117] and a journal arti-
cle [116]. However, as has been discovered independently by many researchers [89, 76], the
constraint set defined in the journal article is inadequate for finding the optimal solution.
The details are also described by Cassandra [22].

99

|

| Ya(b)
vae)y T

V(b) !

RO I)

0 b 1

Figure 3.13: The case where the region constraints are adequate for defining
the region.

then we are assured that R(v2 (0),T,) = R(y% (b),T%), since there is no
other action which will have a vector giving a higher value over the entire
region. However, there are two ways that this region can be larger than
the actual region R(y*"(b),T,), i.e., R(v* (0),T,) C R(v2"(6),T%") , which
means that the one-pass algorithm must further restrict the region. This
restriction is necessary since too large of a region could completely contain
some other regions, resulting in missing these if it only looks at adjacent
regions.

The first set of extra constraints are put on the region to handle the case
shown in Figure 3.14. Here, we find that a different one of the v*(b) vectors
has become maximal over the region R(y2",T¢"). To ensure that this does

not happen we add the constraint

R(YY {~eVa})

which merely ensures that ¢* stays optimal.

100

Ya(b)

V(b) ! :
- o)

RO I)

0 b 1

Figure 3.14: The first case where we must restrict the region.

Even with this added constraint, the region defined can still be a strict
superset of R(y% (b),T,). Figure 3.15 shows the most troublesome case
that the one-pass algorithm has to handle. Here we see a point ¥’ which
has the same vector as b for a*; i.e., ¥ (b) = v*" (V). However, for another
action a we have y*(b) # v*(b'). As Figure 3.15 shows, this other vector
may yield higher values than 4% (b) at b’. For this reason, it is necessary
to add the region restrictions R(y%(b),I'%) for all actions. In the original
Smallwood and Sondik paper [116] description of the algorithm, this restric-
tion was inadvertently omitted as was also discovered by a number of other
researchers [76, 89].

This makes the final set of constraints
RO T (ROw {vslva})

The unfortunate aspect of adding this last set of constraints is that we could
now be defining a subset of the true region as shown in Figure 3.16. Here,

the vector for action a has changed over the R(y% (b),T%"), but the vector

101

V(b) !

RO I)

0 b b’ 1

Figure 3.15: The case where we must restrict the region even further.

that becomes maximal for action a is still not better than %" anywhere
within this region and the regions defined by the one-pass algorithm could
be too conservative.

The fact that these regions can be smaller than the true regions adds
some complications to the actual algorithm. It is no longer the case that the
border of a region is a border with another actual region in I',,. Figure 3.16
shows that we could find a border of two regions where the same vector is
maximal over both regions. Therefore, it is no longer enough to keep track
of vectors which have and have not had their regions checked, since we might
have to check the same vector over a few different regions. This will require
us not only to keep track of which vectors we have searched, but the context
in which the regions were searched (i.e., what were the other v vectors for
the region.) An alternative implementation approach is to maintain a set
of information points and define a loop over this set, however this approach

is also complicated by the fact that the points generally lie on the region

102

R)
0 b b’ 1

Figure 3.16: The case where the further restriction is unnecessary.

borders.
Despite some of the shortcomings mentioned, Sondik’s one-pass algo-
rithm was the first exact algorithm and provided the inspiration for all of

the subsequent algorithms.
3.4.3 Cheng’s Relaxed Region

In his thesis [26], Cheng presents a variation of the one-pass algorithm which
avoids the overly restrictive regions. Cheng refers to this as the relazed
region algorithm, since he simply removes some of the one-pass algorithms

constraints. The constraints imposed by the relaxed region algorithm are

RO T (ROS {vilva})

which just omits the last region restriction discussed in the section on the
one-pass algorithm.
As mentioned in the one-pass discussion, allowing the regions to get too

large can sometimes mask regions that lie in the interior. To combat this,

103

Cheng has to do more than find a single point along a region boundary, which
is all that was required for the one-pass algorithm. To ensure that the relaxed
region algorithm doesn’t miss any interior regions, it must check every vertex
of the defined region. Cheng uses a vertex enumeration algorithm [80] on the
regions defined and checks each vertex to see if a previously undiscovered
vector is maximal there.

The computational complexity of doing this enumeration is exponential
in either the dimension of the state space or the number of binding con-
straints of the region, whichever is smaller. In the relaxed region algorithm,
the number of binding constraints is related to the number of observations
and the size of I',_1. This exponentiality is a direct result of the complexity
of the number of vertices in a convex polytope [81]. Although this is a worst
case complexity result, it does seem to be the limiting factor in practice and
rarely can the relaxed region algorithm solve a problem with more than 4

or 5 states.
3.4.4 Cheng’s Linear Support

For Cheng, the relaxed region algorithm was primarily the gateway to a
more sophisticated algorithm, and one which was the inspiration behind
the witness algorithm; the linear support algorithm. From the ideas of the
relaxed region algorithm, we see that it is possible to define overly optimistic
regions; i.e., a vector’s region in the approximation is larger than it will be
with respect to the final T',, set.

In all the previous approaches discussed in this section, a vector is com-

pared against other “potential” vectors that could be constructed from I';,_.

104

With the linear support algorithm, Cheng introduced the idea of gradually
building up I',, and comparing any new found vector to the current vectors
already discovered. If we let T C I',, be the set of vectors as we build I',,,
then for a given b and its vector @ (b), we can define the region R(y® (b),f)
Because T is a subset of I',,, we know that this region must be a superset of
the actual region.

Unfortunately, the linear support algorithm still requires the same method
of checking each vertex to ensure no regions are missed. As discussed for
the relaxed region, this is not practical for problems with more than a few
states. However, the idea of comparing a vector to an evolving subset of the
true value function representation is very useful and appears in the PRUNE,

the witness and the Gip algorithms.

105

3.5 Conclusions

Although there were many preliminary results and basic theory development
for PoMDPs prior to 1970 [38, 2, 120, 1, 40, 3, 106, 101, 36, 109, 114], the
first exact algorithm for solving the general POMDP problem was developed
by Sondik [117, 116] under the name of the “one-pass” algorithm. Although
there was subsequent research [129, 87, 39, 26, 132], the computational com-
plexity of the problems themselves, the intricacies of the algorithm and the
lack of computing power of the day all combined and seemed to limit the
amount of exploration and number of researchers involved in further devel-
oping the theory and algorithms for POMDPs.

More recently there has been a resurgence of interest in the pPOMDP
model and whereas the majority of the previous work was in developing the
essential theory, this recent interest has been spurred on by trying to apply
these theories to some more realistic problems and focusing on the algorith-
mic issues. The witness, incremental pruning and generalized incremental
pruning algorithms are results of this more recent algorithmic perspective.

The majority of the effort into exact or near exact algorithms for solving
POMDPs has been based upon value iteration. However, Sondik [118] pre-
sented a policy iteration algorithm for PoMDPs, though the implementation
of this algorithm presents many challenges and has not yet been shown to be
useful for more realistic sized problems. More recently Hansen [45] has revis-
ited the policy iteration approach, resulting in a simpler and more effective
algorithm. Although the dynamic programming updates discussed in this

chapter are the basis of value iteration solutions, Hansen’s policy iteration

106

algorithm uses these DP updates in his policy improvement phase. Thus,
more effective exact (or approximate) DP updates can translate directly into

more effective policy iteration algorithms.

Chapter 4

Analysis of Exact Algorithms

We begin this chapter with a brief review of some existing complexity re-
sults concerning the solution of POMDPs in general and some specific results
concerning POMDP algorithms. We will see that four algorithms, two-pass,
witness, 1P and G1P, fall into the same general complexity class. We then
undertake a detailed analysis of these four algorithms. Since we will also see
that the general single step DP problem of computing V,,(-) from V,,_;(-) is
hard, we focus on the complexity of computing V,?(-) from V,,_; (-). All of the
algorithms considered here are methods for constructing I'¢ from I',,_; and
have essentially the same asymptotic worse case complexity when viewed
simply from the problem size. However, the more detailed analysis in this
chapter shows that some algorithms are more efficient than others.

We approach the analysis from the number and sizes of the linear pro-
grams that need to be solved. The dependence upon linear programming
is clear from the algorithm specifications, but we have also verified this on

a range of problems and found that 90% to 95% of the computation time

107

108

is spent in the linear programming routines!. Since detailed analysis of the
LP algorithms and their interaction with the specific LPs set up in trying
to solve a POMDP is quite complex, we simplify the analysis to incorporate
only the number of LPs and the total number of constraints needed for each
algorithm. We will see towards the end of this chapter that the empirical
evidence supports the validity of this analysis.

Our analysis will proceed from the simplest routines upward to the full
algorithms. We first derive formulas for the numbers and sizes of the L.ps for
each algorithm and then proceed to compare them. We ignore the number
of variables in the LPs, since this corresponds to the number of states in the
POMDP and is constant for a given problem across algorithms. For all of
the Lps, there is an additional constraint that confines the solutions to be
probability distributions, since the variable is the information state vector.
We ignore the non-negativity constraints, since non-negativity is a natural
constraint for LP solvers. However, we will include the simplex constraint,
>, b(s) = 1, since this explicitly needs to be stated in the LP and since its
omission would unfairly favor algorithms that required a lot of small Lps
over algorithms that do fewer, but larger Lps.

We preface the remaining sections of this chapter by noting that due
to the computational complexity of solving a POMDP, exact algorithms by
themselves are not much use. However, this does not discredit the use or
need to look at these algorithms. Exact algorithms can often directly lead to

approximations or provide insight into the solutions which can be exploited

'We used an efficient commercial LP solver to ensure this was not an artifact of the
implementation.

109

in other algorithms. Furthermore, some of the subproblems solved in the

course of the exact algorithms can be used in approximation schemes [108,

132].
4.1 Computational Complexity of POMDPs

Before undertaking our more detailed analysis, we present the existing com-
plexity results for solving pPoMDPs in general, solving POMDPs via value

iteration and the relative complexity of the existing algorithms.
4.1.1 Background

Before discussing the existing complexity results on MDPps, we will very
briefly introduce the basic ideas we will need from computational complexity
theory. This simplified view will provide enough background to understand
the main complexity results as they pertain to MDpPs. Much more compre-
hensive treatments of computational complexity theory are found in many
textbooks [66, 47, 124].

Theoretical computer science has been useful in classifying the problems
according to their computational hardness. The class P represents the easy
or tractable problems which can be solved in a polynomial amount of time.
The class NP is a broader class, incorporating P, and includes problems
that are typically accepted to be hard or intractable. Problems that are
NP-complete are the hardest problems in the class NP and are problems
which are assumed to take an exponential amount of time. This idea of
completeness extends to any of the problem classes; it is the set of problems

that are the hardest to solve in the class. Although P C NP, it is not

110

known whether P is a proper subset or not, though the general belief in the
theoretical computer science community is P # NP.

There is even a broader class, PSPACE, which are the problems which
can be solved in a polynomial amount of space. The class P is included in
this class, P C PSPACE, since any algorithm that runs in polynomial time,
can only consume a polynomial amount of resources. Slightly less intuitive,
is the fact that NP C PSPACE. To understand this requires a more formal
definition of NP, which we will not give here. Even for this wider class,
whether equality holds in either case is an open theoretical question. Even
in the unlikely case that P = NP, this will not necessary imply that P =
PSPACE.

Therefore, we adopt the commonly accepted viewpoint: problems in P
are ones that are considered solvable; NP-complete problems are considered
to require an exponential amount of time; and PSPACE-complete problems

are considered to be even harder than NP-complete problems.

4.1.2 Complexity of Exact Algorithms
COMDPs

We can solve the infinite horizon cOMDP problem by casting it a (reasonably
sized) LP [78, 63] and solving. Since the complexity of linear programming is
a well known P-complete problem, we can see that solving an infinite horizon
COMDP is easy from a complexity perspective. More generally, for both the
infinite and finite horizon coMDP problem, computing the optimal policy is

a P-complete problem as shown by Papadimitriou and Tsitsiklis [95].

111

POMDPs

Unfortunately, the nice computational aspects of the problem disappear with
the introduction of partial observability. As was also shown by Papadim-
itriou and Tsitsiklis [95], finding the optimal policy for even a simplified
finite horizon POMDP is PSPACE-complete. In their work, they consider a
POMDP where |Z| < |§], the observations are deterministic and where the
horizon length is T' < |S|. Clearly, the more general POMDPs discussed here
can be no easier to solve for the finite horizon. Even under many other
forms of restrictions in model size, horizon length and type of policy, exact
POMDP solutions are hard [20, 92].

Also pointed out by Papadimitriou and Tsitsiklis is the unlikeliness of
even being able to represent a finite horizon policy with a polynomial-sized
data structure. Thus, even if we were willing to expend exponential (or
more) time to compute the optimal policy, an optimal controller based upon
the resulting policy would be impractical to implement.

The situation appears to be even worse for the infinite horizon case.
Papadimitriou and Tsitsiklis speculated that no finite algorithm will be able
to exactly compute the infinite horizon policy and others have suggested

that the problem is undecidable.
Single DP Step

With the result that finding optimal finite horizon solutions for POMDPs is
hard, even for small horizons, we immediately see that just one DP stage
(i.e., horizon equals 1) is also hard. This results from the I, set of vectors

produced from T',,_; possibly having size |A||T,_1|/€!, which is exponential

112

in the number of observations. This corresponds to every possible vector that
could be constructed have some non-empty useful region. The conclusion
from this is that we cannot have a polynomial-time algorithm for computing
r, fromI,,_;.

The question that arises first is whether or not there exist POMDP prob-
lems can really exhibit this worst case behavior. Littman [72] shows just
such a class of POMDPs, which leads to the question of whether or not useful
POMDPs (i..e, ones that need to be solved) exhibit this worst case behavior.
While this question remains unanswered, predominantly due to the lack of
many such models, we then are led to wondering how hard it might be to
solve pPOMDP problems which do not exhibit this worst case behavior; i.e.,
IT',| is not exponential in | Z|.

This leads to considering a class of problems that are polynomial output-
bounded, which simply says that the size of the answer is restricted to be
polynomial in the size of the input. Littman [72] has also shown that this

too is a hard problem.
4.1.3 Complexity of Approximations

We now briefly divert ourselves from exact solutions to discuss some com-
plexity results for approximate solutions. Considering the computational
challenges presented by PoMDPs, Chapters 5 and 6 will explore developing
approximate solutions. Unfortunately, little can be said about theoretical
guarantees of the quality of their solutions. In the best scenario, we would be
able to develop algorithms with guaranteed performance criteria in relation

to the optimal answer. There is an entire sub-field of computer science which

113

addresses approximation algorithms from this perspective. Some problems
which are hard to solve exactly have a corresponding easy approximation
algorithm which can give a guarantee on the closeness of the approximation.

Within this sub-field, researchers have also come across classes of prob-
lems which are just as hard to approximate as they are to compute exactly.
Unfortunately, POMDPs are one such class of problems, even for the finite
horizon case. Condon and Feigenbaum [30] have some results about the
hardness of approximating some PSPACE-hard problems, which translate
nearly directly into the hardness of approximating finite horizon POMDP
problems. A thorough complexity analysis of POMDPs and their hardness of
approximation results can be found in the work by Goldsmith, Mundhenk,
Lusena and Allender [44, 91, 92]. In this work, they show complexity results
for a broad range of POMDPs under various restrictions, none of which have

tractable algorithms for their solution.
4.1.4 Complexity of POMDP Algorithms

Returning to the realm of exact algorithms, and having left off with the
unpleasing result that performing even a single DP step is hard, we can
attempt to narrow the problem further to see if there is any part of solving
POMDPs which may be tractable.

Recall that the algorithms, witness, 1P, GIP and two-pass, do not con-
struct I'); directly, but instead consider the sub-problem of constructing the
I'? sets and merging the results. The first way we could consider approach-
ing the problem is to address the complexity of constructing I'¢ from I'y,.

Unfortunately, there is more bad news, since the sizes of the I'? can be ex-

114

ponential in the number of observations; i.e., as large as |Fn_1||Z|. The fact
that such worst case problems do exist is an immediate corollary of there
being worst case problems for the full I',, construction.

As we did for the single DP step case, we could then restrict our at-
tention to problems where the answer is not exponential in the size of the
inputs, where here the inputs are S, A, Z and T',,_;. This class of POMDPs
are referred to as polynomial action output-bounded and present the first
restricted class of POMDP problems which are tractable. We will see as im-
mediate results from the detailed analysis to follow that the witness, 1P and
GIp algorithms can all solve this class of problems in polynomial time in the
worst case. We will also see that the two-pass algorithm has a best case
complexity that allows the solutions of these problems in polynomial time,
though the worst case is exponential.

Concerning the previously existing algorithms, the batch enumeration
algorithm of Section 3.3.1 and the linear support algorithm of Section 3.4.4,
we have discussed how these are exponential time algorithms for construct-
ing I';;. This is not surprising, since any algorithm for constructing I';, must
have a worst case exponential running time. However, even if we suitably
adjusted these algorithms to solve polynomial action output-bounded algo-
rithms, they still exhibit exponential worst case performance. The batch
enumeration still needs to enumerate an exponential number of vectors and
the linear support algorithm still needs to enumerate vertices of convex poly-
topes. We note that the suitable adjustment of Sondik’s one-pass algorithm
for attacking polynomial action output-bounded POMDPs is exactly the two-

pass algorithm, whose computational characteristics we discuss below in

115

detail.

4.2 The PRUNE Algorithm

The PRUNE routine from Table 3.4 in Section 3.1.1 is the fundemental build-
ing block for many of the algorithms we analyze, so we begin the analysis
here. The PRUNE routine as presented, starts with a single set of vectors,
T, to be pruned and an initializes the set it constructs, f, to be the empty
set. In truth, T can be initialized with any number of useful vectors from
the set I'. This is discussed further in Section 4.7.1, but for now we assume
it is initialized to the empty set.

For notational simplicity, we will let |T'| = G and let |T'| = V be the size
of the final parsimonious set. Thus we will express the complexity in terms

of the initial and final sizes of the sets.
Total LPs

The total number of Lps required is equal to the number of vectors in I.
Without any prior knowledge, we must check every vector to see if it is

useful or not. Notationally this is

PRUNE[p(G,V) =G .
4.2.1 Total Constraints

There are at least three ways we could attempt to characterize the total
number of constraints required: worst case, best case and average case.

These cases arise because the actual sizes of the Lps that are solved depends

116

upon the number of useless vectors and the order in which we process the

vectors in the loop of the PRUNE algorithm.
Total Constraints - Worst case

The worst case for the PRUNE algorithm is when the sizes of the Lps get
as large as possible as quickly as possible. Another way to see this is that
the worst case is when every useless vector must be compared against every
useful vector. Thus the worst case is when the first V' vectors chosen are
useful vectors. The remaining G — V useless vectors will then be compared
to all V' vectors. The first LP has only the simplex constraint and as each
useful vector is added, the number of constraints increases by one. When
all useful vectors have been uncovered, all the subsequent Lps for the useless
vectors will have a constraint for each of the V vectors plus the simplex

constraint yielding

14 G-V
PRUNEyopst (G, V) = i+ > (V+1)
=1 =1
_V(V+1
viv+1) +) L G-V +1)

1
Note that it is very unlikely that the vectors would be processed in such an
unfavorable manor.

Total Constraints - Best case

To get a better feel for how loose or tight the worst case is, we look at the
absolute best case for the PRUNE algorithm. This case is just the opposite

of the worst case and in some regards, even more unlikely to happen. In

117

this case, the first LP contains only the simplex constraint and for any given
point returned, it must lead to a useful vector. However, after this, if this
one vector, by itself, dominates all of the useless vectors in G, then we
can eliminate all the useless vectors using an LP with only 2 constraints.

Processing the remaining useful vectors afterwards yields

G-V V-1
PRUNE} .t (G, V) =1+ > 2+ Y (i+1)

=1 =1

—1yac-ovy 4 VD

-1
5 +V

1
Total Constraints - Average case

As mentioned, both the best and worst case analysis for the PRUNE algorithm
account for improbable orders of vector selection. In an attempt to get a
measure closer to reality, we suppose that the vector selection proceeds as
follows: at each iteration of the loop, we are equally likely to select any of the
remaining vectors. Furthermore, we assume that if we select a useless vector,
that it does not lead to an information state that would lead to finding a
useful vector. Note that in general, we could select a useless vector, which
compared to the current approximation looks useful and the information
state at which it looks useful will serve to find the true useful vector. This
is not completely realistic either, since finding a useful vector is more likely
than we assume here, since we assume useful vectors are found only by
selecting them directly for checking against the current approximation.

However, given this assumption we can define the average number of

118

constraints with the recursion
. . g—v . v .
C(lvgvv): 1+ 1+ —C(lvg_ 17U)+ _C(Z—I_lvg_ 17U_ 1) 3
g g

where ¢ is the number of useful vectors found so far, ¢ the total number of
vectors left to check and v the number of the remaining vectors in ¢ which

are useful. The base cases are

C(:,0,0) =0
C(i,g,O) =1+1 —I_C(ivg_ 170)
Cli,z,z2)=1+1+C(i+1l,2—-1,2-1) .
This recursion has the closed form
. v v
C(l7g7v)_g(§+l+1) - 5)
which can be verified inductively. This makes the average number of con-

straints
1

Note that since finding useful vectors is more likely than we assume, the
true average case is larger than this quantity. However, analyzing the true
average case requires intimate knowledge of the shape of the value function
and the other useless vectors. This would require sophisticated analysis
dealing with probability distributions on PWLC value functions and vectors.
The worst case provides an upper bound and this unrealistic average case

provides a lower bound, which is more than sufficient for our purposes here.

119

4.3 Cross-sum Algorithms

In this section we look at three ways in which the parsimonious representa-
tion of the cross-sum of two sets can be computed. This will correspond to
variations available in the 1P and GiP algorithms. For all of this discussion,
we will assume that the sets A and B are the two sets being cross-summed,
where |A| = N and |B| = M and the final parsimonious representation
to be computed is of size C'. Without loss of generality, we will assume
that N > M, making A the larger set. Additionally, we assume that the
sets A and B are themselves parsimonious, which constrains the size of the

resulting set, N < C' < NM.
4.3.1 Normal Cross-sum

We define the normal cross-sum (NCs) to be the algorithm that simply
enumerates all possible vectors in the cross-sum and then uses the PRUNE
routine to reduce it to its parsimonious set. This is the exact approach used
in the regular version of 1p. As a result, the analysis for this is simply the

analysis for the pruning algorithm. We have
NCSyp(N,M,C) = PRUNE] p(NM,C)

= NM ,

Ncsworst(Nv M, C) = PRUNEworst(NMv C)
—(C+1) (NM— %c) ,

NCSpest (N, M, €) = PRUNEp o (N M, C)

1
= 2NM +5C(C - 3)

120
and

NCSave(N7 .2\4—7 C) — P].:{[H\I]'__‘Jave(.ZV.Z\I7 C)

1
= SC(NM-1)+ NM .
4.3.2 Restricted Region Cross-sum

Recall from Section 3.3.3 that there were five different sets to choose from
in the Grp algorithm. Since the GIp algorithm is essentially the 1P algo-
rithm with a more general cross-sum operation, we defined the cross-sum
operations of the GIP algorithm as generalized cross-sums (GCs).

Consider the Ges algorithm where instead of allowing the freedom to
choose from among the five sets shown on Page 88, we analyze the situation
when we decide up-front which set we will use, and use that set for every
iteration of the cross-sum. We define the restricted region (RR) cross-sum as

the ccs algorithm where one of either
A=Dqu (4 {5}
or
A= ({a}® B)U Dy

is always chosen. Note that the variation of GCs which always chooses A = D
is simply the Ncs algorithm.

The analysis for both of the choices above is exactly the same; the only
difference is in which set we choose to be the restricting set (see Page 90).
For those two cases above, the former has A as the restrictor and the latter

has B as the restrictor. We will see that deciding to make the larger or

121

smaller of A and B the restrictor set does have an influence on the sizes of
the Lps to be solved. Later, on Page 124, we discuss the effects of the set
ordering in the RR cross-sum. For the analysis of RR we assume that we
have chosen the set A = Dg U (A& {p}). Since we need to be sensitive to
which set is the restrictor, we define F' to be the size of the restricting set
A and let the other set, B, have size L and do not impose any restriction
upon their relative sizes.

We will see that the RR algorithm is just an instance of GCs and as such
requires just as many LPs and any other non-optimized variation of Gcs.
Thus the number of LpPs required is FL as discussed below in Section 4.3.3,

We can simplify the analysis of the total number of constraints by view-
ing the RR algorithm as simply the PRUNE routine with an extra set of con-
straints for each LP. The RR algorithm is essentially attempting to prune the
vectors in B, but instead of looking at the entire information space simplex,
is restricted to the region R(a, A). This is then repeated for each o € A,
hence our use of the term restricting set for the set A.

Using this insight, then for all cases we see that the total number of

constraints for all cases is
F
RR.(F,L,C) =) [PRUNE.(L,Ci) + L(F - 1)] , (4.1)
=1

where F is the size of the restrictor set, L the size of the other set and C; are
the number vectors we find useful from B over the restricted region of the
it vector from A. The asterisk in the subscript serves as a wild-card to be

replaced with either best, worst or ave. Note that) . C; = C, Vi,C; > 1

and C' > max(F,L). The L(F — 1) term in the summation arises from the

122

fact that for each region we must do L Lps, and that we have an additional

F — 1 constraints to restrict the LP to only consider the region R(a, A).
Total Constraints - Worst case

We now plug in and show how to simplify the closed form for the worst case

number of constraints for the RR algorithm.

]~

RRworst(Fv L, C) = [PRUNEworst(Lv Ci) + L(F - 1)]

1

<.
Il

1
]~

PRUNEqopst (L, Ci) + F(F — 1)L
1

<.
Il

Il

[(c,» +1) (L _ %c)] +FP(F-1)L

=1

Il

[LC,» + L - %C} - %c] + F(F-1)L

1
F

" "
:LZC,»+FL—Z§C,2—Z§Ci+F(F—1)L :
=1

k3

=1 =1

Recalling that Y, C; = C we get
"1, 1
RRyorst (£, L, C) = LC + FL — 25022 - §C+F(F— 1)L .
=1

Although we do not necessarily know the values of the individual C; terms,
since this is a worst case analysis we can replace that term Zf;l C? with
anything that is guaranteed to be smaller, since by too little we preserve the
worst case criteria.

If we have the general problem of minimizing > " 2? subject to the

constraint y = >, x;, then the minimum is achieved? when Vi, z; = y/n.

2Thanks to Hagit Shatkay for verifying this.

123

For our case this means that

F C\ 2 y r o
Using this simplification, we get
Lem (C\? 1
RRyorst (£, L, C) < LC+ FL — 5; (F) - §C+F(F— L
§LC+FL—C—2— lC—I—F(F—l)L
2F 2
§F2L—|—LC—%[%—1] : (4.2)

Note that this puts an upper bound on the worst-case complexity of the fully
general GCs algorithm, since the RR algorithm does not have the freedom to

choose a possibly smaller set to compare vectors against.
Total Constraints - Best case

We omit the full derivation of this case, but the simplifications made use of
the same arguments as in the worst case scenario. Here we use the same
simplification of replacing Zf;l C? with Zf;l (C/F)?, which is valid because

this quantity is added here and not subtracted.

-

RRp oot (Fy L, C) = Y [PRUNEy o (L,C;) + L(F — 1)]

=1

c|C
— 2 —- _
_FL—I—FL—|—2[3]

It is not obvious that is quantity is smaller than the worst case, but the
relationships of the sizes of F' and L to C' and restriction on the maximum

size, C' < LF, does indeed lead to a smaller quantity.

124

Total Constraints - Average case

We will not need the derivation of the average case here, though it can be
found by substituting directly from Equation 4.1, Note that the substitution
of C; = C/F is still reasonable, since if we are looking to find an average
case, then assuming that the average case equally distributes the C' vectors

among the F' regions would require exactly this substitution.
Set ordering in RR

From Equation 4.2 we see that the worst case number of constraints is greatly
effected by the ordering of the sets in the cross-sum. The dominating term is
F?L (unless C' > F?*) which hints to select the smallest set as the restricting
set. Even in the worst case where C' is as large as possible, C = FL, the

total constraints becomes
2 2 1
F‘L+FL —§FL(L—3) ,

and we would still prefer to have the smaller set as the restrictor.

We empirically ran millions of examples for varying values of F' and L and
using the smaller set as the restricting set never results in more constraints.
Although somewhat tedious, we believe that it can be proven that the worst
case for choosing the smallest set as the restrictor is always better than the
worst case of choosing the larger set. Given that this is just worst case, and
in actuality choosing the larger could be better, we have not expened the
effort on the proof, however there are definitely cases where the best case for
choosing the larger set is better than the worst case for choosing the smaller

set.

125

Therefore, in the remainder of the discussion and for our empirical evalu-
ations, the restricted region cross-sum will imply that we choose the smallest

set as the restricting set. Using F = M, L = N and N > M we get

RRyorst (M, N,C) = M?*N + NC — % [% _ 1]

RRpest (M, N, C) = M2N+MN-|-% [% _3]

4.3.3 Generalized Cross-sum

Total LPs

Regardless of how the choices for the A are made, all of the variations
discussed require eventually checking all N M vectors, ignoring the possible
use of the ideas in Section 4.7.1. Therefore, for any version of the generalized

cross-sum, the total number of Lps is the same:

GCSyp(N, M,C) = PRUNE} p(N M, C)

= NM ,

which is no different from the NCS cross-sum’s total LP requirements, since

it is an instance of Gcs.
Total Constraints

Unfortunately, the most general, and most efficient, version of Gcs is hard
to directly analyze for the total number of constraints. The Gcs algorithm
provides the freedom to choose whichever of the five sets are smaller. Do-
ing this in general requires knowing the exact order vectors are chosen and

the results of all previous iterations, which are dependent upon the exact

126

structure of the previous and resulting value functions as well as the imple-
mentation specifics. Without this knowledge, we would need to put some
probability estimates on these quantities which would be a impossible with-
out knowing the detailed structure of the problem instance. However, we
have examined two variations of ¢c¢s, N¢s and RR, which both use a single
set for every iteration. Since the Ges algorithm has the freedom to choose
between these sets (and others) the analysis for those two variations must
provide an upper bound on the complexity of the Gcs algorithm. Thus, we

can characterize the Gcs algorithm with
GCS.(N, M, C) = min (NCS.(N, M, C),RR.(M,N,C))

We will see in Section 4.8.1 that for the worst case total constraints
the RRyorst (M, N, C) is almost always smaller than NCSyopst (M, N, C).
Keep in mind that this is merely an upper bound on the most general form

of Ges.
4.4 Incremental Pruning

With the analysis of the various cross-sum algorithms in hand, we can now
embark upon analyzing the incremental pruning algorithms, since they are
simply repeated applications of the cross-sum operations. Note that our ref-
erences to the cross-sum algorithms here are for computing the parsimonious

representation of the cross-sum.
4.4.1 Set Ordering in IP

The first issue that arises in the context of the incremental pruning algo-

rithms is the set ordering. Recall from Equation 3.10 that the 1P algorithm

127

is given by interleaving PRUNE operations in the expression
a,0 a,l a,2 a,|Z|-1
I grel groteg .. grolZi-t

However, since the cross-sum operation is both associative and commutative,
we are free to order and group the individual I';;y” sets in any way desired.
Note that this is also an issue with the GIP variations, except that the PRUNE
operation is replaced with the more general Gcs algorithm of Table 3.9.

We have seen that the ordering of the sets could have an impact on
the number and sizes of the Lps that need to be solved, especially in the
restricted region cross-sum variation. Additionally, this problem seems to
have the same basic flavor as the matriz chain multiplication problem [31],
which is a problem where the proper parenthesization can have a profound
effect on the computational requirements. Asin matrix chain multiplication,
we could postulate using dynamic programming to decide the best parenthe-
sization, where we use the formulas for the various cross-sum operations to
compute the number and sizes of the LPs. However, unlike the matrix mul-
tiplication operator, the cross-sum operation is commutative, which means
that we have to choose an ordering as well as a parenthesization. Another
difference is that in matrix multiplication, we know the size of the resulting
matrix, where in general we will not know the resulting size of the parsimo-
nious representation.

Recall from Table 3.8 that the 1P algorithms maintain a set, ¥, of sets
of vectors and at any given point in time selects two sets, computes the
parsimonious representation of the cross-sum and puts the result back into

V. Among the more obvious choices for deciding which two sets to choose

128

are
e selecting the two smallest sets (1P-ss),
e selecting the two largest sets (IP-LL) or
e selecting the largest and the smallest sets (1P-SL).

Somewhat surprisingly, even though we will not know the sizes of the
resulting cross-sums, we can completely characterize the parenthesization
for the 1P-LL and 1pP-SL cases. To show this, assume that we have a set of
sets of vectors ¥ = {I';|1 <7 < n} where Vj > ¢,|G;| < |G, i.e., the sets

are indexed according to size. Then we have
Mae(..ealT e 1ely))...)) (Pr-LL)
and
((...((CTheT)ely)els)@...)& l—1) (P-sL) .
The reason these orderings are completely determined is the fact that
[PRUNE(T; & T';)| > max([T;], [T]) -

Whenever the largest set of the group is selected, we are assured that the
result will be as large as the chosen set, which means that we will select the
resulting set on the next iteration.

For the 1p-ss case it is impossible to completely characterize the set
selection ordering. Although the first cross-sum is guaranteed to select I'y
and T'y, subsequent selections depend upon sizes of the resulting sets. If

|[PRUNE(I'; @ T'g)| < |T'4|, then the result of I'y ¢ I'y will next be selected

129

along with I's. If |[PRUNE(T'y & I'y)| is larger than both I's and I'y, then the

next cross-sum computed will be I's B T'y.
4.4.2 IP Analysis Preliminaries

In order to simplify the analysis, we must make some unrealistic assump-
tions which will end up leading to very loose worst-case complexity results.
We note that more complicated, but tighter upper bounds are possible by
parameterizing the sizes of the cross-sum results. Let |[I'¢| = @, |Z| = Z and
assume Vz,|T%"| = |Tn—1] = M. The latter assumption is somewhat rea-

. . —a
sonable and also conservative, since we do know that Vz, |T",

“| = |Ty—y| and
Vz,|T%7| < |Tpno1| . Note that under these assumptions we have @ > M.

As outlined in Section 4.4.1, the order which we select the sets does
matter, however, for simplicity we will assume that the order is predeter-
mined. The worst case for the 1P algorithm is when the cross-sum sets
get as large as possible as quickly as possible. Because the final set size
is 2, none of the intermediate sets can be larger than this quantity, since
|PRUNE(A @& B)| > max(|A[,|B]|). Thus, the worst case would be when the
first cross-sum produces a set of size () and we use this set in all the sub-
sequent cross-sums. Note that this is very pessimistic, since it may be that
|A||B| < @, in which case it is impossible for their cross-sum to be as large
as (). This shows that using the relative sizes of M and @ could yield a
tighter, though more complex upper bounds.

Under the assumptions that the first cross-sum yields the largest possible

set and that all I';;” are the same size, always choosing the resulting cross-

sum set and another one of the I'yy* sets is equivalent to both the 1P-LL and

130

IP-SL variations.

In particular, we can write the complexity as

Z
IP.(Q,M,Z) = CS.(M,M,Q) + Y _CS.(M,Q,Q) ,

=3
where CS. (M, Q, Q) is the complexity of a particular cross-sum operation
such as NCS..(+, -, -) or RR«(+, -,). This shows the first cross-sum of two sets
of size M, followed by Z — 2 cross-sums with one of the I'y* sets and the
worst scenario of a size () set. Using this, a conservative upper-bound can
be derived, though the algebra gets cumbersome. To further simplify, at the
expense of being even more conservative we assume that the first cross-sum

is also done using M and @) sized sets and we get the simpler expression
Total LPs

Using Equation 4.3 we can substitute in either NCSy p(+,+,-) or RRp(, -,),
but as discussed in Section 4.3.3 all cross-sum variations will require the same

number of Lps (ignoring the issues to be discussed in Section 4.7.1). This is
IP1p(Q, M, Z)=(Z-1)GCSp(M,Q,Q)
=(Z-1)MQ , (4.4)
which, using O-notation, is O(ZMQ).
4.4.3 Normal Incremental Pruning

We begin our analysis with the simplest variation of the the 1p algorithm for

constructing I'?, which always chooses A = D for the cross-sum operations.

131

As mentioned, choosing this is equivalent to PRUNE(A & B). This is simply
using the NCs cross-sums in the 1p algorithm, so we define this variation of 1P
as normal incremental pruning (1P-NCs). We assume that we have already

constructed all the I'y” sets and that they are parsimonious.
Total Constraints - Worst case

The regular 1P variation uses the NCS algorithm, and we get

IP-NCS yopst (Qs M, Z) = (Z — 1)NCSyopst (M, Q, Q)
=(z-1)(1Q+010- 50))
=(Z-1) (M — %) Q+1)Q , (4.5)
which is O(ZMQ?).

Total Constraints - Best case

IP-NCSy, ¢ (Q, M, Z) = (Z — 1)NCS} ot (M, Q, Q)
= (z-1) (2M0+50(Q-3)
~z-n(2r+50-9)a . 6o
which is O(ZQ?), since Q > M.
4.4.4 Restricted Region Incremental Pruning

Recall that G1P is merely the 1P algorithm where the generalized cross-sum
algorithm is used. As previously discussed, analyzing the Gcs algorithm
directly is difficult since it depends upon keeping the history of the previous

iterations to know which set would be chosen. However, we can bound

132

the ccs total constraints by the minimum of the NCS and RR cross-sum
variations. In this section we analyze a variation of the 1P algorithm which
always uses RR for the cross-sum operations and refer to this variation as
the restricted region incremental pruning (IP-RR) algorithm. This will be

used as the upper bound on the Gip algorithm.
Total Constraints - Worst case

In the worst case we have

IP_RRWOI’St(Qv M, Z) = (Z - 1)RRW0rst(M7Q7Q)

-i-n(orsa-2[¢-)

=(Z-1) ((1— ﬁ)QJrM?JF%)Q . (47)

which is O(ZM?*Q + ZQ?).

Total Constraints - Best case

The best case total constraints is

IP-RRy st (@, M, Z) = (Z — 1)RRy, ot (M, Q, Q)
=(Z-1) (MZQ—|—MQ—|—% (%—3))
=(Z-1) (M2—|—M—|—l (2—3))62 . (4.8)
2\ M
which asymptotically is O(ZM?Q + ZQ?/M).
4.4.5 Generalized Incremental Pruning

Without being able to exactly characterize the generalization of the cross-

sum operation (GCs), we cannot precisely analyze the fully general GIp algo-

133

rithm. However, as previously discussed, the minimum of 1P-NCs and IP-RR

provides an upper bound on the Gip algorithm.
4.5 Witness

Recall from Section 3.2 and Table 3.7 that the witness algorithm is predom-
inantly a loop over agenda items. For each iteration of the loop there are
only two possible outcomes; either an item from the agenda is discarded, or
we find a new vector to add to I', which is the set of vectors of ' found
thus far. As in the incremental pruning analysis we let |[T'¢| = Q, |Z| = Z
and |I'°| = |T—1| = M for all observations z. When we add a vector to
I'?, we also add all its neighbors to the agenda, which amounts to adding
Z(M —1) items to the agenda. Thus the total number of agenda items that

must be processed is QZ (M — 1).
Total LPs

Since each iteration of the witness algorithm’s loop requires an Lp, the total
number of Lps required is the number of times the loop is executed. Since
each iteration either removes an agenda item or adds a vector to f, the total

number of LPs is the total number of agenda items plus one for each vector

added to T'. This is given by
WITNESS1 p(Q, M, Z)=QZ(M -1)+Q -1, (4.9)

where we only need) — 1 Lps for building up f, since T is initialized with
a vector prior to the execution of the loop. Asymptotically, the witness

algorithm requires O(ZMQ) Lps.

134

Total Constraints - Worst case

The worst case analysis for the total number of constraints for the witness
algorithm requires an approach similar to the analysis for the PRUNE algo-
rithm. There is a sequence of LPs to be solved and the sizes of these Lps are
monotonically non-decreasing. The worst case is where the Lps get as large
as possible as quickly as possible. For this to happen in the witness algo-
rithm requires completely constructing I'? before removing any items from
the agenda. Thus the first 2 — 1 LPs result in the addition of a vector to r
after which the agenda will contain all of the QZ(M — 1) possible agenda
items.

Since T is initialized with a vector, the first LP requires 2 constraints,
comparing an agenda item against the initial vector added to T and the
simplex constraint. Since each of the first — 1 LPs are adding to f, each
LP will have one more constraint than the previous, up until |f| =@ — 1.
Note that the LP that finds the last useful vector will do so when |f| =Q-1,
thus the first LP done when |f| = () is actually done for the first agenda
item removed. Finally, to remove each item from the agenda requires an LP

with) 4+ 1 constraints and we have

Q-1
WITNESS yorst(Q, M, Z) = Z(’ +D+QZ(M-1)(Q+1)
= 2QQ -1V +Q-14+QZ(M - 1)(Q+1)
—@-1(%+1)+oz0r- v+ .

(4.10)

which is O(ZMQ?). Note that similar to the PRUNE algorithm, the proba-

135

bility of this worst case result is relatively small.
Total Constraints - Best case

Inverting the worst case total constraint argument, the best case is where
the sizes of the Lps stay as small as possible for as long as possible. For the
witness algorithm, this is a little more complicated than the arguments used
for the best case of the PRUNE algorithm. Recall from the PRUNE analysis on
Page 116 that we assumed that all the useless vectors were removed before
we found a second useful vector. A similar argument, applied to the witness
algorithm, would say that we removed all the QZ (M —1) agenda items while
there was only a single vector in T. However, agenda items are only added
when we find vectors to add to f, so unless the size of T increases, we cannot
process every item from the agenda.

To capture the interaction between the size of T and the number of items
on the agenda, for the best case we assume that we always find the next
vector to add to T with the very last item currently on the agenda. Thus

the general progression is
1. add a vector to f,
2. add the Z(M — 1) neighbors of the vector to the agenda,

3. use an LP with |T| 4+ 1 constraints to remove each of ZM—-1)-1

items from the agenda,

4. use an LP with |f| + 1 constraints to find a vector to add to f, and

finally

136

5. repeat.

There are three things to slightly complicate this: the initial vector added
to f, the final vector added to T' and, the most subtle complication, the
agenda item used to find the next vector to add to T is not immediately
removed from the agenda, which then requires another LP to remove this
item. Algebraically this progression of events and all of these complications

combined give the expression

Q-1
WITNESS ot (@, M, Z) =2Z(M = 1) + > (i +2)(Z(M 1) +1)
=1 0 0
=2Z(M — 1)+ (Z(M — 1)+ 1) (ZH—ZZ)
=220 -1+ (201 -)+ 1) (0@ -1 +2(Q - 1)
=2Z(M - 1)+ (Z(M - 1)+ 1) (Q — 1) (%Jrz)
(4.11)

Asymptotical is O(ZM@Q?), which is no different than its worst case.
4.6 Two-Pass

We analyze Sondik’s two-pass algorithm because it has the potential to be
nearly as effective as the 1P and witness algorithms, based upon a best case
analysis. Unfortunately, its worst case analysis is significantly worse, due to
the problem of the imposter vectors possibly causing |f| > || as discussed
in Section 3.4.1.

In the worst case, when every vector in fz that is notin ['¢ is an imposter,
there would be M# —(Q imposter vectors. This would make the two-pass al-

gorithm exponential in the number of observations, which is much worse that

137

the 1P and witness algorithm which are polynomial in |S|, |Z], |[',—1| and
IT'%|. However, if the value function has few or no imposter vectors, then the
algorithm will not require an exponential amount of work and could prove
to be competitive with the other algorithms. Since the two-pass algorithm
has previously received little attention, here we provide some analysis to
help characterized its performance and later provide some empirical results

which show it to be a fairly effective solution procedure.
Total LPs - Best case

Agsuming there are no imposter vectors, the number of Lps required by the

two-pass algorithm is
TWO-PASS; p(Q, M, 2) =QZ(M - 1) , (4.12)

or O(ZMQ@). This results from having to check all the neighbors for each

vector in I'}:.

Total Constraints - Best case

Again, under the assumption that there are no imposter vectors, we get
TWO-PASSy (ot (Q, M, Z2) = QZ(M - 1) (Z(M - 1) + 1)

=QZ*(M-1)*+QZ(M -1) . (4.13)

This results from each LP having Z(M — 1) + 1 constraints and yields the

asymptotic result O(Z?M?Q).

138

4.7 Miscellaneous Issues

The previous analyses are based upon overly simplified version of the algo-
rithms and there are many optimizations which can have a dramatic effect
on their empirical performance. In this section, we briefly discuss some of

these issues.
4.7.1 Saving LPs with Information States

All of the algorithms analyzed here have the general form of gradually build-
ing either a cross-sum result or the I'} sets. Some number of LPs are required
to build this set up with some fraction of the Lps leading to a vector of inter-
est. In many of these cases, the total number of Lps can be reduced by using
a set of information states to initialize these sets. Recall from Section 3.1.2
that given a point, b, in information state space, generating v%(b) € I'? is
trivial.

For specific examples:

e PRUNE(I') - given a set of information states, we could find the maximal
vector from I, for each point, before resorting to LPs to check every
vector. Here we save an LP for every unique vector we find from the

set of points.
e NCS - this is just a PRUNE call, so the same savings can be used here.

e GCS - this is just a generalization of the PRUNE routine, so using a set
of points to initialize the sets being constructed can be just as effective

as in the PRUNE routine.

139

e 1P/GIP - these are just the repeated application of the NCS or GIP algo-

rithms and can utilize a set of points as described for these algorithms.

e witness - (also see Section 3.2.3) this algorithm uses an arbitrary
information state to initialize the T' set. Similarly, any number of
points could be used to initialize this set. Since each vector added
to T in the main witness loop requires one LP to discover, the more

vectors initially put into f, the more Lps that are saved.

The issue of where to get such a suitable set of information state points
is discussed below, with it breaking down into three basic approaches. The
question of how this factors into the analysis of the various algorithms hinges
upon what guarantees can be given concerning the possible number of max-
imal vectors that could be found using such a set. Using these guarantees,
we can adjust the analysis of the algorithms to incorporate these savings.
However, this mainly leads to more complex formulas and derivations with-
out adding much to the general conclusions drawn from the analysis. Since
extremely detailed analysis of these algorithms is not currently useful or

enlightening, we have chosen to omit these more complex derivations.

Random Points

Generating information states at random is a particularly appealing method
of generating a set of information points, since the number of points gener-
ated can be easily adjusted according to the amount of resources available.
The drawback of this approach is that no theoretical guarantees can be
made concerning the number of vectors that could be found using this ap-

proach. With some positive probability, the entire set of random information

140

points could yield the same maximal vector. Note that properly generat-
ing a random information state, or more generally, a random probability
distribution uniformly over the probability space is bit more complicated
than the obvious approach of generating a random vector and normalizing.
Appendix C discusses the proper method for generating random probability

distributions.
Simplex Corner Points

The easiest set of information points to use are the simplex corners, which
provides a few advantages over any other set of points that could be consid-
ered. First, when using one of these points to find a maximal vector in a set
of vectors, we do not need to compute the full dot product b - v, since only
one component of b is non-zero. Being able to reduce the computation to a
simple component-wise comparison of the vectors makes this a particularly
efficient set of points to use.

The other advantage is the guarantees that can be provided with the set
of simplex corners. Suppose we have a non-parsimonious set I' and we will
apply the PRUNE to yield I' using the simplex corners for the initialization.
If all simplex corners are checked and the same vector in I is maximal for
all of them, then we are guaranteed that |I'| = 1 and we can skip the loop
over the |T'| — 1 other vectors entirely. This follows from the convexity of
the value function which I' represents.

Further, if |T'| > 1, then using the simplex corner checking is guaranteed
to find at least 2 maximal vectors from I'. This gives a slightly better

guarantee than is available for a random set of points.

141

Saving Points

The most intriguing and useful method for generating a good set of infor-
mation points, as suggested by Littman [71], is to associate an information
point with each vector maintained by the algorithms. We discuss how this
is useful below, but note that this results in a slightly more complex imple-
mentation.

As an example of this approach, recall that the first step in all of the
algorithms is to use I';,_; to construct the sets FZ’Z. One option, available
to all the algorithms, is to prune this set to its parsimonious representation
before applying any of the algorithms. The rationale for this approach is
that each useless vector removed from T, can result in a significant savings
while using these sets in constructing I'?. In the analyses, the size of the
f(:l’z sets were assumed to all be M, which appears as a major contributor
to the number and sizes of the LPs required by all the algorithms. Note that
there is some amount of overhead required in pruning this set, and although
the pruning will be relatively efficient in relation to the construction of the
I'% set, it is still a non-trivial addition of Lps.

Suppose that we decide to always perform this initial pruning of the
f(:l’z sets. The pruning operation will process each vector and either find
an empty region or return an information point lying in the vector’s region.
Normally, this point is ignored and discarded, but by saving this point we
can use it in the individual operations of the algorithms to eliminate some
of the required LPs.

For the incremental pruning algorithm we saw that for the individual

142

cross-sum operations |PRUNE(A & B)| > max(|A|, |B]). If all the parsimo-
nious I'y;” sets are used in the 1P algorithm, then inductively we get the

relationship
IT4] > max 1] | (4.14)

which must hold regardless of the specific algorithm used.

We now focus on the problem of computing A® B where we have a saved
a point for each of the R(a, A) and R(/3, B) regions, for all « € A and 3 € B.
These points in the region are equivalent to the points we could have acquired
in the pruning of the I'y” sets. Furthermore, assume that |A| > |B|. For the
NCs algorithm, which is merely the PRUNE algorithm, using the set of points
associated with A for the initialization of T is guaranteed to find exactly | A|
maximal vectors; i.e., each point will yield a unique maximal vector from the
full cross-sum. This saves |A| LPs and using the points associated with B
in addition to those points may yield even more savings, though we cannot
guaranteed those additional points will have maximal vectors different from
the set found with the points for A.

After initializing T for this cross-sum pruning, the NCs (or Ges) routine
will proceed to process the remaining vectors in the full cross-sum, uncover-
ing those with non-empty regions to be added to T'. Just as in the pruning
of the I'y* sets, we do not want to throw away the information points un-
covered for the useful vectors, but want to save them so that we can apply
the same optimization in later cross-sum operations that might involve the
results of A & B.

The above description showed the basic idea behind using saved points to

143

optimize the 1P and cip algorithms. However, this idea also applies to the
initialization of the witness algorithm. The relationship of Equation 4.14
means that taking the points associated with the largest I'y® set will be
guaranteed to produce || distinct vectors, thus saving that many LPs.
As with the cross-sum, using the points associated with the other I';* may
yield more vectors, but no guarantees can be made. Since the 1p algorithm
has guaranteed savings for each cross-sum, and the witness algorithm only
has a guarantee on the final set size, it would seem that the saving of points
would have a more dramatic effect on ip. We have done some preliminary ex-
perimental exploration into this issue, which demonstrated the effectiveness
of saving points, but we have not yet completely characterized the savings
or the differing effects on the various algorithms.

The analysis of the algorithms can be adjusted to incorporate this idea
of saving points. Define PRUNE-SP(G, V, P) to represent the complexity of
the PRUNE routine augmented with a set of points, such that for the given
set of points it is guaranteed to find at least P distinct vectors. We then

have

PRUNE-SP[p(G,V,P)=G — P

V-p G-V
PRUNE-SPyy0,¢ (G V) = Y (P+i)+ Y (V+1)
=1 =1
G-V V-p
PRUNE-SP}, ot (G, V) = > (P+1)+ > (P+1) .
=1 =1

Substituting these in for the complexity derivations for the NCs, G¢s, 1P and
G¢Ip analysis will yield the complexity for the variations of the algorithms

which incorporate saving points.

144

The specific RR instance of ¢¢s the equation to use for the number of

LPs and total constraints is

M
RR-SP. (M, N,C) =) " [PRUNE-SP..(N,C;, 1) + N(M — 1)]

i=1
This case is a bit different from the others, since the region restriction means
that we can only guarantee that we have one saved point lying in any region.
In this case, there is some tension between the constraints saved by making
F < L and the number of 1ps saved by making F > L.
As mentioned, this same idea applies to the witness algorithm, which

under all the previous assumptions yields

WITNESS-SP1 p(Q,M,Z) = QZ(M —1)+Q — M

Q-M
WITNESS-SPyoret(@, M, Z2) = Y (M +i) +QZ(M - 1)(Q +1) .
=1

This assumes that the largest Ty set is of size |T',,_1| = M.

Another possible variation of saving information points associates a point
with each vectorin I',,_;. At some point in all of the algorithms, to determine
that a vector is a part of the true representation, an information point is
produced. If we save these points, then on the next DP iteration, even if
we decide not to do the extra work required to prune the F 1 sets and
generate points, we could use the set of points associated with the previous
value function representation to initialize the various algorithms. This does
not give any guarantees on the number of LPs that will be saved, but if
the general structure of the PWLC function does not change too much from

one iteration to the next, then the set of previous points might provide a

145

reasonable amount of savings, with no extra computation, though a small

amount of additional storage space.
4.7.2 Domination Checking

Section 3.1.1 discussed a simple, yet effective domination checking proce-
dure to detect a useless vector without the need for an Lp. Although it was
presented in the context of optimizing the PRUNE routine, it can be incorpo-
rated into all of the exact algorithms. Any time an LP is set up to compare
a vector against a set of vectors (e.g., the findRegionPoint routine), we
can preface this with the simple domination check and forego the Lp if the
domination check shows the vector to be useless.

The problem with attempting to incorporate the domination checking
into the analysis, is that there is no general way to know how many vectors
may be removed from this simple check. One way to handle this in the
analysis is to define some parameter representing the percentage of vectors
which would be removed by the domination check.

For example, let I' = PRUNE(T), where [T| = G and |T| = V and the
pruning routine prefaces its main loop with a call to the domination checking
routine. Let oG be the percentage of vectors remaining after the domination

check. Then we have

PRUNE-DOMj p(G,V) = oG
14 oG-V
PRUNE-DOMyopst (G, V) =D i > (V+1) .
=1

i=1
Doing this type of analysis for all the algorithms yields expressions which

show the effects of the domination checks in terms of number and sizes of

146

the Lps. This sort of detailed analysis is omitted here, but could be used
to characterize the algorithms, and their variations, if future research can
better characterize the ¢ parameter for problems, perhaps by analyzing
the structure of specific POMDP instances. For varying values of o, some
algorithm variations may prove more effective than others.

We note that the domination checking does require a certain amount
of overhead. If the check removes no vectors, then the effort is completely
wasted, however the time required by the LPs dwarfs the time required by

the domination checks.

4.8 Algorithm Comparisons

Given the closed form expressions derived in the previous section, we now

have the groundwork for comparison of the various algorithms.
4.8.1 Cross-sum Comparisons

The most general cross-sum algorithm (Gcs) has the flexibility to allow
selection of the smallest comparison set, where the decision can be made
as the algorithms progresses. This allows choices based upon the specific
results of previous iterations of the main loop. However, this dependence
on the previous iterations made the ¢c¢s algorithm difficult to analyze, since
there is no a priori way to predict the results of these previous iterations.
The approach we used was to present the RR variation of the ccs algo-
rithm, which always chooses the same set. Additionally, the NCS cross-sum
algorithm is also a variation of the Gcs algorithm except it uses a differ-

ent predetermined set for the comparison (see Section 3.3.3). Because the

147

¢es algorithm has the freedom to choose and since we have analyzed two
variations which do not choose, the complexity of the ccs algorithm for a
given N, M and C' is bounded above by the minimum of the NCs and RR
algorithms.

We will compare the NCS and RR cross-sum algorithms, and see that
for nearly all values of N, M and C, the RR algorithm has fewer total
constraints in the worst case. This result will allow us to use the worst case
total constraints for the 1P-RR algorithm as an upper bound on the worst
case complexity of the aip algorithm instead of having to use the minimum
of the 1P and 1P-RR algorithms, which is slightly more cumbersome.

We have seen that, without any of the possible optimizations, the total
number of Lps required by both cross-sum variations is identical. Thus
we restrict this comparison to the total number of constraints, which is

equivalent to comparing the average sizes of the Lps.
Worst Case Comparisons

Comparing the worst cases of the two cross-sum algorithms is not completely
conclusive, since we have no way of characterizing how likely these are to
be achieved. However, since the Gcs algorithm is bounded above by the
minimum of the Ncs and RR algorithms, the results of this analysis will
allow us to almost always use the RR version as a bound on the worst case
for the ccs algorithm.

Comparing the two cross-sum algorithms is equivalent to characterizing

when the quantity

Ncsworst(Nv M, C) - RRworst(Mv N, C)

148

or

C*(M - 1)

NMC+ NM — M?N — NC —
+ oM

-C

is greater than or less than zero. When this quantity is greater than zero, the
RR cross-sum has fewer worst case constraints and is the preferred choice.

With the assumption that N > M, we have the constraints
MINLSCLMN .

We can also restrict M > 1, since the result of a cross-sum of a single
vector, «, and a parsimonious set, B is always {a} @ B with no pruning step
required. Under these constraints, it can be shown that the Ncs algorithm
has a better worst case than the RR algorithm only in some very select cases.

More specifically, these cases are:
o if (' =N=M;
o if C' < b;
e if C' =15 and either

- N=3,M=2or
- N=3,M=3or

— N=4, M = 4;

o ifC=6and N =M =25.

149

Asymptotic Comparison

The better worst case bound for the RR algorithm for larger values of M, N

and C can also be seen from an asymptotic analysis. We have the quantities
1
NCSyorst (N, M,C) = NM(C' +1) — §C(C'—|— 1)

RRyorst (M, N,C) = M*>N 4+ NC — % [% — 1] ,

where the dominating quantity is O(NMC — C?/2) for Ncs and O(M?N +
C?/2M) for RR. With the constraints on the sizes, and since these two
quantities are not directly comparable, it helps to break these down into the
two extreme cases C' = O(N) and C' = O(N M), this time using O-notation.

In the case C' = O(N), Ncs becomes O(N?M) and RR becomes O(M?N +
N?2/2M). Since we have the constraint N > M, we see that RR has a better
asymptotic complexity than Ncs. The case where N = M = C changes the
analysis and results in Ncs and RR both being O(N3), though Ncs actually
requires fewer constraints than RR. When C' = ©O(N M) we get O(N2M?) for

Ncs and O(N?M) for RR showing the clear preference for the RR algorithm

when C is large.

4.8.2 1IP vs. GIP vs. Witness
Total LPs Comparison

Asymptotically, the 1P and witness algorithms are all O(QM Z) for the total
number of LPs required as seen from Equations 4.4 and 4.9. However, which
algorithms requires fewer total LPs hinges upon the relationship between
the size of I',,_1 and the size of the observation set Z, which are M and Z

respectively. Essentially, if M > Z the 1P algorithms will do fewer Lps.

150
Total Constraint Comparison

Worst Case From Equations 4.5, 4.7 and 4.10 we get the following asymp-

totic results

IP-NCSyyorst (@, M, Z) = O(ZMQ?)
IP-RR ot (Q, M, Z) = O(ZQ? + ZM>Q)

WITNESS worst (@, M, Z) = O(ZMQZ))

Since we showed that RR was asymptotically better than Ncs, it is not
surprising that IP-RR is asymptotically better than 1p-Ncs. However, we
see that the witness algorithm has the identical complexity to the 1P-NCS
algorithm, showing that the IP-RR algorithm is asymptotically the best exact
algorithm for constructing I'? from I',_; in terms of the total constraints

required over all Lps.

Best Case To get some feel for the relative ranges on the total number
of constraints we show the asymptotic behavior for the best cases of the

algorithms. From Equations 4.6, 4.8 and 4.11 we get

IP-NCS},ost (Q, M, Z) = O(2Q?)

ZQ?

IP-RR et (@, M, Z) = O(ZM*Q + W)

WITNESS}, (ot (@, M, Z) = O(ZMQ?) ,

We see that the best cases for the 1P variants are slight improvements
to the worst cases, while the witness algorithm’s best case complexity is
the same as its worst case complexity. This hints that empirically the 1p

variations could perform better than the worst case analysis would predict.

151
4.8.3 Two Pass

As discussed in Section 4.6, the worst case total constraints is exponential
in Z for the two-pass algorithm due to the problem with imposter vectors.
However, assuming that the imposter vectors are not a problem, the best
case analysis makes the two-pass algorithm competitive with the other al-
gorithms. In particular, the number of total LPs required is of the same
asymptotic complexity as the other algorithms, namely O(QMZ) (Equa-
tion 4.12). The complexity for the best case total number of constraints is
O(Z*M?*Q) (Equation 4.13), which makes the two-pass algorithm polyno-
mial in the parameters. However, this algorithm only has the potential to

perform somewhere between the witness and 1p algorithms.

152

4.9 Exact Empirical Results

Although the previous section’s analysis helps to characterize the algorith-
mic variations and shows the asymptotic relationships between them, there
is no better way to evaluate the the effectiveness of the algorithms than
an actual comparison of the algorithms in execution. Many simplifying as-
sumptions were made in the analysis section, which although always on the
conservative side, may not have the same effects upon all the algorithms.
Additionally, there are many factors that were ignored completely in the
analysis; e.g. bookkeeping overhead, memory requirements, etc. Finally,
there is a fair amount of overlap between the best and worst cases for the
different algorithms. This section presents empirical results on a range of
problems to serve as the evaluation of the previous analyses. We will use
both randomly generated POMDPs and some small problems from the liter-

ature for which exact solutions are possible.
4.9.1 Random Problems

The complexity of solving POMDPs means that few researchers or commercial
enterprises have embraced the model. As a result, POMDP models are a
scarce commodity, despite the fact that poMDP problems are ubiquitous.
Most of the existing POMDP models in the literature are fictitious domains
which are either too small to glean useful conclusions when using them in
comparisons, or too large to solve exactly. For instance, the majority of
POMDP research papers in the operations research journals to date have
examples with only 2 or 3 observations. An enumeration algorithm such as

discussed in Section 3.3.1 can be quite effective on such problems, despite

153

having best case complexity exponential in the number of observations.

In this section we explore randomly generated POMDP problems. These
random problems allow us to tailor the experiments to a specific number of
actions, states, observations or initial value function size. This will allow us
to compare the exact algorithms by exploring the range for which they can
practically solve the problems. For completeness, the next section will show
empirical results on a few of the available POMDP models that are within
the computational range of the exact algorithms.

Because our focus is to compare the individual algorithms for construct-
ing I'? from I',,_q, it is not necessary to run value iteration for more than
one step, and there is also little need to include the construction of I'), itself.
Thus, we will predominantly be comparing the algorithms on the basis of
constructing all the I'? sets from a given pseudo-random initial set of vectors
representing I';,_1.

We first discuss our method for generating random problems and then

present the empirical results using them.
Random POMDPs

Although one could imagine many definitions for random PoMDPs we adopt

one that is very simple.

Definition 4.9.1 A random POMDP is a POMDP generated as follows:

e For each state-action pair, set the state transition function to be a
random probability distribution chosen uniformly over all possible dis-

tributions.

154

e For each state-action pair, set the observation probabilities to be a
random distribution chosen uniformly over all the possible distributions

over the set of observations.

e For each state-action pair, set the immediate rewards to be a real num-
ber uniformly selected from a fired interval. For all the problems pre-

sented, the interval is [0 10].

Note that only the probabilities and rewards are random, and not the actual
sizes of the sets, or ranges of reward values, that comprise the poMDP. We
also do not generate the discount factor randomly, but assume that it is
some fixed quantity. In fact, focusing on a single DP step will make the
discount factor have negligible effect on the empirical result here and thus
we used the discount factor p = 1.

At the heart of this definition is the generation of random probability
distributions. Appendix C shows that the naive algorithm for doing this is
not sufficient and presents the algorithm used in our empirical results for

generating random distributions.
Random PWLC Functions

We have not devised any suitably satisfying definition for a random PwWLC
value function. However, for any definition, the inclusion of useless vec-
tors should be avoided, since they do not contribute to the function is any
meaningful way.

Thus we used a simple scheme to generate a fixed-sized parsimonious

PWLC function by randomly generating vectors and throwing away useless

155

or imposter vectors. This is repeated until a parsimonious set of the desired
size is achieved. This suffers from many problems, the most prominent being
that one relatively large vector, when added to a parsimonious set can yield
a set much smaller than the original. This skews the PWLC function toward
having large valued vectors. The practical concern of such a scheme is
that much effort can be wasted generating useless vectors. Empirically, the
computational problems only present themselves when trying to generate a
large number of vectors for a problem with a small state space. For all the
examples presented here, the size of the initial random representation for

the input value function, I';,_y, was 10.
Defending Random Problems

There is often an expressed displeasure for random problems, since no one
truly needs random problems solved. In many classes of problems, random
problems tend to have nicer properties than those that really need to be
solved and are a poor basis for empirical comparison of algorithms; in oth-
ers random problems are harder than the “usual” problems. This objection
tends to be less valid for the results presented here. By fixing the number
of actions, states, observations and the size of the initial set of vectors, the
only variable becomes the sizes of the I'? sets. However, given a specific
input and output size, the running times of the algorithms are fairly pre-
dictable based on the number of additions and multiplications that must be
performed. Thus, the actual values that are manipulated are of little conse-
quence to the algorithms. Although this predictability would seem to negate

the need for our empirical results, they are nonetheless important since the

156

analysis ignored many of the implmentation and overhead requirements of
the algorithms.

In fact, random problems tend to have very dense transition and observa-
tion matrices, where real problems usually exhibit some type of sparseness.
If the sparseness is exploited, this would make random problems harder to
solve than actual problems. Although not quantized, our experience has
been that random problems of a given size are much harder to solve than an
equivalent sized problem that is based upon more realistic system dynamics.

Having argued for random problems, we must also say that these algo-
rithms are not completely immune to the concerns about random problems.
All the algorithms have differing best and worst case complexity and it is
unknown whether random problems are more likely to skew the algorithms
in this range differently than realistic problems. For this reason, following
the random problem results, we present some empirical results on problems

that are loosely based on realistic domains.
Experimental Set-up

A problem instance is a particular size random POMDP and a particular
initial value function. Although we generated many problem instances, every
algorithm considered was run on every given problem instance.

Because even small random problems can require a significant amount
of computation, we have had to impose an upper threshold on the running
times. Any algorithm which takes more time than this threshold is termi-
nated, and the threshold value is used as its running time. This is necessary,

because imposing a threshold is an arbitrary scheme and once the threshold

157

is met, there is no way to know whether it would have finished in the next
millisecond, or the next millennium. By assuming it finished at the threshold
value, we are adopting the most generous viewpoint. For our experiments,
the particular threshold chosen was 1,800 seconds.

As mentioned, we would run a single value iteration DP step and monitor
the cPU execution time for the time spent in building the I'? sets. Because
there is no dependence on the number of actions for these algorithms when
comparing the construction of I's, we have fixed the number of actions to be
4. Thus the execution time measures the time to construct four parsimonious
sets from the initial set.

All of the algorithms are part of the same base of code and share a large
percentage of the routines. This minimizes the amount of coding-dependent
efficiency issues which might otherwise arise if completely separate imple-
mentations were compared. While none of the code is highly optimized,
some care was given to ensuring that any slight coding optimization of one
algorithm was equally considered for the other algorithms. There is still
much savings that could be obtained from a detailed analysis of the routines
for this code.

Because of machine precision issues and the way they interact with the
various algorithms, it is possible for the algorithms to disagree about the
size of the final set for a given problem instance. While this disagreement
is rare, it is important to ensure it does not happen, since the complexity
of the different algorithms depends upon the size of the resulting sets. We
monitored the sizes of the answers for the various algorithms on each prob-

lems instance and for the approximately 2, 000 random problems generated

158

all produced exactly the same sized solutions.

Because random problems of the same size can have varying complexity
in terms of the sizes of the resulting I'¢ sets, we have averaged the execu-
tion times from a number of different instances of each initial problem size.
All the experiments were run on the same architecture, Sun Ultra-Sparc 1,
using the same operating system, Solaris, and the time is measured in cPU
seconds using features of the operating system to track execution time of
the individual process, rather than wall-clock time.

We have compared 4 algorithms: witness, IP-NCS, IP-RR and two-pass
and have varied the number of states and observations in our comparisons.
Some of the other optimizations were implemented, and are significant im-
provements to the basic algorithms, but no results for these are presented
here. For all these algorithms, we used the initialization using the simplex

corners discussed on Page 140.
Results

The three-dimensional plots in Figures 4.2 and 4.1 show the total execution
times for constructing the four I'? sets as a surface over the axes representing
the number of states and observations. In these figures the execution time
for each instance of a problem size is an average of 5 different random prob-
lems. The differences here are not immediately noticeable, possibly with
the exception of the witness algorithm, since these plots only tend to bring
out the more dramatic differences. For this reason, we will look at some
two-dimensional sections, which will also allow us to use a larger sample

size. In the following graphs and tables, the results are the average over 25

159

different problem instances.

Figure 4.3 shows the amount of time required to construct the I'{ sets
when the state set size is fixed at |S| = 7 and the number of observations
varies from 3 to 15. We see what appear to be differences over the various
algorithms, however, while these line graphs do give a nice characterization
of performance, they mask the true relationship between the algorithms,
since they hide the variances. Table 4.1 shows this same data in tabular
form and shows the results of doing a simple two sample T-test. In this
table, the best time is highlighted with a dark box around it, while the
entries with lighter boxes indicate times which are not deemed significantly
worse than the best time; i.e., the non-boxed entries are significantly worse.
Since we have imposed a threshold on the execution time, there may be
more significant differences than are shown in the tables.

We see that the two-pass algorithm is always the best, the witness algo-
rithm is always significantly worse, and the two 1P variants are sometimes
competitive, especially for the smaller problems.

Figure 4.4 shows the results when the states vary from 3 to 15 and the
observations are fixed at 7 with the corresponding Table 4.2 showing which
differences are significant. We see that for varying numbers of observations,
the two-pass and 1P-RR algorithms start to dominate, with the two pass
showing some significant differences.

Finally, Figure 4.5 and Table 4.3 shows the results when the the number
of states and number of observations are varied simultaneously so that |S| =
|Z] at all times. Although visually, the differences between the algorithms

is not as great, we see that the two-pass algorithm is the best, though this

Cbservati ons

(a) Restricted Region

1500
Time 1000

500

Figure 4.1:

Cbservati ons

(b) Incremental Pruning

09T

Cbservati ons

(a) Two Pass

1500
Time 000

500

Figure 4.2:

Cbservati ons

(b) Witness

191

162

IpRr
IDNCS -

TwoPass,:'—'**f—'
Witness
8 9 10 11 12 13 14 15

Observations

7

3 4 5 6

1600

1400
1200 r
1000
800
600 r
400 t
200

awiL

Figure 4.3: Total execution time for constructing all I'? sets for the random
POMDP problems with |§|=T.

‘ Obs. H IpRr ‘ IpNes ‘ TwoPass ‘ Witness ‘
3 10.729] | 0.591] 0.589 1.315
4 [1.784] | [1.681] 1.202] 3.534
5 1880 | [3.052]| 11.069
6 7.667 0.187 | [5.360] | 22.253
7 19.278 | 20.527 | [13.361]| 91.578
8 26.003 | 42.387 | |16.958] | 122.502
9 82.499 | [28.896] | 320.850
10 72.610 | 132.690 | [39.928] | 435.048
11 323.672 | [78.634]| 702.685
12 269.402 | 521.814 | [123.418] | 1051.657
13 396.131 | 738.549 | [159.073] | 1219.628
14 580.646 | 925.986 | [271.939] | 1332.108
15 902.789 | 1174.707 | [367.210] | 1438.178

163

Table 4.1: Total execution time for constructing all I'? sets for the random

POMDP problems with |S| = 7. T-test with p = 0.95.

164

To)
T T T T T T 1
I <
L -~
L =0 uw ™
Xxoonwn —
0> © O
-ID.DO.m N
2= = N
==
L = —
—
B o
—
n
Q
L 9..&
)
0
- o)
- 4~
- ©
- To)
- <
1 1 1 1 1 1 1 3
o o o o o o o o o
o o o o o o o o
© < N o 0) < ~
- — — —
awilL

Figure 4.4: Total execution time for constructing all I'? sets for the random
POMDP problems with |Z| = 7.

States. H IpRr ‘ IpNes ‘ TwoPass ‘ Witness
3 [2.501] | [2.446] 0.877 2.042
4 [5.538] | [5.908] (2,537 7.700
5 s.815 | [4198]| 15.082
6 0.120 | 10.609 | [5.107]| 19.286
7 [19.278] | [29.527] | [13.361] | 91.578
8 30.347 | 58.092 | [21.988]| 219.155
9 70.628 | [29.674] | 279.322
10 46.397 | 96.711 | [36.866] | 390.923
11 232.861 | [62.318] | 677.328
12 167.415 | 375.261 | [114.244] | 904.388
13 159.863 | 475.466 | [120.452] | 1079.734
14 259.331 | 772.531 | |176.225] | 1230.415
15 353.122 | 866.636 | [239.121] | 1576.024

165

Table 4.2: Total execution time for constructing all I'? sets for the random

POMDP problems with |Z| = 7. T-test with p = 0.95.

166

‘ States/Obs. H IpRr ‘ IpNes TwoPass ‘ Witness ‘
3 0.328 0.268 0.181 0.343
4 1.014 0.901 [0.523] 1.163
5 2.870 2.875 1.675] 4.545
6 5.737 6.563 3,580 12.036
7 19.278 29.527 | [13.361] 91.578
8 62.840 | 126.947 40.211 513.418
9 239.923 | 606.104 | [136.525] | 1291.950
10 803.128 | 1194.624 | [384.270] | 1565.504
11 1484.407 | 1711.493 | [834.105] | 1798.577
12 1652.665 | [1266.022] | 1689.086
13 1605.054 | 1797.613 | [1280.929] | 1803.345
14 1835.662 | 1821.193 | | 1703.427
15 11681.873| | [1671.918] | [1602.791] | | 1670.595

Table 4.3: Total execution time for constructing all I'? sets for the random
POMDP problems with |S| = |Z|. T-test with p = 0.95.

is masked as the execution times of the algorithms reach the saturation
point of 1,800 seconds. Notice how quickly all the algorithms reach this
saturation point when the problems sizes scale in both the observations and
observations simultaneously.

Although the running time is what is ultimately of interest, our analysis
focused on the numbers and sizes of the LPs. Figures 4.6 through 4.8 show
the relationship between the algorithms in terms of the number of LPs solved
for the three cases whose run times were shown above. Again, this is the
number of IPs required just in building the I'? sets. As expected from
the analysis, the witness algorithm requires more Lps that the 1P variants.

Although it isn’t an asymptotic difference, the extra ¢ Lps (see Page 133)

|$| yym swejqoid dawod

|zl =

J Tre SUIONIISUOD I0] oW} UOTINIIXD [RIQ], (G F 2In31]

U
D

Wopuel 974 I0] 398

Time

2000
1800
1600
1400
1200
1000
800
600
400
200
0

3 4 5 6

7 8 9 10 11 12
States/Observations

13 14 15

191

168

seems to be showing itself in these figures.

Perhaps most interesting is the large number of LPs required by the
two-pass algorithm. We have already seen that the two-pass algorithm is
among the fastest in these problems, yet seems to be doing far more LpPs than
the competitors. A partial explanation comes from looking at Figures 4.9
through 4.11 which show the total number of constraints required. Despite
requiring many more LPs, the two pass algorithm is competitive in terms
of total constraints, which means that the average LP size is much smaller
than the other algorithm. It is unknown whether, in general, many small
LPs are preferable to fewer large LPs and it may be highly dependent upon
the actual constraint coefficients.

Although we have predominantly presented this empirical data pictori-
ally, Appendix I.1 has the full numerical results with a T-test comparison
and also includes data for the total running time, including the merging of

the I'* sets.
Size Relationship between I' and I,

Recall from the theoretical analysis of Section 4.1.2 that the worst case
complexity for constructing I',, from I',,_; is intractable. However, for the
polynomial action-output bounded problems the witness and incremental
pruning algorithms are tractable. Thus, there are problems where the I'?
sets are exponentially larger than the I';; set. The interesting empirical
question here is in exploring the relative sizes of the I'? and I',, sets. Using

the experiments from the previous section and monitoring the size of the

9| M swopqord

I [Surjonijsuod 10} sdT [e10], :9'F 9In3I

"L

U
D

ddNOd WOpUeRI 31} I0J 398

LPs

250000

200000

150000

100000

50000

IpRr ——

IpNCcs -

TwoPass
Witness -

3 45 6 7 8 9 10 11 12 13 14 15
Observations

691

|| i swopqord

L
J [Suljonijsuod 10} sdT [e10], :L'F 2In3Iq

U
D

ddNOd WOpUeRI 31} I0J 398

120000
100000
80000

o
o 60000
40000

20000

IpRr ——
IpNCcs -
TwoPass
Witness

3 4 5 6 7 8 9 10 11 12 13 14 15

0LT

9| M swopqord

|zl =

J [Surjonijsuod 10} sdT [e10], :8'F 2In3I

U
D

ddNOd WOpUeRI 31} I0J 398

LPs

500000
450000
400000
350000
300000
250000
200000
150000
100000
50000
0

Il 1 Ly

IpRr ~—

ApNcs
TwoPass -
Witness

3 4 5 6

7 8 9 10 11 12
States/Observations

TLT

) = |g| ym sweqord damod

I [[e SUIIONIISUOD IOJ SHUTRIISUOD [eI0], :6'F 2InsIq

U
D

WOpueRl 9y} I10] 308

4e+07

3.5e+07

3e+07

n
al
®
+
o
\l

2e+07

Constraints

1.5e+07

1e+07

5e+06

P

o S

IpRr ——

IpNCcs <~ i
TwoPass

Witness |

5

6

7

8 9 10 11 12 13 14 15

Observations

¢Ll

173

IpRr
IpDNcs ——
TwoPass — 7
Witness

8 9 10 11 12 13 14 15
States

7

3 4 5 6

3e+07
2.5e+07
2e+07
1.5e+07
le+07 |
5e+06 |

Sjulrelisuod

Figure 4.10: Total constraints for constructing all I'? sets for the random
POMDP problems with |Z| = 7.

~ IpRr
“IpNcs ——
TwoPass:

Witness

7

1 1 1 1

e Y e T
© o o o o
¥ ¥ ¥ ¥ ¥
) [) [)
n o v «~N W
™ o —

Sjulelisuo

)

le+07

5e+06

3 4 5 6

8 9 10 11 12 13 14 15

States/Observations

174

Figure 4.11: Total constraints for constructing all I'? sets for the random

POMDP problems with |S| = |Z].

175

final set, I, as well as the individual I'¢ sets, we computed the ratio

20 |15
Tl

For the experiments that were the basis of the three-dimensional plots
in Figures 4.2 and 4.1, the average ratio was 2.559. Although there were
a total of 845 individual POMDP problems®, these statistics are based upon
only 602 data points, since the runs which timed-out did not allow access to
the final value function sizes. The variance for this case was 2.294 and the
maximum ratio was 16.725.

We computed the same statistics for the empirical results shown in the
line graphs and tables. In this case, based upon 687 data points, the mean
was 2.438, the variance was 1.393 and the maximum ratio was 19.25. Thus,
the worst case relationship between the sizes of I'? and I',, does not seem to

occur on these random problems.
4.9.2 Small Problems

The purpose of presenting the algorithms on a set of small problems from
the literature is two-fold: first, we want to alleviate any of the possible
objections to the random problems of the previous section; second, we want

to compare these algorithms in the more realistic setting of value iteration.
Experimental Set-up

For these algorithms we also imposed a threshold on the running time, but

here used 3,600 seconds. For a given problem instance, value iteration runs

3We ran 5 experiments for each problem size. The states and observations varied from
3 to 15 resulting in 13 x 13 x 5 = 845 experiments.

176

all the algorithms with the execution time for each step of value iteration
being monitored. If all algorithms completely solved the infinite horizon
problem?* then those results were reported. However, if all of the algorithms
did not terminate, we used the number of value iteration steps of the al-
gorithm that made the least progress for our point of comparison. Since
we monitored the time for each iteration, we could report the time an algo-
rithm took for that minimum number of iterations, even if it had progressed
further.

We used 9 small problems which are listed in Table 4.4. This table
shows the name of the domain, the sizes of the model for the domain, and
the number of value iteration stages completed in the allocated time, the
size of the final value function representation, I'y, and a reference to where
this problem first appeared in the literature. Note that the saci problem
is a single aircraft identification problem similar to the 1FF domain which is
described in Appendix H.4.

We only executed each algorithm on each problem once. Since these
are specific problem instances, all the algorithms operate deterministically.
The only source of variance is in the functioning of the operating system.
Because these algorithms are purely computational we expect, and our many
experiences with these implementations show, that these variations are very
minor. Therefore, for the tables presented in this section, the boxed entries
in the tables serve only to highlight the best entry and are not indicative of

statistical significance.

*We used a very conservative measure of the Bellman error between two successive
iterations’ value functions and stopped value iteration when it was below the threshold

107°.

177

Problem || States | Actions | Obs. | Stages | [Vj]| | Reference |

X3 11 4 6 9 [1375 [96]
4x4 16 4 2 374 | 20 [23]
CHEESE 11 4 7 373 14 [85]
PAINT 4 4 2 23 90 [62]
SHUTTLE 8 3 5 8| 991 [28]
TIGER 2 3 2 19 61 [23]
NETWORK 7 4 2 18 | 578 [24]
NONLIN 7 3 6 404 5 [96]
SACI 12 6 5 4| 258 [24]

Table 4.4: Small problem sizes, parameters and references.

Table 4.5 shows the result of the four principle algorithms on these prob-
lems. This table shows the total execution time in seconds for value iteration
for the number of stages indicated in Table 4.4. However, our analysis fo-
cused upon the complexity of constructing the I'? sets and compared the
algorithms from this perspective. In fact, the execution time spent build-
ing and pruning the I'y” sets and the time spent merging the I'? sets into
I',, should be nearly identical® for all of the algorithms, modulo some small
variance due to operating system unpredictabilities.

This common amount of execution time tends to mask the true savings
available from the various algorithms. For this reason, we also kept track of
the amount of execution time spent only in constructing the I'? sets from
the I'v® sets and this is shown in Table 4.6.

The most obvious result is that for none of the problems is the witness al-
gorithm the best, though there are domains where it is competitive with the

1P variations. However, there are also domains where the witness algorithm

5The PRUNE routine’s running time depends upon the order in which the vectors are
processed. Since each algorithm produces the set differently, different orderings of vectors
are given to the PRUNE routine.

H 4x3 ‘ 4x4 ‘ CHEESE ‘ PAINT ‘ SHUTTLE ‘ TIGER ‘ NETWORK ‘ NONLIN ‘ SACI ‘
IP-RR [271.16] | [120.08] | [38.44] | 475.65| [108.95]| 92.60 | [293.40]| [3.01]][30.35]
IP-NCS 685.35 200.45 40.63 378.23 158.81 74.37 494 .89 2.91 42.60
TWO-PASS 487.25 284.81 55.51 329.70 277.56 54.10 679.83 10.57 161.49
WITNESS 2467.07 378.22 64.96 559.53 1567.13 68.50 2895.79 10.57 71.82

Table 4.5: Execution time in seconds for constructing [',.

8LT

| 4x3| 4x4 | cHEESE | PAINT [SHUTTLE | TIGER | NETWORK | NONLIN | sacl |
IP-RR [33.00] | [0.26] | [13.16] | 453.01 | [21.02]| s84.51| [115.31] 0.12] | [19.92]
IP-NCS 444.14 | 82.05| 15.41 | 355.38 71.28 | 66.35 325.82 | [0.12]| 31.88
TWO-PASS || 216.10 | 163.86 | 30.24 164.03 502.23 | 7.50 | 125.03
WITNESS || 2221.37 | 259.02 | 39.96 | 538.17 | 1479.11| 60.78 | 2726.67 7.68 | 61.43

Table 4.6: Execution time in seconds for constructing all the I'? sets.

6LT

180

is orders of magnitude slower.

Although the 1P-RR algorithm gives the best times in 6 of the 9 algo-
rithms, there are instances where it is not significantly better than 1pP-NCs
and even instances where 1P-NCS is just as good. Thus the more general
GIp algorithm would be at least as good as the minimum of these two and
perhaps even faster.

There are instances where the two-pass algorithm gives better times
than both 1P versions, though both of these domains happen to have only
2 observations. Recall from the analysis that the two-pass algorithm is
the only one with a complexity that has a Z? term; i.e., quadratic in the
size of the observation set. Overall the two-pass algorithm is reasonably
competitive with the other algorithms, which means that the troublesome
imposter vectors may only be a theoretical worry.

Our analyses earlier in the chapter focused upon the complexity of the
algorithms in terms of numbers and sizes of the LPs that were solved, which
we argued should be closely correlated with the execution time. Tables 4.7
and 4.8 show the number of LPs and total constraints used in constructing
the T'% sets from the I';y” sets. Aside from the 4x4 problem, only in the
4x3 domain does the 1P-RR algorithm do significantly fewer total Lps than
IP-NCS, and in the CHEESE domain IP-RR requires nearly twice as many LPs
as IP-NCS.

The most glaring numbers in these tables are the zeroes for the 4x4
and NONLIN domains for the 1p variants. This comes from the initialization
procedure that uses the simplex corners to initialize the I'? sets. Recall from

Page 140 that when this initialization yields a single vector, the actual size

181

of the set must be 1.

Although the 1P-NCS and 1P-RR variants do equivalent numbers of Lps
on many of the problems, this does not translate into doing a similar num-
ber of constraints. As an example, the most interesting result is for the
NETWORK problem where 1P-NCS does 24,948 Lps and 1P-RR does 24, 017.
Although roughly the same, the disparity in the number of constraint is
large: 5,194,613 to 764,836. This translates into the disparity in the exe-

cution time where IP-NCS requires more than twice the time.

| 4x3 | 4x4 | CHEESE PAINT | SHUTTLE TIGER | NETWORK | NONLIN | SACI
IP-RR 4,004 [o]] 4424 [[7s.079 5.796] | [19.802 24.017 [0] | 2661
IP-NCS 14,082 | 13,334 | [2.580]| 79,693 3,248 | 20,242 24,948 [0]| 3,514
TWO-PASS || 185,207 | 133,244 9,596 | 345,386 162,942 85,364 515,654 2,392 | 117,340
WITNESS || 177,704 | 142,120 | 10,702 | 316,517 | 142,507 | 62,528 | 506,543 | 2,392 | 20,076

Table 4.7: Total LPs for constructing all the I'? sets.

¢81

| 4x3 | 4x4 | CHEESE PAINT | SHUTTLE TIGER | NETWORK | NONLIN | SACI
IP-RR 129,708 [o]] 11,060 [[6,072,200 01,743 | [893,608 764,336 [o] | [63.758
IP-NCS 3,813,050 | 99,950 | [10.320] | 10,094,731 | 765,084 | 1,085,400 | 5,194,613 [0]| 201,229
Two-PAsS || 9,923,058 | 1,331,584 | 28,040 | 52,372,798 | 10,873,016 | 7,432,708 | 35,890,936 | 7,166 | 5,570,368
WITNESS || 84,483,806 | 1,400,181 | 47,958 | 37,368,848 | 78,422,690 | 3,643,184 | 147,942,760 | 9,558 | 1,018,561

Table 4.8: Total constraints for constructing all the I'} sets.

€81

184

Note that the algorithms actually proceed much further than 19 stages
on the TIGER problem. However, due to disparities in the manner which
the machine precision interacts with the various algorithms, the sizes of the
representations start to diverge beyond this point. Since the running times
are sensitive to this quantity, execution time comparisons past the 19 stage

are not meaningful.
4.9.3 Other Algorithms

We discussed the existing algorithms that predated the witness algorithm
such as Cheng’s linear support and Sondik/Monahan’s enumeration scheme
with the Lark/White pruning idea (see Sections 3.4.4 and 3.3.1). We showed
that these are both, in the worst case, exponential in one of the relevant
quantities. Specifically, the linear support algorithm is exponential in the
size of the state space and the enumeration algorithm is exponential in the
size of the observation set. In this section we briefly compare witness to these
two algorithms and show that the empirical performance exactly matches
this analysis. These empirical results first appeared in Littman et al [74].
Ideally, Sondik’s one-pass algorithm should be included in this compari-
son, but the previous empirical and analytical results on the two-pass algo-
rithm led us not to undertake the complications with this implementation.
We attempted to get Sondik’s original code, but no copies seem to exist [119].
Also, Cheng’s linear support algorithm is our own implementation where ev-
ery effort at efficiency was made. Here too, the ideal scenario would be to use
the author’s code directly, but this too seem to be no longer available [27].

We present our results as three-dimensional plots in Figure 4.12, where

185

the z-axis is the execution time in seconds and the 2 and y-axes show the
effects of varying the numbers of states and observations.

As can be seen prominently in the figures, the linear support algorithm
has an explosive increase in execution time as the number of states increases
and the enumeration algorithm has a similar problem, except that it is
sensitive to the number of observations.

The plots of Figure 4.12 range over only 9 states and observations, since
the other algorithms had already reached their saturation point. However
the witness algorithm had not, so we ran some extra experiments out to 15
states and observations and combined them with the earlier results to yield
a better picture of the witness algorithm’s complexity, which we show in
Figure 4.13.

The experimental set-up here is the same as for the random problems

discussed on Page 156, except
e the execution time is measuring time to construct I',, instead of I'¢;
e the number of experiments averaged is 20 instead of 5; and

e the maximum execution allowed is 7,200 instead of 1, 800.

186

Cbservations Cbservati ons

(a) Linear Support (b) Batch Enumeration

Cbservations

(c) Witness

Figure 4.12: Running times of the three algorithms over a range of POMDP
random problem sizes.

187

15

2000 12

St at es

Cbservati ons

Figure 4.13: Running times of the witness algorithm over a larger range of
POMDP sizes.

188

4.10 Conclusions

The orginal research in POMDPs and their algorithms was centered in the
operations reseach community, where their focus was on developing the un-
derlying mathematical theory. With the more recent interest in POMDPS
from computer scientists, the issues of computational complexity and algo-
rithmic development have come to focus. This perspective has resulted in
better exact POMDP algorithms, but has also highlighted the limitations of
such algorithms. Despite the theoretical limitations, there is still a place for
effective exact algorithms, both from the algorithmic development viewpoint
and as a basis for approximations. Additionally, empirical comparisons are
crucial for algorithmic development, since worst-case complexity analysis
does not always tell the whole story.

Prior to the mid-1980’s, the empirical comparisons of POMDP algorithms
were of very limited scope. The lack of realistic problems, combined with the
restricted computing power of the day forced researchers to limit their exper-
iments to problems with a handful of states and observations. Cheng [26]
revisted the poMDP problem with some new algorithms and some of the
most extensive empirical comparisons to date, but the problem sizes were
still quite small and did not expose the real weakness with his schemes,
which require enumerating all vertices of a convex polytope. He demon-
strated that his linear support algorithm was more effective than Sondik’s
one-pass algorithm, but his conclusions only extend to the small state-set
problems examined in his thesis. Although Sondik’s one-pass algorithm has

some theoretical complexity problems that need to be worked out, there is

189

still an open question regarding the empirical effectiveness of this algorithm.

With the development of the witness algorithm, more extensive compar-
isons were undertaken [74] using a broader range of problem sizes. This has
continued through the development and implementation of the incremen-
tal pruning and generalized incremental pruning algorithms [140, 24]. This
chapter has presented both detailed analysis and empirical evaluations of
the exact algorithms; a combination which has proven quite fruitful for the
insight and development of this research, which has resulted in the current

best exact POMDP algorithms, both in theory and in practice.

Chapter 5

Reinforcement Learning

In this chapter we will look at some applications of reinforcement learning
(RL) algorithms [6, 53]. These techniques are a way to solve large, often
continuous, state-space MDPs. Since a POMDP can be recast as a continuous
state space MDP, these techniques provide a way to compute approximate
solutions, although the algorithms that will ultimately result from this RL
approach have no formal guarantees on the quality of their solutions. As
discussed in Section 4.1.3 on the computational complexity of approxima-
tions, it is just as hard to find guaranteed approximate solutions for POMDPs
as it is to find the optimal solution.

This chapter focuses on one particular approach, but there is much more
work to be done in the area of applying reinforcement learning to partially
observable domains. In the reinforcement learning literature these types of
problems are referred to as ones with hidden state, incomplete perception,
perceptual aliasing or non-Markovian environments. Also, in the RL par-
lance, our method would be referred to as a direct method, since we attampt

to build the value function directly from experience. In an indirect method,

190

191

the experience is used to construct a model, and the value function/policy
is derived from the model.

Recently, Bertsekas and Tsitsiklis have used the name neuro-dynamic
programming (NDP) in their attempt to connect the RL area to its mathemat-
ical basis in dynamic programming, function approximation and iterative
stochastic approximations [11]. In this work refer to this class of techniques
RL/NDP algorithms to reflect both their RL origins and the contributions of
Bertsekas and Tsitsiklis.

RL/NDP is a framework for approximations in problems where solving
directly would be intractable. For this thesis we will use it to derive ap-
proximate value functions (approzimations in value space), though it is not
infeasible to use these techniques to compute an approximate policies di-
rectly. There are two main ideas that distinguish the RL/NDP framework:
first, to combat the curse of dimensionality [7], a function approximator is
used; second, it uses simulated experiences to generate trajectories through
the state-space, thereby avoiding explicit computations for all possible states
and focusing the computational effort on the more likely parts of the state
space.

For large problems the dimensionality of the state space is so large, or
even continuous, that an explicit table look-up representation is not feasible.
In the RL/NDP framework, a function approximator with a parameter space
of lower dimensionality is used and is updated based upon simulated experi-
ences. The updating of this function approximator typically uses some sort
of gradient decent in parameter space, though more sophisticated optimiza-

tion techniques are possible.

192

The RL/NDP framework is very general and allows any type of function
approximator as well as many ways to generate and use the simulated ex-
periences. This flexibility can be a drawback, since at this time there is not
enough experience with these techniques to provide guidance for any partic-
ular problem or class of problems. On the other hand, since we are dealing
with approximations, how well specific instances of an RL/NDP scheme work
will depend on the specifics of the problems at hand. Different problems
will require different choices, so the freedom in the RL/NDP framework is
rich enough to allow a wide range of problems to be addressed.

The key to successfully applying RL/NDP techniques is to have some idea
of the nature or structure of the problem being addressed. This will allow
careful consideration of the options available and allow the RL/NDP instance
to be tailored to best suit the application. However, this is often easier
said than done and until there is more research into the the theory and
applications of these techniques, this remains more of an art than a science.

The developed theory for RL/NDP concentrates predominantly on finite
state spaces. Many of these ideas can be applied and extended to continuous
state space problems, though the underlying theory is still in its early stages.
For the problems we address, we have a continuous state space, so the the-
oretical guarantees we have are quite limited, thus we will rely heavily on
empirical comparisons.

We begin by developing the basic RL/NDP framework and then show
some specific instances that can be applied to yield approximate solutions
to POMDP problems. We conclude this chapter with some empirical results

applied to a suite of POMDP problems. We will be focusing on infinite hori-

193

zon, discounted problems and because of our focus on approximations we
will use V*(-) for the optimal solution and V'(-) for an approximation of
V*(-). Since we will focus only on stationary policies, we will use 7(s) as

the policy for state s rather than the decision rule d(s).

5.1 RL/NDP Framework

At the one extreme we have the basic MDP dynamic programming based
algorithms, such as value and policy iteration, which require an explicit
model and an exact table look-up representation for the value function.
The RL/NDP techniques are the other extreme of the DP spectrum using an
approximate representation of the value function and using samples of the
process instead of the full explicit model.

It is an involved process to systematically move from one extreme to the
other and the book Neuro-dynamic Programming by Bertsekas and Tsit-
siklis [11] shows this development in detail, as well and discussing many
peripheral issues that arise along the way. In this section we follow Bert-
sekas and Tsitsiklis” exposition, but in much less detail and rigor, striving
to give an overview with enough motivation for the techniques pursued for
the POMDP problems considered here.

The development of the RL/NDP framework and the corresponding theory
focuses on MDPs where the state space is finite. As the development pro-
gresses, the theoretical guarantees become scarcer and the final framework
developed has no explicit restriction to finite state spaces. Although there
are few theoretical guarantees for applying RL/NDP techniques in a contin-

uous state space, we will see that some reasonable results are achievable.

194

Nonetheless, in our development of the RL/NDP framework we will make the
finite state space assumption and all results referred to will implicitly be

with respect to finite state spaces.
5.1.1 RL/NDP Outline

Before getting into the details of deriving the RL/NDP framework from its
foundations in dynamic programming, we first provide a short outline which

will serve as a road-map for the following subsections.

Asynchronous DP The basic value and policy iteration algorithms com-
pletely update the values or policy, iterating over the entire state space in
a systematic order. The first step we take is to convert these algorithms to
asynchronous versions where arbitrary ordering of the updates are allowed.
This paves the way for simulation-based methods, where we do not enu-
merate the states, but simply sample from trajectories through the state

space.

Function Approximation Most of the motivation for using simulations
is that the state space is so large that we cannot or do not want to enumerate
all states. When the state space is this large, we will not want to represent
a value function over this entire space. Thus, the next step is to look at
function approximation architectures for representing the value function.
These function approximators are parameterized with a parameter vector
which is of lower dimensionality than the state space and are such that once
the parameters are fixed, evaluating the value of a state is trivial. With

the explicit value function, we can update the values directly, but with the

195

function approximation, the problem becomes one of fitting the parameters
of the approximator so that the values given by the approximator closely
match those of the desired value. This becomes a non-linear unconstrained
minimization problem, which is generally difficult to solve for a globally
optimal solution. Thus a local iterative method is employed, though we must
then sacrifice global optimality of the solution. These iterative methods are
especially suited to simulation-based algorithms where sequences of samples

are generated.

Stochastic Approximation Algorithms These local iterative methods
are deterministic algorithms, assuming that a full data set of input-output
pairs with the true values is available. Because we do not know the optimal
value function to start and we cannot explicitly compute the full one-step
value, we view the simulated experiences as samples from the full dynamic
programming updates. We must then extend the iterative parameter adjust-
ment algorithms to handle the case where there are stochastic samples which

vields the general form for stochastic iterative approximation algorithms.

Simulation-based DP The stochastic iterative algorithms are exactly
what is needed for the simulation-based methods with function approxima-
tors, but there are a few issues that arise when simulations are used to do
dynamic programming even with an explicit table look-up value function
representation. These issues are applicable to the function approximator
case, but are best introduced without the added complications of function

approximation.

196

Simulation-based DP with Function Approximation Having dis-
cussed the issues that arise with simulation-based DP with an exact value
function representation, we are then ready to take the final step and replace

the exact representation with a function approximator.
5.1.2 Asynchronous DP

The first step along the path to the full RL/NDP framework is to start with
the basic DP-based value and policy iteration algorithms and adapt them
s0 as to remove the specific dependence on a fixed ordering of states. We
want to be able to select a state at random, do some value or policy up-
date for this state and then return to select another state at random. We
will ultimately be using simulations to select states, which will raise some
concerns about the randomness of the states chosen, but we defer this issue
until Section 5.1.5.

The value iteration algorithm from Section 2.2.3 has the following com-

ponent update rule as its basis:

Vis) == max [r(s, a)+p Z 7(s,a, sV (s)

s'eS

It will prove convenient here to use a more succinct operator notation so that
we have V(s) := (T'V)(s) where the operator T transforms one value func-
tion into another such that component s of the transformed value function

is

(TV)(s) = max [r(s, a) + ,OZ:T(S7 a,s)V (s

5

With this operator notation, one step of the value iteration algorithm can

be written compactly as V :=TV.

197

If we simply embed the update V(s) := (T'V)(s) in a loop where s
is selected randomly, we get the asynchronous value iteration algorithm.
Although not necessarily an intuitive result, this algorithm will actually
converge to the optimal value function, given that every state is selected
infinitely often [8]. Note that this still requires a full model for the single-
step value computation in the sum on s’ and that we still need to explicitly
store a value for each state. Although the “infinitely often” restriction may
appear troublesome, even in practice, selecting each state often enough will
vield a fairly good approximation to the optimal value function, though it
is sensitive to the sampling process.

We can similarly adapt the policy iteration algorithm to an asynchronous
version, but first we must alter the policy evaluation step presented in Sec-
tion 2.2.4. As previously presented, the value of a given policy is computed
by solving a system of equations. For large state spaces, such a procedure
could be impractical, if not infeasible, and the common way large systems
of equations are solved is through an iterative procedure.

The value iteration algorithm is an iterative procedure that can easily
be adapted to solve the system of equations resulting from the policy value
equations given by Equation 2.6. The only alteration of vI is the removal
of the maximization over actions, so that the action chosen at each state
update is simply the action specified by the current policy for that state. If

we define the operator T such that component s is

(T:V)(s) = r(s,w(s))+ ,OZ:T(S7 m(s), sV (s') , (5.1)

then the fixed-policy value iteration algorithm repeatedly calculates V :=

198

T,V and convergence to the value of policy .

Since we can replace value iteration with its asynchronous variation,
we get an asynchronous method for doing the policy evaluation step of pI.
However, this in itself isn’t enough for an asynchronous policy iteration
algorithm, since we must also consider the policy improvement step. The
basis of the policy improvement step is

7(s) 1= argmax |r(s,a) + ,OZ:T(S7 a, s V(|
a "
where, in normal policy iteration, we iterate over all states s to compute the
improved policy. For an asynchronous policy update we want to remove the
restriction of having to iterate over all states.

The full asynchronous policy iteration algorithm is given in Table 5.1.
In words, it says that we can arbitrarily select a state and then arbitrarily
select whether to update its value, V(s), or the policy for that state, 7(s).
Using the full model for the one-step calculation and exactly representing the
value function, this algorithm will converge to the optimal value function and
policy, if each state has its value and policy action updated infinitely often
and the initial value function and policy satisty the condition T Vy > Vb.
Here Vj is the initial value function, m the initial policy and T, is the
one-step value iteration operator with fixed policy given by Equation 5.1

The most interesting aspect of the asynchronous policy iteration algo-
rithm is that by selecting appropriate orderings of states and ordering of
value/policy updates, many variations of algorithms can be constructed,
including Gauss-Seidel value iteration, normal policy iteration, modified

policy iteration [103] and others. For example, always following a policy

199

asychPolicyIteration(Z, p)
7 := any decision rule
V = appropriate to satisfy T,V > V
do
s := Select state randomly
if Update Value
Vis) .= (TV)(s)
else
7(s) := argmax, [r(s,a) + p > . 7(s,a,s)V(s')]
while Not Done
return 7
end asychPolicyIteration

Table 5.1: Code fragment for the asynchronous version of the policy iteration
algorithm.

update with a value update for the same chosen state and selecting states
at random, would yield the asynchronous value iteration algorithm.

These asynchronous algorithms will allow us to do DP with states gener-
ated through simulation where we update the value/policy as desired. We
will later discuss the specific orderings and implications of interleaving the
policy and value updates. However, note that while these asynchronous al-
gorithms allow for arbitrarily selecting states, it is still required to have the
full model and to enumerate and represent all possible next states.

When combined with function approximation, asycnronous value itera-
tion takes the form of actor-critic schemes typically discussed in the rein-
forcement learning literature. The policy evaluation steps are viewed as a

critic, judging the value of the policy that the actor is executing.

200

5.1.3 Function Approximation

The next step required to handle large state spaces is to avoid explicitly
storing a value for each state. For this, a parameterized function approxi-
mator is used, where the dimensionality of the parameters is less than that
of the state space. Additionally, it is assumed that once the parameters have
been fixed, evaluating the value for a state is trivial.

Two of the major choices that must be made in developing an RL/NDP
framework are determining the function approximator and an update rule
for adjusting its parameters. These two choices are tightly coupled, though
for the function approximators we consider here, the update rule takes on
the same basic character of a steepest decent gradient method. This sec-
tion discusses the update rule used in general and the later sections derive
the specific update rules for the individual function approximators used for
POMDPSs.

The dynamic programming approach adjusts a state’s value to make it
closer to the optimal value, but with a function approximator we must adjust
the parameters such that the the values given by the approximator are close
to the desired values. Fitting the parameters to a specific function is an
optimization problem; for the cases we consider it is a general non-linear
least squares optimization problem.

Although we are ultimately interested in using simulation and immediate
experiences to learn the optimal value function, we will start by describing
the simpler problem of fitting an approximator to some known, fixed set of

data, where each data point consists of an input (a state) and the desired

201

output (the optimal value of the state). Although we will not know the
optimal values for given inputs, it serves to illustrate the basic technique,
and we will later show how this can be extended to be used in the RL/NDP

framework.
Batch Gradient

In the more typical supervised learning applications in machine learning, a
function is computed from a fixed set of training data consisting of a set of

input-output pairs. If the set of input-output pairs are given by

{00, V7 (01)), (b2, VE(ba))s s (bar, VI (bar)))

and the parameters of the function approximator are given by a set I', we
define V(F, b) as the value the approximator gives for input b and parameters
I'. The most often used optimization criteria for fitting an approximator to
a function is to minimize the squared error,

E 2
€m

1<m<M

o]
[
D] —

where we define e, = V*(by,) — V(L', byyy).

Since for general non-linear problems, performing this minimization is
difficult, an iterative method is often applied. A common technique uses a
form of iterative gradient decent where the parameter vector is continually

updated according to

Fn—l—l = Fn + nndn 3

where 1), is a positive step-size and d,, is the descent direction. A common

choice for d,,, and the only one we consider here, is the steepest descent

202

where d,, = —Veé where the gradient is with respect to the parameters of
the function approximator. This gives

d, = —-Ve=— Z Vemem
1<m<M

-- Y v (V*(bm) - V(rn,bm)) em

1<m<M

= Y VV(Tabm)em -
1<m<M

This method is commonly referred to as the batch gradient method, since
the decent direction is computed using the entire training set. This iterative
procedure will convergence in parameter space, but the only guarantee about
the point it converges to is that it is a stationary point of the error function;

i.e., where the derivative is zero.
Incremental Gradient

Computing the descent direction over the entire data set is often undesirable,
such as when the data set is large or, in the simulation context, since the
simulated trajectories are not usually considered part of a fixed data set,
but a steady flow of data. For both large data sets and simulation-based
approaches, a commonly used technique, called incremental gradient, is to
use only one item of the data set to compute the descent direction.

The pure incremental gradient method also assumes there is a fixed train-
ing set, but instead of using a sweep over the training pairs to generate a
single descent direction, the parameters of the function approximator are
adjusted after each input-output pair is processed during this sweep.

To show this more precisely, let the index n be the number of times we

have iterated over the entire training set and m be the index of the particular

203

training set pair being processed. Then the parameter update rule becomes

Fn,m—l—l = Fn,m + nndn,m if m < M
Fnvio=Tnm+mdnym itm=M

This variation always sweeps through the training set pairs in the same
order, but another variation randomly orders the training set after each pass.

For the incremental gradient method, the descent direction becomes

Note that this technique can not properly be called a steepest descent
method, since the gradient direction may actually be different from the true
steepest descent direction.

This incremental variation of the gradient method can also be shown
to converge by casting it as a regular gradient method with independent
errors [11]. However, this incremental gradient method is still not flexible
enough for the purposes of simulation-based dynamic programming for the

following reasons:
e There is no properly viewed fixed data set.
e We do not have access to the true optimal values for a given b.

e The assumption of independence of the errors does not hold for the

randomness generated by a Markov process.

The next section shows how the incremental gradient approach is a spe-
cific instance of a more general class of algorithms. Within this more general
context, we will be able to rectify these problems with the incremental gra-

dient method.

204

5.1.4 Stochastic Approximation Algorithms

The incremental gradient algorithm can be viewed a special case of a more
general class of algorithms called iterative stochastic approzimation algo-
rithms. These algorithms form the basis of simulation-based dynamic pro-
gramming (e.g., Q-learning [126], TD(A) [121]) as well as for simulation-
based gradient methods.

These iterative stochastic algorithms will allow us to remove the explicit
summation over next states, by allowing us to take samples of the next
states, which is exactly what will be required in the simulation context. We
first present general deterministic iterative algorithms and see that value
iteration is a specific instance of these. We then present stochastic versions
of these iterative algorithms which serve as the basis for both simulation-
based DP algorithms and incremental gradient methods. Finally, we show
some specific instance of these for doing simulation-based DP where the
method used to sample the process dictates the exact form of the iteration

used.
Deterministic Iterative Algorithms

To derive the general form of an iterative stochastic approximation algo-
rithm, we start by considering the simply case of trying to iteratively solve

a system of equations
v=Hv , (5.2)

where the variables of interest are given by the vector v and H can be viewed

as a coefficient matrix, or more generally, as an operator on the value vector.

205

For example, if we have the system of equations Av = b, then the operator H
is such that Hv = (A4 I)v—b where I is the identity matrix. Alternatively,
if we replace H with T, we get the system of equations for solving for the
value of an MDP policy 7.

Consider the simple deterministic iteration
v:=Hv .

In general, if the operator H has certain monotonicity or contraction prop-
erties, this iteration can be shown to converge to the solution of v = Hu.
When we use the DP operator, H = T, we have v := Trv which is precisely
the fixed-policy value iteration scheme for doing the policy evaluation step
in p1. It can be shown that T and T both have the necessary contraction
properties when the discount factor is 0 < p < 1. We note that there are a
class of MDPs where the transition probabilities impose a similar property on
the Dp operator even when p = 1. For simplicity, we restrict our attention
to discounted problems.

If we have an iteration based upon individual component updating

v(s) = (Ho)(s) ,

and H = T, then randomly sampling the states and using this iteration
is equivalent to the fixed policy, asynchronous value iteration algorithm.
Alternatively, this could be viewed as asynchronous policy iteration where
there are no policy updates.

With a simple algebraic conversion, we can convert Equation 5.2 into an

206
equivalent small step-size, n, version given by
v=(1-nv+nHv ,
and define an iteration based upon this as
vi=(1-nv+nHov (5.3)
with its single component version being

v(s) = (L=n)v(s) +n(Hv)(s) -

This iteration is also valid and will converge when H has the necessary prop-
erties, though it is less useful than the normal iteration when the iteration
involves a deterministic quantity. However, we will shortly be converting
this to a stochastic version, where the small-step size will help reduce the
algorithms sensitivity to the noise. Before introducing noise, we touch upon

a few issues concerning the step-size.
Step-size Selection

Although not often used in practice, there are two assumptions regarding
the step-size that are required for any theoretical convergence guarantees.
Let n be the nt! iteration of the algorithm and 5, be the step-size used on

that iteration, then the assumptions are

Znn =00 (5.4)

and

Znﬁ < oo . (5.5)
n=0

207

The first assumption is needed to ensure that regardless of the initial value,
all possible values are reachable. If this assumption is violated, then the iter-
ation can only move a fixed distance from the starting values. If the actual
answer is further away from the initial value function than this distance,
there is no way the algorithm could converge to it. The second assump-
tion is required to ensure that the step-size goes to zero, which is needed if
convergence to anything can be expected.

These step-size reductions are usually not adhered to in practice. The
step-size has an important effect in the empirical convergence rate of many of
the algorithms, so step-size adjustment schedules which give good empirical
results are preferred to the more theoretically motivated restrictions. In
addition, there is a reluctance of reducing the step-size to zero, since many
RL/NDP algorithms want to allow adaptation to changing environments. We
note that RL/NDP techniques only have convergence guarantees on stationary
environments, but are nevertheless applied in dynamic environments with

reasonable results.
Adding Noise

The step size variation is introduced because it becomes a more desirable
iteration when we do not know H precisely or Hwv is difficult to compute.
For these cases, we prefer to sample Hv, as will be the case when we simulate
trajectories through the state space.

Suppose we introduce a noise random variable w with zero mean. The

the iteration above becomes

vi=(1-nuv+nHv+w) , (5.6)

208

where individual Hv + w are noisy samples of Hv. This is the general form
of a stochastic approximation algorithm.

The specific instances we will be concerned with here assume that we
have a random variable s and a function f(v,s) such that E[f(v,s)] = Hv.
We view f(v,s) as a sample of Hv which will depend upon s, which is
a random quantity which will be driven by the simulation of trajectories
through the state space.

We can rewrite Equation 5.3 as

vi= (L= n)o+nE[f(v,9)] | (5.7)

where here E[f(v,s)] = Tv. This is still a deterministic iteration and as-
sumes we can compute this expectation exactly, which requires fully com-
puting the one-step DP operator as in VI.

If we cannot compute the expectation, we could take a set of samples of
Tv, compute the sample mean and use this in the iteration. Because there
will be some sampling error, or noise in the computation of the expectation,
this would become a stochastic approximation algorithm. However, as the
sample size increases, the noise diminishes, the sample mean approaches the
true mean and we progress closer and closer to the deterministic iteration.

If we let the sample size be 1 we get

U= (1 - 77)U‘|' nf(vv S) ’ (5'8)

which is an iteration based upon a single sample, which is more generally
known as a Robbins-Monro stochastic approximation algorithm and is a

specific instance of the more general stochastic approximation algorithms.

209

These single sample stochastic approximation schemes will be the central

approximation algorithm used for the RL/NDP techniques.
Gradient Descent as an Iterative Approximation

Although we focused our discussion of the iterative algorithms for the case
when H = T or H = T, if we let Hv = v — Vf(v), then Equation 5.3
becomes the batch gradient algorithm by letting v be the parameter vector
I and f(-) being the error function, €. Thus, the batch gradient descent
algorithm is a specific instance of a deterministic iterative algorithm with
small step-size.

Consider the incremental gradient descent algorithm where we do not
compute the full gradient Ve. If we view the incremental updates as simply
noise corrupted samples of Ve, then the incremental gradient algorithm
is nothing more than an instance of an iterative stochastic approximation

algorithm based upon the equation v = v — Ve.
Convergence

The convergence proofs for the stochastic approximation algorithms are
quite complicated and we refer the reader to Bertsekas and Tsitsiklis [11] for
a comprehensive treatment. However, in this work they show convergence
for the cases of interest to the techniques described here; iterations based
upon the dynamic programming operators and based upon gradient descent
directions. However, there are many technical conditions which must hold
for these to be valid. Under the right conditions, all of the following have

been shown:

210
1. when H is a a contraction mapping as is the case for the DP operator;

2. when Hv = v — V f(v) which is when the updates are based upon

descent directions as in the gradient descent algorithms; and

3. when the noise w is not independent from one iteration to the next,

which occurs when samples are generated from a Markov process.

The first convergence result is only useful for simulation-based dynamic
programming techniques where a full explicit value function over all states
can be maintained. The second and third convergence results are of the one
of most interest here, since we will ultimately be concerned with function
approximators and sampling from a Markov process. The convergence re-
sults for the dependent noise case is specific to Markov noise and requires

the most assumptions for the convergence properties to hold.
5.1.5 Simulation-based DP

The asynchronous DP methods require the sampling of the states to have
certain properties, such as sampling each state infinitely often. In practice,
this is not achievable and there is a need for a good sampling technique. Here
we will use simulated trajectories through the state space as the sampling
mechanism for the asynchronous DP methods. In this section we assume
that we can explicitly represent the entire value function, since this will be
a simpler context to discuss the issues that arise when using simulations to
generate the states. This will leave us one step away from the full RL/NDP

framework where the final step will be to add function approximation.

211

Sampling the Process

Let us first visit the case where we have a fixed policy 7 and are simply
interested in using simulation-based, fixed policy, asynchronous value iter-
ation. The iterative stochastic algorithm of Equation 5.6 where H = T,

provides us with the algorithm

v(s) = (1= n)v(s) + 1 ((Txv) (5) + w)

The only unspecified item is what to use for the individual samples
(Trv)(s) + w. In this case, since (Trv)(s) is the true infinite horizon value
of state s, one candidate sampling method would be to repeatedly start at
state s, simulate the process, compute the discounted sum of rewards during
this simulation and use all these samples to compute a sample mean. This
would be equivalent to the noise-corrupted version of Equation 5.7 where
the sample mean replaces the expected value. However, as mentioned, we
will only concern ourselves with the single sample, Robbins-Monro variation
shown in Equation 5.8, thus a sample would be a single trajectory starting
from state s.

The first problem is that for all practical purposes will not be able to sim-
ulate an infinite trajectory. However, if the MDP has the property that it is
always guaranteed to enter a state where no more costs will be accumulated,
then upon entering this state (i.e., zero-cost absorbing state), the simulation
can be stopped and that sample used. Problems with this type of structure
are often referred to as stochastic shortest path problems. For general in-
finite horizon MDPs, we may never be able to reach a zero-cost absorbing

state. Although any discounted infinite horizon MDP can be converted into

212

a stochastic shortest path version [11], this is not usually desirable.

When zero-cost absorbing states are not available, some form of trunca-
tion of the trajectory is required. For any given discount factor, we can make
the error due to truncating the trajectory as small as desired. By making
the trajectory appropriately long, the error is negligible and we can assume
we are using the entire trajectory. Unfortunately, for discount factors close
to 1, this could be an extremely long trajectory.

Often the trajectory is truncated to a point that is computationally
convenient rather than as a result of trying to get the error below some
threshold. The parameter here is the length of the trajectory to use, and
we note that even when we have an MDP with zero-cost absorbing states, we
may want to apply this truncating technique. In the extreme case, we can
consider truncating the trajectory to length 1, which is actually the case we
consider in the specific POMDP algorithms presented later.

Another technique is to “discount” the effects of the rewards along the
trajectory as the distance from the beginning of the trajectory increases.
Although this seems similar to the discount factor we already have for the
MDP, it is something entirely different. This parameter is serving to adjust
the sample and not the optimal value function. We do not use such a
technique in this work, but mention that this sample discounting parameter,
A, is basis of the TD()) approach [121]. Using the entire trajectory without
any sample discounting is equivalent to TD(1).

Simulating a long trajectory starting from a single state and getting a
single sample turns out to be very data inefficient. The trajectory visits

many states along the path and we can view the sub-trajectory that starts

213

from any of theses states as a sample trajectory from those intermediate
states. A more data efficient technique would be to update the values of
each state visited by the trajectory. The full TD(A) approach combines
updating every state along the trajectory with the discounting of the sample.
There are some technical details concerning this combination of updating
and sampling which needs to be considered, but which we ignore here.

The approach we focus on here is to use a series of simulated trajectories,
update all states along the trajectory, but only use a single transition as the
basis for our sample. This can also be viewed as TD(A) with A = 0.

Despite the myriad of options available for sampling the process, any
choice of these used in the stochastic approximation algorithm will converge
to the proper value function for that policy, under the right set of technical

conditions.
Simulation-based Policy Iteration

The previous section shows that we can use simulation in a fixed-policy value
iteration scheme and converge to the proper value function. This can form
the basis of a simulation-based policy iteration algorithm, where the policy
is evaluated using the simulation-based techniques of the previous section,
then the policy evaluation phase is followed by a policy improvement step.
Unfortunately, the policy improvement step seems to involve an explicit
enumeration over all of the next states, which is contrary to the arguments
for using simulation-based techniques.

One approach is to, again, use samples of the next states to compute

the one-step improved policy. To do this we introduce the Q-functions for a

214

policy, which represent the value of taking the immediate action « in a state

s and following policy, w, thereafter. They are given by

Vi(s) =r(s,a)+ ,OZ:T(S7 a,s\Va(s') |

and are precisely the quantity we need to compute in a policy improvement
step. With the Q-functions we can then use simulation steps to compute
these Q-functions and then do the policy improvement with

7(s) :== argmax VI(s) .

The problem with this approach is that in order for the new policy
to actually be an improved policy, we must have the true Q-function val-
ues for each state-action pair. To do this would require evaluating the Q-
functions for each state-action pair, infinitely often. Since this is practically
unachievable, there is no way to guarantee that the new policy will be an
improvement. Thus, a simulation-based policy iteration scheme of this sort
is sensitive to the initial states chosen, since the initial states dictate the

paths the trajectories take.
Simulation-based Value Iteration

The previous section outlined a policy iteration scheme which used a full
simulation-based evaluation to find the value of a policy and then a full
simulation-based scheme to update the policy via the Q-functions. Similar
to asynchronous value iteration, we can consider a class of simulation-based
asynchronous algorithms where we can alternate between simulations for

policy improvement and simulations for policy evaluation.

215

Unfortunately, depending upon the relative ordering of the policy im-
provement and policy evaluation updates and the particular scheme used
for the evaluation updates, this algorithm can diverge even for the simple
case of having an exact value function representation and assuming that all
states are updated infinitely often.

The one case that does have some convergence guarantees is referred to
by Bertsekas and Tsitsiklis as optimistic policy iteration and always follows
an evaluation step with a policy updating step. Recall, from Page 198 that
for the non-simulation asynchronous policy iteration, following an evalua-
tion step with a policy update step was equivalent to asynchronous value
iteration. Thus, optimistic policy iteration is nearly the same as simulation-
based asynchronous value iteration. However, if the evaluations are based
on anything other than single transition samples (i.e., TD(A) for A >> 0),

then convergence cannot generally be guaranteed.
Q-learning

In the POMDP RL/NDP algorithms presented later, we will only consider using
approximations to the optimal Q-functions. Additionally, we will focus our
attention on a form of asynchronous value iteration using the Q-function
representation of the value function. The optimal Q-functions satisfy
Voe(s) =r(s,a)+p Z:T(s7 a,s') mz;LXV*’“/(s’) , (5.9)
a

5

and the normal value iteration algorithm can be rephrased in terms of Q-

functions as

Ve(s):==r(s,a)+p Z 7(s,a,s") m&/LXV“/(s’) ,

5

216

where we must iterate over time, states and actions. Note that the normal
VI algorithm also iterations over actions, only the intermediate Q-functions
are not explicitly stored. The results of asynchronous value iteration hold
for an asynchronous vi with Q-functions, so as long as each state-action pair
is updated infinitely often, these values converge to the optimal values.

We can convert this to its small step-size version

Ve(s) = (1—nmV:s)+7n (r(s, a)+ ,OZT(S, a,s) rrza/LXV“/(s’)) ,

and finally derive the single sample, Robbins-Monro stochastic approxima-

tion algorithm (based upon Equation 5.9), yielding

Ve(s) = (1 —n)Vs)+n (r + ,Orrz?;LXV“/(s’)) . (5.10)

Here the particular sample transition is from state s to s’ for action a where
the immediate reward r is received. When the samples are generated from
simulations, using Equation 5.10 results in exactly Watkins’ Q-learning algo-
rithm [126]. Using the convergence results of the stochastic approximation
algorithms, we immediately get the convergence of Q-learning.

The experiments we will use for our RL/NDP POMDP algorithms are based
precisely on simulation-based value iteration, using Q-functions to represent
the value function. The only differences are that we use approximations
to the Q-functions and we have a continuous state space. Recall, that this
also requires the step-size parameter to satisfy the properties given in Equa-
tions 5.4 and 5.5.

In practice, without the ability to update every state-action pair in-

finitely often, the specifics of the sampling have a major impact on the

217

empirical performance of the algorithm. In particular, the starting states
and the action selection define the trajectories that will be taken. If certain
states are not visited, or certain actions are not tried in some states, then ad-
vantageous actions and important parts of the state space will be missed. For
this reason, the Q-learning algorithm often employs an exploration strategy,
where the currently best action selection is supplemented with exploratory

actions to ensure advantageous alternatives are not missed.
5.1.6 Simulation-based DP with Function Approximation

We now come to the last step in constructing the full RL/NDP framework:
adding a function approximator. The simulation-based dynamic program-
ming techniques of the previous section were presented in the context of
exact value function representation and predominantly have pleasing the-
oretical convergence results. Additionally, we have seen that incremental
gradient methods for solving a least squares optimization problem also have
some pleasing convergence guarantees. Unfortunately, combining function
approximation and simulation-based dynamic programming do not gener-
ally lead to pleasing convergence results. However, they are often combined
in practice with impressive results [122, 32].

Additionally, though there is little theoretical basis for the simulation-
based DP algorithm for the case of continuous state spaces, with function
approximation, there is no inherent limitations on the state space size and
we proceed here assuming we are in the POMDP realm of continuous state
spaces.

We have seen the incremental gradient algorithm as a stochastic approx-

218

imation algorithm:

=T +yVV(T,b)e , (5.11)

where here we have removed the subscript m on e to show that we no longer
consider having an explicit data set. Note that our RL/NDP approaches to
POMDPs use this as the basis for their parameter update rule.

Where we previously defined e = V*(b) — V(F, b), which is the true error,
we can view (somewhat incorrectly) r+pV (T, ') as a sample of V*(b) based
upon a transition from state b to state b’ with reward r received. This is a
commonly used update rule, and one we explore in our experiments, except

it has a tenuous formal basis. However, it is closely related to an approach

which does have a more formal basis.
Residual Gradient Method

The optimal value function for an MDP satisfies V* = T'V* and is in fact
the only value function that satisfies this relationship: i.e., it is a unique
fix-point of the operator T'. The Bellman residual at any point in the the
value iteration algorithm is defined to be TV — V. Since the v1 algorithm
converges, the Bellman residual is guaranteed to be monotonically decreasing
as the algorithm progresses, finally becoming zero when the optimal value
function is achieved. Thus, an alternative view of attempting to find the

optimal value function, is attempting to make the Bellman residual as small

!This is true for both coMDP and POMDP problems.

219

as possible.

With a function approximator, the current Bellman residual can be de-

fined as
r—+p Z ¢(b7 a, b/)‘f}(rv b/) - v(rv b) .
b/

Thus, we can use a gradient descent algorithm to minimize this quantity

by letting e be the Bellman residual and using Equation 5.11, which yields

r=r- nV%ez
=T - nV%ez
=T —nVee
=T -V (r +p Y w(b,a,b)V(I,V) - V(T b)) e . (5.12)
b
There is a problem using this within the RL/NDP framework since there
is the explicit summations over states. We will adjust this to incorporate
sampling below, but first discuss the implications of this iteration in relation
to the proposed update scheme of Equation 5.11.
In the derivation of the gradient of the error term when we assumed
we had a fixed data set with optimal output values, we made the following

simplification:
v (V*(6) - V(T,b)) = —VV(T,b) .

This same assumption is used in the algorithm based upon the update of
Equation 5.11.
The assumption that the derivative of V*(b) = 0 is correct when it rep-

resents the output portion of a training instance. However, for the RL/NDP

220

methods based on the Bellman residual, when we replace V*(b) with the
one-step value using the approximation for the next states, this assumption
is no longer valid, since ‘7(13’) is also a function of the current parameters.
This is easily seen in Equation 5.12 where the function approximator appears
twice in the gradient term.

When the training output is the true value, the only way to reduce the
error in the approximation is by adjusting the parameters in the direction
of the training output, V*(b). When the Bellman residual is used in place
of the training output, there are two ways to reduce the error; adjust the
current estimate or adjust the current one-step look-ahead estimate.

Although many successful RL/NDP methods use the zero derivative as-
sumption of Equation 5.11, called direct gradient methods by Baird, they
have inferior theoretical convergence properties to the methods, called resid-
ual gradient, which do not make this assumption [5, 11]. There are simple
examples that can be constructed where the direct method diverges.

Incorporation of the extra gradient term gives the residual gradient al-
gorithm a more solid theoretical basis, but complicates the replacements
of the explicit summations with samples. In the direct gradient version of
Equation 5.11, we could use a single transition sample getting b, a, b’ and r.
The obvious, though incorrect, incorporation of a sample in Equation 5.12
would insert the sample in place of the two explicit summations and we

would have
[=T-yV (r + pV (D, 0) - V(T, b)) (r +pV (L, 0) - V(T b))

In order to guarantee convergence of a stochastic iteration based upon

221

Equation 5.12 we need the expected value of the entire adjustment to be
equal to the result of replacing the samples with their expected values; i.e.,

we require

BV (r+pV(T0) = V(T,0)) (r+ oV (T,0) = V(T,0))]

=E |V (r+pV(00) - V(O.0)| B[(r+p7(T,0) - V(T,0))]

Because we need the expectation of the product of two random variables to
be same as the product of the expectations, we need the random variables
to be independent, which is not achieved by using the same sample in both
places. This requires sampling the transition from state b twice. Thus, the

correct update rule would be
[=T-yV (r + pV (T, ") — (T, b)) (r +pV (L, 0) - V(T b)) ,

where b’ and 0" are two independently sampled next states for the initial
state b.

This two-sample version is referred to as the residual gradient, and as
mentioned has better theoretical convergence guarantees. However, this
method is slow to converge, whereas the direct gradient, if it converges,
converges faster [5]. Baird proposed using a weighting between the two
methods to get the advantages of both methods. Because the residual and

direct gradients are similar, this descent direction is given by
D= =y (0VpV (T, 1) = VV (T b)) €

where 6 is the weighting factor.

222

5.2 Function Approximators for POMDPs

In this section we look at a number of available choices for representing
an approximate value function over belief space for a poMDP. We give
some background and derive the required parameter update rules for these
function approximators.

The basic direct gradient update formula used is from Equation 5.11,

which was
[:=T+yVV(I,be ,

where simulated experiences of transitioning from state b to state b’ and

receiving reward r would yield:
e=r+pV(I,0) = V(I,b) .
5.2.1 Value vs. Q-functions

Regardless of the particular choice for a function approximator, there is also
a choice of whether to use a single set of parameters, V(F, b), or a separate
set of parameters for each action, ‘7(1"‘, b), which would be approximations

to the Q-functions with
V(T,b) = max V(I'%,b) .

The main disadvantage of the single function approximator approach is
that it requires an explicit model in order to convert the value function into
a policy. Naturally, this is only a problem if the policy is not fixed and we
would like to take the best action according to our current approximation.

Although the experiments here have access to the full model, we would

223

like to avoid doing an explicit summation over all possible next states and
rely only on simulation steps to generate next states. By maintaining a
separate function approximator for each action, a policy is readily available
by evaluating each function approximator and taking the action that gives
the best value.

There are two main problems with maintaining separate function approx-
imators for each action. If the number of actions is large, then the space
requirements could become prohibitive. A related problem is the speed of
convergence. With a single function approximator, all simulated experiences
contribute to adjusting a single value function, but with separate function
approximators, only a percentage of the experiences go toward each function
approximator. This means that it could require more simulated experiences
to get reasonable Q-function approximations than would be required for the
single V(F, b) approximator.

For updating approximations of Q-functions we incorporate the action

taken, a, into our experience, so the direct gradient update rule becomes
I =T+ yVV (T, ble ,
with error term
e=r+pV(I,) — V(I D)
=r+p (rrla:a/L><‘~/(I“’/7 b')) — V(%) .
5.2.2 PWLC Representation

As for any learning algorithm, there is a need to have some bias in order

to perform well. Given that we know the optimal infinite horizon value

224

function is convex and possibly p.w.l. and convex, we can use this to bias
the structure of the value functions. Here we consider two instances of a
PWLC representation, one where we assume there is one and only one linear

segment for each Q-function and one where multiple vectors are allowed.
Linear Q-functions

Using a single vector for each action we have a series of function approx-
imators V(b) = 4% - b, and V(I'*,b) = max,(b-~y") with parameter set
I' = {y%|Va € A}. When a simulation step is taken and action a performed,

the gradient, Vf/“(b) is comprised of the partial derivatives

ove) 9 N
ove —-87gj£:b(5)7y

B d
C Oy
:b(s))

5/

b(s)vy

h

where v¢ is the st component of vector v¢.

Thus, the function approximator parameter adjustments for the individ-

ual components are
Ve =+ Ay (5.13)
where

Avd = an/“(b)e
= nb(s) (r+ pV (T, 0) = V(b))

= nb(s) (r + p max {b' : ’Yal} —b- ’Ya(b))

225

The update rule in Equation 5.13 is referred to as the linear-Q (LIN-Q)
update rule for poMDPs. Work by Chrisman [28] in trying to simultaneously
learn and act in POMDPs used a similar, though slightly incorrect, update

rule. This is discussed more extensively in work by Littman, Cassandra and

Kaelbling [68].
k-PWLC Representation

The natural extension to the linear Q-function representation is to allow a
general PWLC representation with multiple vectors for each ‘7“(13). With
more vectors in the PWLC approximation, the value function has the ability
to closely represent a much wider range of value functions.

A pwLC value function is not smooth, which presents some difficulty,
since this lack of smoothness transfers to the error function. Taking the
derivative of a non-smooth function requires segmenting the function into
pieces, each of which is smooth. For a function where there are fixed discon-
tinuities, this is only a minor inconvenience, however, the places where this
error function is discontinuous vary as the parameters of the value function
changes.

One alternative is to ignore the dependence of the discontinuity on the
parameters, and simply take the derivative of the function at the point of
interest. For a PWLC value function, doing this results in a very simple
update rule; it is essentially the LIN-Q update rule applied to the maximal
vector in the representation of Va(b).

The problem with this approach is the lack of any changes to vectors

which are not maximal. Because of this, any vector which is dominated by

226

all of the other vectors will never be updated, unless it becomes undominated
from adjustments to the other vectors. We call these vectors sunken and
this is especially problematic if the value function is initialized with a set
of random vectors. Any vectors which start off dominated may never have
their components updated, which wastes some of the representational power
of this approach.

The best way to prevent sunken vectors is to make sure the initial value
function consists of vectors that are not completely dominated by the others.
However, this provides only minor relief, since there are still no guarantees
that vectors will not become sunken. Nevertheless, we will use the approach
in some of our empircal comparisons.

When initializing a k-PwLC function aproximator to random values, the
specific initialization used when there are k vectors and N states breaks
down into two cases: when k£ < N and when k& > N. For the former, we
simply set | N/k| unique components of each vector to have the maximal
value in the random initial range. This ensures a non-empty region for each
vector to start. For the case when k& > N, we simply set a unique component
for each of N vectors to the maximal value and allow the remaining k — N
vectors to have random ranges, possibly having them start out as sunken
vectors. However, it does guarantee that at least N vectors start off with
a non-empty region, though there are no guarantees that these vectors will

not become sunken as the value function is adjusted.

227

5.2.3 The L; Norm

We saw that extending the LIN-Q update rule for more than one vector per
action was problematic, since gradient descent methods are best applied to
continuous functions where the derivative can be taken. To combat this,
the spova algorithm of Parr and Russell [96] uses the Ly norm, which is a
smooth approximation for the max operator.

The Lj norm is a continuous function with the nice property that the
simple maximization of a regular PWLC function is its limiting case. If we
have a set of vectors T' = {y',42,...,y"}, then we define the L; norm value
function for a belief state b with

Vb = > (bt
1<I<L

th

To ensure the root is not a complex number, this requires all of the ~/
components to be positive, which translates into having all positive rewards
in the POMDP model, i.e., Va, s, r(s,a) > 0.

As k — oo, the Ly norm value function approaches

V([,b) = maxb -~ |
~ler

which is simply a pwLC function.

In the spova algorithm, this approximator is used to represent the
V(F,b) function, though here we will explore using it using Q-functions.

For our purposes, we will only consider k& > 1.

The gradient of this representation? with respect to the v/ parameters,

?There is a typographical error in the gradient formula as it appears in Parr and

228

letting V' (T, b) be V(T',b) or V(b), is

ov(T,b) 0 —
_ b.~i
L o klggL()
1-k
1 K "o Nk
=21 2 0y) a7 > (b97)
1<5<L s 1<5<L
o 0
1 K k
“El 2 e 2 e)
1<5<L 1<5<L
o 0
1 . _
=1 >) k(b-r)" by
1<G<L 1<G<L s
%
. k-1
= et) k() e
1<G<L
%
. k-1
=X ") (b)) b
1<5<L

Note that as k — oo, the denominator approaches (b - 'yl)k_l and the spova
update rule approaches the LIN-Q update rule. The two main difficulties
with the spova algorithm is in selecting and adjusting the exponent k and
deciding the number of vectors, L, to use in the approximation.

The reported results for spova [96] used a heuristic schedule for the

exponent, starting k around 1.2 and increasing it linearly until it reached

8.0. A problem with adjusting the exponent is that changing the exponent

Russell’s [96] original paper. The gradient formula in that paper appears with both the
term in the numerator and denominator being raised to the pth power instead of the

k—15t power.

229

2500

k=4 —
2400 10
k=20
2300 |
& 2200 t
2100 foo T T
2000 |
1900 t
0 1

b(s)

Figure 5.1: An Lj, norm value function with varying values for the exponent

k.

changes both the shape and range of the function. Although the change in
shape is the desired property, making it more “PwLC”, the change in the
ranges of the value function could force the algorithm to need more training
instances as it tries to recover the proper range of values. For instance,
Figure 5.1 shows an Ly norm value function, using the identical set ['; but
varying the exponent k. If the changes are gradual enough, then the effects
might not be so detrimental, but still a certain amount of the updating effort
must be put into adjusting the ranges of the values as well as the general

shape of the function.
Scaling after Adjusting the Exponent

A possible solution to this problem is to explicitly raise the value function to
compensate for the adjustment of the exponent before more gradient updates
are done. Suppose we have a heuristic exponent adjustment schedule that
periodically raises the exponent by e. Raising the exponent will lower the

value function as well as changing its shape. If we suppose that the value

230

function was in the right range, then we would like to take the value function
with the new exponent, k4¢, and raise it to be in the same range it previously
was.

Since the value function’s shape changes it become hard to define exactly
how much and at which points the value function should be raised. However,
a simple scheme is to simply try to make the new values match the old values
at the simplex corners. This is just a specific instance of a more general
scheme where we could try to make it match at any set of points. Below we
derive the necessary change in the ! vectors for this instance.

Let e; be the simplex corner corresponding to the information state
where the entire probability mass is in state s. Prior to adjusting the expo-
nent we have

L
k

vie = Y ()]

1<I<L

h

where ~! is the st component of the vector /. Adjusting the exponent by

€ yields a new value at the point ez of

L
k+e

Prey=| X ()

1<I<L
We assume that whatever adjustment we want to make is distributed equally
among the L vectors. Thus we are interested in finding ¢ such that
1
k+e e
V(Te) = > (++9)
1<I<L

This being hard to solve for § directly, consider the simpler problem of trying

231

to find 6, in

L
k+e

V([e,) = Z (('yi)kJrE—l—g) ,

1<I<L
which is simply assuming that the terms in the sum should all be adjusted

by the same amount. From this we see that

VR (Te) = 3 (»@)HEJFLS
1<I<L

VEH(T, e,) = V(T e,) + L8
VEH(T, e,) — V(T e,)
L

0=

Now we assume that the contribution of § quantity is equally distributed

among all L vectors. This means we want each term to satisfy
I k+e _ I k+e
() " +3= (s +9)
AR \FE
(75) + 6 — s

1
kte VEHE(T, e,) — V(T e,) | ¢
5:((%) VT) = TR >) 0

(=Y
Il

L

Therefore, the procedure for scaling the value function when adjusting

the exponent by € is:

1. compute the current value function, V' (I, e,), at all the simplex corners

€53
2. adjust the exponent by e;

3. compute the new value function, V(F,es) at all the simplex corners

€s;

232

4. for all |S§| component of all L vectors set their new value with the

assignment
1

kte VRHe(T, e,) — V(T e,) \ 7
thom () Ve T)

Gradient Descent on the Exponent

An alternative approach is to view the exponent as just another parameter
of the function approximator, making the approximator V(F, k,b), and use
a gradient update rule for it. Then, instead of updating just the vectors,
the exponent is also adjusted.

To derive the partial derivative of V(T', k,b) with respect to k, we note

that

2" _ i [R2) D9(e) Oh()
gy MDD T) L sy

where for our purposes @ =k, g(z) = > ;<1 (b-'yl)k = V(T,k,b)* and

hiz) = 1/k.

oV (T, k,b) 1 d
g VIED [kV(F k,)k (a

91
+ (%E) In V(T, k,b)]

:v(l“,k,b)[kv BE 2 (ai()k)

T k,b 1<I<L
1
-zl V(F,k,b)k]
1 o N
= V(L&) [kV(F e, b)F KZK:L (% (b"y))

_ %an(F,k,b)] .

233

Then again using the identity from Equation 5.14 where h(z) = k and

g(z) =b -+, we have

8 =) o)

which makes the entire partial derivative

OV (T, k,b) _ V(T,k,b) 1 K
ok & [V(nk,b)kl;;(b”l) m(b-»/)

- an(F,k,b)] (5.15)

Another complication that arises in considering adjusting the L norm’s
exponent through a gradient descent rule is the requirement of a separate
learning rate for the exponent. Although using the same learning rate as
for adjusting the 4! components is possible, the nature of the differences
between the two quantities suggests that best results will be achieved with

separate learning rates.

234

5.3 RL/NDP Empirical Results

This section presents empirical results using some of the pOMDP function
approximators on a range of problems. The vast number of options and
parameters available in the RL/NDP framework precluded trying all combi-
nations and also complicates the interpretation of the resulting data. Our
main focus here is comparing the function approximators with some minor
exploration into comparing some of the parameters. The next sub-section

discusses the basic structure of the experiments.
5.3.1 Experimental Set-up

For all the function approximators considered here, we explore only using
Q-functions. Although this approach is not desirable for problems with a
large set of actions, the problems considered here all have a relatively small
action set.

We use the incremental gradient method with the update rules shown in
Section 5.2. This can be viewed as an optimistic policy iteration algorithm
using TD(0) value updates. A training instance consists of some number of
trajectories, either 1,000 or 10,000, truncated to 100 steps, which results
in 100, 000 or 1,000,000 specific training steps. However, problems where
there are zero-cost absorbing would normally result in fewer steps, since
the full 100 steps per trajectory may not be reached. For the absorbing
state problems, the minimum number of additional trajectories were used
to bring the number of training steps up to at least 100,000 or 1,000,000
steps. Thus, for those problems there could be up to 99 more training steps

than the non-absorbing state problems.

235

Step Size ‘ Training Steps Interval ‘

0.1 [025,000]

0.01 [25,001 50, 000]
0.001 [50,001 75,000]
0.0001 [75,001 0o)

Table 5.2: Step-size adjustment schedule for 100,000 training step RL/NDP
experiments.

Regardless of the number of trajectories used, the parameter training
phase is followed by an evaluation of the resulting value function using
10,000 trajectories of 100 steps and averaging the discounted reward re-
ceived for each trajectory. Naturally, no exploratory actions are taken in the
evaluation phase. Also, no additional trajectories for the zero-cost absorbing
state problems are needed in the evaluation phase, since each trajectory is
a single sample of the discounted reward, no matter how many actual steps
are in the trajectory.

For each trajectory, the starting state is chosen to be consistent with
a problem-specific initial information state. The initial information state
reflects some prior probabilities on the state for the various problems.

The basic structure of the algorithm follows the Q-learning approach,
where the best action according to the current Q-functions is usually taken,
but with probability 0.25 a random exploratory action is used. Addition-
ally, the step-size increment, or learning rate has the general form of being
decreased over time and the specific schedule used for the 100, 000 training
step experiments is given in Table 5.2 with Table 5.3 giving the schedule for
the 1,000, 000 step experiments.

Because the k-pwLc algorithm has more vectors and only one vector is

Step Size ‘ Training Steps Interval ‘

0.1
0.01
0.001
0.0001

[0 250,000]

[250,001 500, 000]
[500,001 750, 000]
[750,001 oo)

236

Table 5.3: Step-size adjustment schedule for 1,000, 000 training step RL/NDP

experiments.

‘ Step Size ‘ Training Steps Interval ‘

0.1
0.01
0.001
0.0001

[075,000]

[75,001 150,000]
[150,001 225,000]
[225,001 oo)

Table 5.4: Step-size adjustment schedule for 300, 000 training step 3-PWLC

experiments.

updated per step, the amount of experience that goes into adjusting each

vector can be 1/k-th as much as the LIN-Q algorithm. To compensate, we

ran the k-PwLC algorithms with k& more training steps than their LIN-Q

counterparts. However, this may result in some single vector being updated

more than would be in the LIN-Q experiments. These longer training phases

necessitate an adjusted step-size schedule, and Tables 5.4 through 5.7 show

the schedule used for the k-PWLC experiments.

‘ Step Size ‘ Training Steps Interval ‘

0.1
0.01
0.001
0.0001

[0 750,000]

[750,001 1,500, 000]

[1,500,001 2,250,000]
[2,250,001 oo)

Table 5.5: Step-size adjustment schedule for 3,000, 000 training step 3-PWLC

experiments.

237

Step Size ‘ Training Steps Interval ‘

0.1 [0175,000]

0.01 [175,001 350,000]
0.001 [350,001 525,000]
0.0001 [525,001 00)

Table 5.6: Step-size adjustment schedule for 700, 000 training step 7-PWLC
experiments.

‘ Step Size ‘ Training Steps Interval ‘

0.1 [0 1,750,000]

0.01 [1,750,001 3,500,000]
0.001 [3,500,001 5,250,000]
0.0001 [5,250,001 oo)

Table 5.7: Step-size adjustment schedule for 7,000, 000 training step 7-PWLC
experiments.

Since there often is randomness® in the initial value functions and al-
ways randomness in the simulated trajectories, performing the training and
evaluation phase will yield different results from one instance to another.
To alleviate this, we repeated each experiment 10 times, where an experi-
ment consists of a certain number of training steps and a 10,000 trajectory
evaluation phase as discussed previously. This set-up introduces some com-
plications in doing a statistical analysis on the data since there are now
two sources of randomness contributing to the evaluation: the randomness
in the training and the randomness in the evaluation. We have pooled all
10 x 10,000 evaluation trajectories into a single batch of 100,000 samples
and compared the algorithms on the basis of these batches. While this is
not precisely correct, it does provide some insight into the performance of

these algorithms.

1t is not random when the Q-functions are used for initialization.

238

5.3.2 Small Problems

In this section we explore the LIN-Q and k-PWLC schemes on the same set of
small problems used in Section 4.9.2 and shown in Table 4.4. The purpose
of using a set of small examples is to have some domains where we can
compare these RL/NDP approaches to the optimal answers. For the k-PwLC
algorithm we used the initialization technique discussed in Section 5.2.2.

The true infinite horizon optimal values for these small problems are
actually larger than are shown. Since we used truncated trajectories, we
are imposing a limit on the total discounted reward that can accumulate.
For this reason, instead of calculating the optimal values, we evaluated the
optimal controller using the same simulation set-up as the other algorithms.
Because there is no randomness in producing the optimal answer, we only
required evaluating the optimal answer once. Because the optimal answer
reported is based upon simulation, the randomness of the simulation does
not preclude another algorithm from performing better on a particular prob-
lem instance. The initial value function vectors were chosen to have random
vectors where their components were randomly set to values in the interval
[—20, 420].

Table 5.8 shows the results for these small problems where the best entry
for a problem is boxed. The lighter boxed entries indicate that these are not
significantly worse than the best answer, where significance was determined
by a simple two-sample T-test with p = 0.995.

As can be seen from this table, even for the 100, 000 training step experi-

ments, the LIN-Q algorithm does exceedingly well. On some of the problems,

| Alg. Steps || 4x3 | 4x4 | CHEESE | PAINT | SHUTTLE | TIGER | NETWORK | NONLIN | sACI |
LIN-Q 1x10° || [1.860] | 3.542 | [3.464] | [3.267|| [32.657]| [19.222 288.465 | 7.072 | 13.961
1x10% || [1.868] | [3.708] | |3.465] | [3.268] | [32.690] | [19.285]| | [290.040]| | |7.158] | [14.787]
3-pwLc 3 x10° || [1.866] | [3.709] | [3.464]| [3.270]| [32.678] | [19.277]| 287.328 | [7.158]| 13.409
3x10% || 1.802 | [3.709] | 3.398 | 3.213| [32.663] | [19.254]| [291.343|| [7.158]| [14.762]
7-PwLe 7x 10° || [1.861] | [3.709] | [3.463] | [3.271] | |32.655]|[19.307] | [289.585]| [7.158]| 14.555
7x108 | 1.832|[3.710 3.388 | 3.181 | [32.656]| [19.261] | [290.933]| [7.158] | [14.760]

| Optimal N/A || N/A [3.712| 3464] 3.279| 32700 19.181 [290.998 | 7.158[N/A |

Table 5.8: LIN-Q and k-PWLC comparison on the suite of small problems using various numbers of training steps.
Initial vector range [=20 4 20 |. (mean). T-test with p = 0.995.

6¢¢

240

1 2 3 ﬁ

Figure 5.2: HALLWAY domain, a 57 state robot navigation domain.

training LIN-Q for longer improves the solution to near optimal behavior for
those where the optimal controller could be computed. Since there is no
room for improvement, any advantage by using multiple vectors, the 3-PwLC

and 7-PWLC versions, would not be brought out by these problems.
5.3.3 Larger Problems

The results from the small problems establishes the potential for using these
RL/NDP techniques, and the next step is an attempt to apply them to prob-
lems which are larger and which cannot be exactly solved. We first applied
these algorithms to the two robot navigation domains shown in Figures 5.2
and 5.3 which have 57 and 89 states respectively. These domains are de-
scribed in more detail elsewhere [68], but are similar to the navigation do-
mains described in Appendix H.5. The starred locations are the goal loca-
tions which yields a 41 reward and resets the state to a random non-goal
state. For both of these problems, the initial state is equally likely to be any
of the non-goal locations and the discount factor used is 0.95.

We first ran LIN-Q and used the same initial random range of [—20, +20]
with the same training set-up of 100, 000 steps and evaluation with 10,000
trajectories of length 100. The first difficulty we encounter is in gauging

the performance of the resulting policies, since the optimal answer is not

241

i

Figure 5.3: HALLWAY-2 domain, a 89 state robot navigation domain.

known. To this end, we ran an omniscient control strategy (OMNI) which
can peek at the underlying state and perform the optimal action for the
true underlying state, where the optimal action is computed by solving for
the problem as if it was completely observable. Note that this omniscient
controller can perform much better than the optimal partially observable
control strategy, but does provide an upper bound on the performance that
is achievable. In addition, we have included two other results to help gauge

the performance.

e Heuristic - this is the performance of the best heuristic solution,
which are to be discussed in the next chapter. However, we have
hand-picked the best heuristic, and there is no current motivated way
to know a priori which heuristic should be chosen for a given problem.
Statistical comparisons between the best heuristic and these RL/NDP
schemes can be found in Section 6.8 following the empirical results for

the heuristics.

e Human - we developed a graphical simulation environment of these

| Alg. Initial Steps || HALLWAY | HALLWAY-2
LIN-Q [-20 +20] 1x10° 0.059 0.033
[-20 +20] 1x 10° 0.506 0.060

Heuristic — — 0.823 0.378
Human — — 0.865 0.300
OMNI — — 1.519 1.189

Table 5.9: LIN-Q on larger domains with random initialization.

242

domains which display the information state probabilities as varying

shades of grey. A human® used this to select actions.

The results are shown in Table 5.9 where we see that there is still much

room for improvement. The 100, 000 step experiments result in very poor

performance, though more training steps helps to improve the solution. It

may be that even longer training runs would continue to improve the results,

but somewhat discouraging to think that more than 1,000, 000 training steps

are required.

As the table shows, the quality of the answers is far from what is achiev-

able by using simple heuristics. There are a few problems that contribute

to this.

e With random initial vectors, early stages of the training are wasted as

the actions cause very undirected trajectories that only occasionally

lead to the goal and a positive reinforcement.

e The optimal answers values are in a much narrower range than the

initial random value range, so it requires extensive training to move

the values into the correct range.

*Thanks to Michael Littman for his patience in performing this task.

243

e With a larger state space than the small problems of the previous
section, additional training trajectories are needed as a larger state

space is explored.

The next few sub-sections address these issues.
5.3.4 Biasing the Training

In and attempt to assess the items listed above, we used a more motivated
initialization scheme for the individual vectors in the LIN-Q Q-functions. As
with any machine learning task, bias plays an important role in the quality
of the solution, and we do not expect our task to be any different.

Recall from Equation 2.9 in Section 2.2.3 that a coMDP has associated
value functions for each action called Q-functions. Since there is an under-
lying cOMDP in a POMDP we would expect the optimal comMDP Q-functions
to be somewhere in the correct value range for the optimal values of the
pOMDP. This makes the Q-functions a disciplined way to initializes the LIN-
Q vectors which gives an approximate range on the values and potentially a
way to seed the vectors with a reasonable initial policy.

The natural question to answer is how well a control job the Q-functions
themselves would do without any adjustments. This control strategy is
discussed about in more detail in Section 6.3 of the next chapter on heuristics
under the name Q-MDP. We defer the details and discussion of this control
heuristic to the next chapter, but will include the results from this heuristic
to gauge whether the LIN-Q updating of these vectors is doing any useful
work.

Table 5.10 shows the results of using the Q-functions to initialize the

244

| Alg. Initial Steps || HALLWAY | HALLWAY-2 |
[Q-MpP — — | 0.344 | 0.097 |
LIN-Q [-20 +20] 1x10° 0.059 0.033
[-20 +20] 1x 10° 0.506 0.060
Q-func 1x 10° 0.910 0.218
Q-func. 1x 10 0.946 0.468
Heuristic — — 0.823 0.378
Human — — 0.865 0.300
OMNI — — 1.519 1.189

Table 5.10: LIN-Q on larger domains comparing random initialization and
Q-functions.

LIN-Q vectors and compares it to the optimal, best heuristic and the Q-
MDP control heuristic. As shown, in both domains the LIN-Q algorithm
significantly improves upon the initial vectors and with enough training
steps, surpasses both the human and best heuristic performance.

Using the Q-function for initialization yields very good performance,
but it does not tell us if the benefits come from having a good early control
strategy in the training or by starting the initial values in a more reason-
able range. In an attempt to pry these two issues apart we ran the same
experiments again using random initial vectors, but restricting the range of
the value to those in the range of the Q-function values, which is [1.0 2.5].

Table 5.11 shows these results along with the previous results and we
see that simply restricting the range helps a significant amount, but that it
is not the sole contributor to the increase in performance. Although with
enough training experience we can get high quality solutions starting with
the restricted-range random vectors, using the Q-functions is quite helpful in

reducing the number of training steps required and as a motivated method

245

| Alg. Initial Steps || HALLWAY | HALLWAY-2 |
[Q-MpP — — | 0.344 | 0.097 |
LIN-Q [-20 +20] 1x10° 0.059 0.033
[-20 +20] 1x 10° 0.506 0.060
Q-func 1x 10° 0.910 0.218
Q-func. 1x 10 0.946 0.468
[1.02.5] 1x 103 0.755 0.099
[1.02.5] 1 x 10° 0.944 0.422
Heuristic — — 0.823 0.378
Human — — 0.865 0.300
OMNI — — 1.519 1.189

Table 5.11: LIN-Q on larger domains comparing various initial vector values.

for choosing the a useful initial range.

Finally, we want to see how the the potentially more expressive k-pwWLC
representations do on these domains, both to see if they are at all useful
and also to see whether or not they can result in improved performance over
LIN-Q. The full results on these two domains are shown in Table 5.12.

Here we see that not only are the k-PWLC representations useful, but
they give significantly better results than those attained with the LIN-Q
representation. Again, the dark boxes highlight the best value and lighter
boxes show entries which are not significantly different as determined with
a two-sample T-test with p = 0.995. Curiously though, the best results
are obtained using the restricted-range random vector initialization and not
the Q-functions. Although we have not explored why this is the case, we
speculate that the Q-functions could be forcing the function toward some
inferior local minimum in the error space, where the random vectors tend

to be located near a better minimum.

246

| Alg. Initial Steps || HALLWAY | HALLWAY-2 |
[Q-MpP — — [0.344 | 0.097 |
LIN-Q [-20 +20] 1x10° 0.059 0.033
[-20 +20] 1x 10° 0.506 0.060
Q-func 1x 10° 0.910 0.218
Q-func. 1x 10 0.946 0.468
[1.02.5] 1x 10° 0.755 0.099
[1.02.5] 1 x 10° 0.944 0.422
3-PwLc [—20 +20] 3x 10° 0.031 0.042
[-20 +20] 3 x 10° 0.618 0.149
Q-func 3 x 10° 0.944 0.414
Q-func. 3 x 106 0.946 0.477
[1.02.5] 3 x 10° 0.956 0.172
[1.02.5] 3 x 106 1.007 0.501
7-PwLC [—=20 +20] 7 x 10° 0.024 0.053
[-20 +20] 7 x 10° 0.717 0.174
Q-func 7 x 10° 0.942 0.466
Q-func. 7 x 10° 0.951 0.481
[1.02.5] 7% 10° 0.942 0.466
[1.02.5] 7% 106 [1.00s] [0.510]
Heuristic — — 0.823 0.378
Human — — 0.865 0.300
OMNI — — 1.519 1.189

Table 5.12: LIN-Q and k-PWLC comparisons on 57 and 89 state POMDP
problems using various initializations and number of training steps. T-test
with p = 0.995

247

5.3.5 Other Domains

The small domains and the HALLWAY and HALLWAY-2 domains show the
potential for the LIN-Q and k-PWLC algorithms, but are still a very limited
class of problems, which may have special structure, allowing these algo-
rithms to do particularly well. In an effort to explore these algorithms on
a broader class of larger problems we have implemented simulators for a
variety of domains. We first give a brief overview of these domains and then

give the empirical results.
Domain Descriptions
The domains used fall into 5 classes:

e robot navigation domains (Appendix H.5) which include crr, mIT,

SUNYSB, PENTAGON, FOURTH;
e single aircraft identification or 1IFF (Appendix H.4);
e large baseball domain or BASEBALL (Appendix H.1);
e machine maintenance or MACHINE (Appendix H.3);

e slotted aloha network protocol (Appendix H.2) including ALOHA-10

and ALOHA-30;

The details of the domains are given in the appendices indicated above,
but the overall problem sizes are given in Table 5.13. For all these domains
a discount factor of 0.99 was used.

For the 5 robot navigation problems, the transition and observation prob-

abilities are derived from the probabilities shown in Appendix H.5 with the

248

Name States | Actlons ‘ Obs. ‘
CIT 281 4 28
MIT 201 4 28
SUNYSB 297 4 28
PENTAGON 209 4 28
FOURTH 1,049 4 28
IFF 104 4 22
BASEBALL 7,681 6 9
MACHINE 256 4 16
ALOHA-10 30 9 3
ALOHA-30 90 29 3

Table 5.13: Various POMDP problem names and sizes.

Tables H.10 and H.11. The layout of these domains is identical to those
shown in Figures 6.1 (c1T), 6.2 (MIT), 6.3 (SUNSB), 6.4 (PENTAGON) and 6.5
(FOURTH) of the next chapter, with a single starting state and a single goal
state. Although these navigation problems have potentially 65 observations,
for these 5 domains the undetermined observation has zero probability from
all states, making these effectively 28 observation problems.

For many of the domains, the problem was scalable along a particular

dimension.

e The 1FF problem discretized the distances of the approaching aircraft

into 10 locations.

e The BASEBALL problem is adjustable by the number of innings, though

we used only a single inning game.

e The MACHINE problem, the problem is adjustable by the number of

internal components for the machine. We used 4 for our example,

249

which results in 256 states, since each component has four possible

states of condition it can be in.

e The ALOHA problems, the problem is adjustable by the maximal num-
ber of back-logged packets allowed. We used the values 10 and 30 for

the ALOHA-10 and ALOHA-30 domains respectively.
Empirical Results

This larger suite of problems was run with initialization of both random
vectors and the problems’ corresponding Q-functions. We also ran both
100,000 and 1,000,000 step variations where the number of steps for the
k-PWLC schemes were adjusted accordingly. The range of values used for
the random initialization was [—20 4 20] for all but the 5 robot naviga-
tion problems, where here the components of the vectors were set randomly
within the range [0.5 1.0].

Tables 5.15 and 5.14 show the complete results for all the variations
tried, the results from the best heuristic of the next chapter, as well as the
omniscient and Q-MDP heuristics. A two sample T-test with p = 0.995 was
used and is the basis for the boxed entries in the table; all boxed entries are
not significantly different than the best entry.

Focusing on the robot navigation problems of Table 5.14 first, we see a
strong sensitivity of the RL/NDP algorithms to the initial vectors used. In
particular, for the 100, 000 step experiments the LIN-Q representation does
miserably unless the Q-functions are used. We see that for the most part, a
the LIN-Q representation suffices for doing well. The one exception, MIT, is

a diabolically symmetric environment and the 7-PWLC representation does

250

| Alg. Init. Steps || c1T | MIT | SUNYSB | PENT. | FOURTH |
| Q-mpP — || 0.832] 0812] 0.759| 0.821[0.590 |
LIN-Q Rand. 1x10° [-0.012 [0.081] -0.026 | 0.060] -0.025
Rand. 1x10° || 0.821| 0.834| 0.610| 0.803| -0.008
Q-func. 1x10° || 0.827 | 0.841 | [0.771] | [0.819] 0.593
Q-func. 1 x10° || [0.828 0.846 | 0.755 | 0.818 | [0.596]
3-pwLc Rand. 3x10° || 0.821] 0.830| 0273 0.790 | -0.002
Rand. 3 x10° || [0.828]| 0.854 | 0.753 | 0.800 0.071
Q-func. 3 x10° || [0.828 0.848 | 0.756 | 0.815
Q-func. 3 x 10° || 0.829 0.850 | 0.763 | 0.814 0.588
7-pwLCc Rand. 7x10° [0813] 0833 0.711] 0.790 | -0.012
Rand. 7x10° | 0825 |[o.868]| 0.757| 0.805 0.557
Q-func. 7x10° || [0.828]| 0.848 | 0.758 | 0.815 0.594
Q-func. 7x10° || 0.827 | 0.857| 0.766 | 0.814 0.591
Heur. — — I 0.834] 0863] 0764 0.822 0.592
OMNI — || 0.845| 0.894| 0.809 | 0.836 0.625

Table 5.14: The LIN-Q and k-PWLC algorithms on some robot navigation
problems. T-test with p = 0.995.

251

significantly better than the rest, though curiously, by starting with random
initial vectors. Again, similar to the HALLWAY and HALLWAY-2 problems,
this could be attributable to local minima.

Although the k-PwLC variations do well on some domains with random
initialization, the larger and more complex domains also seem to require
Q-function initialization for good performance. Increasing the amount of
training also helps when starting from random vectors, but especially on
the larger FOURTH domain, initializing with the Q-functions is required for
good performance. In fact, only for the MIT and SUNYSB domains do these
RL/NDP schemes provide significant improvement over the Q-MDP method.
Based upon the omniscient controller, we see that there was little room for
improvement on these domains anyway, though it is encouraging to know
that these RL/NDP algorithms preserve the high quality performance of the
Q-functions.

For the other domains in Table 5.15, we have some mixed results. For the
IFF domain, The 1,000, 000 step 7-PWLC with random initial vectors provides
the best performance. For the BASEBALL domain, a 3-PWLC variation is
best, and for the remainder, the simpler LIN-Q representation does best.
However, notice that in all of these domains the RL/NDP techniques yield

fairly reasonable results.

252

‘ Alg. Init. Steps H IFF ‘ BB ‘ MACH. ‘ ALOHAL0 ‘ ALOHA30 ‘
| @-mpP — — || 4496 | 0.101] 59.693 | 127.429 | 851.035 |
LIN-Q Rand. 1x10° || 8136 0217] 13.463 75.128 | 666.820

Rand. 1x10% | 6.971| 0.096 4.500 73.004 | 602.963
Qfunc. 1x10% | 8.010 | 0.043 | [59.830] | 121.474 | [825.365]
Q-func. 1x10° | 8504 | 0.063| 58230 |[123.871]| 811.769
3-pwLc Rand. 3x10° || 7.875] 0.196 6.328 69.511 | 628.338
Rand. 3 x10° | 8.630 7.913 | 70.139 | 630.400
Q-func. 3 x10% || 8247 | 0.072 | 59.028 | 121.751 | 808.669
Q-func. 3 x 106 || 8441 | 0.265| 50.954 | 111.760 | 581.529
7-PWLC Rand. 7x 105 || 8.361 | 0.464 3.299 70.350 | 642.026
Rand. 7 x 106 N/A 8.053 69.293 | 659.705
Q-func. 7x10° || 8.045 | 0.067 | 57.022 | 119.510 | 799.756
Q-func. 7x10° || 8218 | 0.328 | 42972 | 119.316 | 626.691
Heur. — — I 8389 0.668] 59.693 [127.429 [852.773
OMNI — || 10.079 | 0.658 | 66.236 | 145.572 | 937.143

Table 5.15: The 1.IN-Q and k-PWLC algorithms on the suite of larger prob-
lems. (mean) T-test with p = 0.995.

253

5.4 Related Work

The majority of work in reinforcement learning has used COMDPs as its basis,
since the theory is better developed and the mathematical foundation more
solid. However, there has always been interest in attacking the problem
of partial observability. An early attempt to deal with partial observability
was by Whitehead and Ballard [134], but it is only effective when the partial
observability takes a special form, since it attempts to avoid the states which
appear confusing.

The work by Lin and Mitchell [67] used recurrent neural networks to
cope with partial observability. Knowing that good policies is these do-
mains will require some type of memory, they present three architectures
for maintaining this memory. In one architecture, they simply give the re-
current network the current action and observations, hoping the memory of
the network will capture the needed structure. In another instance, a finite
history of the process is given to the recurrent network. Their last archi-
tecture uses an indirect method, which has one network learning a model
and providing the current state estimate to another network which attempts
to learn the value function. Similar to the choice we had for our function
approximators, they discuss the issue of using a single monolithic network
or a single network for each action. They provide detailed comparisons on
these different architectures and the structures of problems for which each
may do best. However, all the problems presented there are relatively small,
and no attempt is made to exploit properties of the optimal value function.

It would be interesting to explore adding some bias on the value function to

254

these connectionist schemes, since there have been a number of impressive
application using neural network function approximators [122, 32].

Schmidhuber [110] has also looked at applying recurrent neural networks
to deal with the problem of hidden state. Some later work by Wiering
and Schmidhuber [135] deals with the non-Markovian nature of the POMDP
control problem by breaking it down into a sequence of Markovian tasks.
This greatly restricts the type of policies that are considered and requires
some initial knowledge about how many tasks might be needed.

Chrisman [28] presented an indirect method where a predictive model
of the POMDP is maintained and updated based upon experience. Here the
predictive model is in the form of a hidden Markov model, rather than a
recurrent network, and there is a rule to add states to the model when it
vields poor predictions. Like the LIN-Q algorithm, the value function consists
of a single vector per action and the update rule is similar to LIN-Q, though
not identical. The differences are discussed, highlighted and empirically
compared in work by Littman, Cassandra and Kaelbling [68].

Ring [104] combines the use of a recurrent neural network for the predic-
tive model with rules for adjusting the model when a richer representation is
needed. This is more of a hierarchical approach and allows handling of hid-
den state with a varying amout of representational complexity, depending
upon the need for additional bits of information.

McCallum has worked extensively on applying RL to problems with hid-
den state [85, 86, 83, 84]. The end result of his efforts is a finite memory
approach, where the amount of history required to make a decision can vary.

The idea is to only add more history information if it will increase the util-

255

ity of the policy. This is similar to Ring’s work, though McCallum uses a
tree-based representation instead of recurrent neural networks.

Some preliminary research in applying Q-learning directly to POMDPs has
been undertaken by D’Ambrosio and Fung [33] using a table-based function
approximator which maintains an entry for each belief state visited.

Crites [32] has successfully applied RL to the problem of elevator control
using teams of reinforcement learning agents. Although not explicitly han-
dling partial observability, the elevator control domain does have elements
of hidden state; e.g., the actual number of persons waiting to board an el-
evator. Despite ignoring this, his system performs quite well in the face of
partial observability. Additionally, he does some experiments varying the
amount of partial observability and sees that his system is fairly robust
to this. However, the form of the partial observability explored is heavily
domain dependent and it is hard to say whether his techniques would be
equally robust toward other forms of partial observability or in other do-
mains. However, this successful use of teams of RL agents holds promise for
dealing with partial observability directly.

There is alos some work in dealing with reinforcement learning in contin-
uous spaces [93] and future advances in continuous state space RL algorithms

would have direct applicability to POMDP problems.

5.5 Conclusions

In this chapter we have overviewed one general scheme for reinforcement
learning (or neuro-dynamic programming) and then presented some in-

stances for POMDPs that exploit knowledge of the shape of the value function.

256

We have shown that these technique do improve solutions and overall, com-
bined with the work of others, suggest that RL/NDP techniques have a great
potential as a basis for approximate algorithms for solving large POMDPs.
There is still much research to be done in this area, especially in combining

RL/NDP with feature-based approaches.

Chapter 6

Heuristic Approximations

Although the rRL/NDPframework has a mathematical basis and some nice
underlying theory, it can be a significant amount of machinery to wield, it
could require extensive training and it is not a trivial task to get the right
set of parameters. The natural question arises as to whether or not sim-
pler, though perhaps less mathematically motivated, techniques could be
employed to choose actions in the face of uncertainty. In this section we ex-
plore some simpler control rules which require no training of a value function,
but of which little can be said theoretically. We empirically explore these
methods on a range of domains. We note that there are intriguing, though
unexplored, possibilities for combining these heuristics with an RL/NDP ap-
proach, where the heuristics are treated as features of the environment [25].

For all of the methods discussed, we are assuming that we can model
the domain as a POMDP and that an explicit information state can be main-
tained at each step. Most of these heuristics first appeared in research by
Cassandra, Kaelbling and Kurien [21].

There is a class of techniques in control theory called certainty equivalent

257

258

controllers (CEC) which are closely related to the approach of some of these
heuristics [9]. The controllers make the assumption that the state transition
functions are deterministic, and control proceeds accordingly, even though
this assumption is violated. Also from control theory are the ideas of open-
loop and closed-loop controllers. The open loop controllers decide the entire
sequence of actions to execute before even taking the first action and receive
no feedback from the environment as it executes the sequence. When the
world is not deterministic, these controller are effectively assuming the sys-
tem is completely unobservable. The techniques here are closed-loop, since

there is a constant feedback signal in the observations received.

6.1 Most Likely State (MLS)

By itself, using a POoMDP model and tracking the information state yields a
significant amount of information about the system. The information state
is the best state estimate we could hope to find and for the task of behaving
optimally, it is a sufficient statistic [120] for the entire past history of the
process. The state with the most probability mass in the information state
at a given state, truly is the state that the system is most likely to be in.
Agsuming we track the information state, the simplest heuristic is to act as
if we were in that most likely state. If two or more states are equally likely,
we could simply choose one arbitrarily.

With this simple idea, all that is left is deciding which action to execute
in state s, when Vs’ # s,b(s) > b(s’). Since adding partially observabil-
ity makes the problem hard, we can ignore the partially observability and

determine what would be the best action to take for state s if the system

259

was completely observable. Thus, this heuristic makes two assumptions: the
system is in the most likely state and that future actions will be based upon
the underlying system state.

Recall from Section 2.3 that a POMDP is nothing more than an MDP that
lacks direct state information. Therefore, removing the partially observabil-
ity is simply treating the problem as a cOMDP by ignoring the Z and O
portions of the model. Since solving COMDPs is relatively easy, this presents
no real obstacle and the methods of Sections 2.2.3 or 2.2.4 can be applied.
Let 7co : 8§ — A be the optimal infinite-horizon coMDP policy for a POMDP.

We define the control heuristic policy most likely state (MLS) as
mMLs (b) = meo (argmaxb(s)) .

Note that the coMDP policy not only assumes that we know our current

state, but that we will also know all of the future current states.
6.2 Action Voting

A potential problem with the MLS control strategy is its complete neglect
of all but a single state. Consider a simple three-state, two-action POMDP

where the optimal coMDP policy is given by

Tco(so) = ag (6.1)
Tco(s1) = ag (6.2)
Too(s2) = @ (6.3)

and suppose the current information state is b =[0.3 0.3 0.4]. The MLs

scheme will choose action a; despite the fact that we are more likely to be

260

in a state where action ag is the best action.
This motivates the action voting (AV) control strategy, which assigns a
probability distribution over the actions instead of over the states. Again,

we solve the POMDP as if it were a coMDP and define

we(b) =Y b(s)I(mco(s),a) (6.4)
where I is an indicator function as defined in Equation 2.15. Then the Av
control strategy becomes

mav (b) = argmax w, (b) .

a

This basic voting idea was first used by Simmons and Koenig [113],
but they used a planning algorithm based upon a model with determinis-
tic transitions to compute the best action for each state instead of solving
the underlying coMDP. For many of the robot navigation domains to be
discussed later, these yield essentially the same policies, but in general they

can be very different.

6.3 Q-MDP

The AV control strategy is not always the best solution either. The deficiency
in the Av scheme lies in it insensitivity to the differences in the actions’
values. Recall from Section 2.2.1 that each policy has an associated value
function, V() defined over the set of states. Additionally, for each action,
there is a related function, V(-), which defines the value of immediately

taking action @ and following the policy 7 thereafter.

261

Consider again a simple three-state, two-action POMDP whose optimal

policy has

as its value functions. This would yield the policy

7700(80) = ag
7700(81) = ag

7700(82) =

and with the information state b = [0.3 0.3 0.4] the av method would
select action ag since it has a probability of 0.6 of being the best action.
However, notice that for the states sy and sy, the alternative action ay
does not have a much worse value than action ag. In contrast, there is
a significant difference between the two actions in state s;. In terms of
a expectation with respect to the information state, action ag will yield a
value of (0.3)(5) 4 (0.3)(5) + (0.4)(0) = 3, whereas action ay has a value of
(0.3)(4)+ (0.3)(4) + (0.4)(10) = 6.4. Thus, action a; has an expected value
that is more than twice that of action «ay.

This example leads directly to the Q-MDP control heuristic. This name
is derived from the fact that the single action value functions V¢(s) have
historically been called @-functions. The Q-MDP control strategy begins,
similarly to the MLS and AV strategies, by solving the underlying comMDP.
However, in the Q-MDP method we are interested in the Q-functions of the

optimal policy rather than the policy itself. The Q-MDP control strategy is

262

given by

Tq-wpp (b) = argmax (Z b@)vm@)

One interesting aspect of this control strategy, is that if the system were
to become completely observable after the current action choice (i.e., un-
certainty existed for only a single step), the Q-MDP method would yield the
optimal strategy.

However, this is also a problem with the Q-MDP method, since it assumes
that whatever uncertainty exists will disappear after executing one action.
Thus, if an action is available which is fairly neutral in terms of rewards, it
has the tendency to choose this action, since it is expecting to be able to
do quite well after this step. If this action also does not do much to dis-
ambiguate the state, then it leaves the system in the same qualitative state
as before (confused, but expecting to be unconfused after the next action)
and the Q-MDP method will choose this same neutral action. Assuming this
action does little to change the state or reap rewards, the Q-MDP strategy

fall victim to its fallacious assumption.

6.4 Dual Mode Control

A problem with the previous strategies is their application in situations
where there is a lot of uncertainty in the information state. At this point
the Q-MDP, as well as the MLS and AV strategies can begin to make arbitrary
choices, especially if the differences between the probabilities or values are
minimal. In addition, the assumptions they have about complete observ-

ability steer them away from actions which have no reward value, but that

263

may give informational value by reducing the uncertainty in the informa-
tion state. These two problems can combine to cause these coMDP-based
schemes to degrade into a constant cycle of random action selection, never
receiving much reward and never doing much to disambiguate the current
state.

There is a general concept, known as dual control, from the research
on adaptive control [4, 60] that concerns itself with the tradeoff between
the control objective and the parameter estimation objective. With adaptive
control, on the one hand, there is the objective function which we would like
to optimize, but since there is uncertainty in the state or the model, there is
the sometimes conflicting objective of trying to estimate the state. In rein-
forcement learning there is the same problem where it is commonly referred
to as the exploitation vs. exploration problem [53]. Systems that explicitly
attempt to trade off these two objectives would generally be considered dual
controllers.

For the case of a poMDP controller, we know the model, so there is
not a problem learning the model parameters and the quantity we want to
estimate is the current state. Although the information state would seem to
solve the state estimation problem, it only does so in a limited way. It gives
us a probability distribution over the set of states, but that is not always
adequate. The MLSs scheme solves the state estimation problem by always
selecting the most likely state, but it is possible that there are many states
with roughly the same probability. If these states require different actions,
then as long as the probabilities of these states remain roughly the same, the

system will perform essentially randomly. THe MLS heuristic has no explicit

264

way to steer the information state into situations where one action choice
has a higher chance of being better than another.

In this section we describe a class of techniques that could be classified
as dual control schemes, since they have two control objectives. The first
objective is to take actions that will yield the highest rewards. The second
objective is to reduce the entropy of the information state. The entropy is
a measure of a probability distribution that reflects how spiked or spread
out the probability mass is, essentially capturing the amount of uncertainty
with a single number. If f(-) is a discrete probability mass function, the

entropy of a defined as

H(f)= =) log(f(x))f(x) . (6.5)
@

For the discrete information-state case, the entropy is minimized at zero
when all the probability mass is on a single state; i.e., there is complete
certainty about the current state. The entropy is maximized for the uniform
distribution; i.e., Vs, b(s) = 1/|S|.

The idea behind trying to explicitly reduce the entropy in the information
state is to drive the system into a state where the action choice has a higher
probability of being the correct choice. In an entropy reduction scheme of
this sort, we will want to know which action will result in the information
state with the lowest entropy. To do this we define the ezpected state entropy
of an action and information state to be

SH(b,a) =Y _o(ba, 2)H(bY) . (6.6)

z

Recall from our motivation for the Av control strategy that simply look-

ing at the distribution on the states does not always tell the whole story. In

265

selecting a control action, it can be more important to look at the function
we(b) in deciding on a proper action. Thus we can define the action en-
tropy of an information state as H(w,(b)) and likewise the expected action
entropy as

AH(b,a) =Y o(b,a,z)H (wy(b2)) . (6.7)

=

Both Equations 6.6 and 6.7 define a very myopic view of reducing the
entropy; It only considers the next step. We could define an n-step entropy
reduction scheme which looks multiple steps into the future and considers the
longer term entropy. However, since the branching factor of this look-ahead
is the number of observations, this method quickly becomes computationally
expensive, though clever heuristic pruning or sampling techniques could be
used. We will only consider a single step look-ahead for our definitions of
expected entropy.

The simplest scheme involving the entropy reduction concept is to de-
fine an entropy threshold, x and have two controlling strategies; one for
when the entropy is on each side of the threshold. When the entropy is be-
low this threshold, we can employ a control scheme that tries to maximize
the rewards received; e.g., MLS or Q-MDP. When the entropy is above the

threshold, we can use either
7(b) = argmin SH(b, a) ,

or is equivalent expected action entropy counterpart, to find the action with
the lowest expected resulting entropy.

It will be convenient to define the normalized entropy of a discrete prob-

266

ability mass function, f(z) as

H(f)= (6.8)

where u is a function representing the uniform distribution over the domain
of f; ie., Vz,u(z) = 1/|S|. Since the highest entropy is achieved for the
uniform distribution, the normalized entropy will always have the range
0<H(f) <1

Formally, we now define the dual mode control (Dm) as

[argmin, SH(b,a) if H(b) > &
mom-x (b) = { 7x (b) otherwise

and its related action entropy counterpart as

[argmin, AH(b,a) if H(w,(b)) >k
mapn-x () = { 7x () otherwise.

The X subscript can be replaced by any other heuristic yielding an entire
class of heuristics which will be referred to as DM-X and ADM-X; e.g., DM-Q-

MDP, ADM-MLS.

6.5 Weighted Entropy Control

The main problem with the dual-control entropy-reduction schemes of the
previous section lies in the complete insensitivity to rewards when the en-
tropy is above the threshold k. It could be that the action that leads to
the lowest expected entropy is considerably worse, in terms of reward, than
any of the other actions we might choose based upon a high entropy infor-
mation state. For a somewhat extreme example, if the very costly action

of self-destructing is available and highly reliable, then when the entropy

267

becomes high, this action would be taken with the dual mode control, since
there may be little or no entropy in the outcome; e.g., with probability 1
the system is in the state of being destroyed.

What is missing in the entropy reduction scheme is something that re-
lates the rewards of the model to the entropy of the information state. There
is no concept of how much the entropy in an information state is worth in
terms of the rewards of the model. The heuristic described in this section is
an attempt to relate the entropy to the rewards to give some rough measure
of the value of information. It also attempts to overcome the problem with
the Q-MDP method; assuming the uncertainty will go away after one step.

Considering the information state probabilities, when the normalized
entropy is zero, then there is no uncertainty in the state. If this certainty
persists for the remaining steps, then optimal behavior can be achieved by
using the actions specified for the underlying coMDP. At the other extreme,
when the normalized entropy is near 1, we have complete uncertainty about
the state. If this situation persists, then the future observations are not
helping to reduce the uncertainty. When there are no observations, or the
observations give no hint about the underlying states, we have a completely
unobservable MDP (CUMDP). If we solve an MDP assuming complete unob-
servability, using V&, to denote the related Q-functions, we arrive at a lower
bound on the values for a PoMDP. Thus, the coMDP and cUMDP solutions
provide upper and lower bounds on a POMDP$ optimal value function.

Motivated by these arguments, the expression

H0)(b-Véy) + (1= HD) (- Véo)

268

gives a value for performing action a in an information state based upon the
normalized entropy and the upper and lower bounds on the poMDP value
function. Unfortunately, there are some problems with using this expression.
The most critical problem is that computing Vi exactly is hard!. However,
there are many ways in which lower bounds can be computed [75, 46] which
can be used in place of Voy. We define Vi, to be any value function which
is a lower bound for the POMDP value function.

Another problem to address is the relative quality of the upper and
lower bounds. If one is a fairly loose bound and the other somewhat better,
then the simple normalization of the entropy would lead to values skewed
towards the loose bound. To compensate for this and allow some bias about

the relative quality of the bounds, we introduce the parameter k and define

k
A =a0" = (50) (6.9

as a normalized and scaled entropy. This leads to establishing the value of
an action for an information state, which we define as the weighted entropy
(WE) heuristic, with

Vive(0) = H(b)(b- VE) + (1= H(b))(b- Vo) -

The control strategy would be mwg(b) = argmax, Vi{p(b). The natural
extension of this heuristic for the case where we consider the action entropy
is

Viwe(0) = H(wa (b)) (b- Vi) + (1 = H(wa (b)) (0- Vo) -

! Computing the optimal solution to a cUMDP is NP-complete [95, 90] as are computing
weak approximations to cuMDP [20].

269

6.6 Approximate Value Iteration

An intriguing heuristic uses the exact algorithms discussed in Chapter 3 and
value iteration to get approximate solutions which can be used to control
a poMDP. Although this can be approached in a much more disciplined
way, in this thesis we use an ad-hoc approximate value iteration scheme
(APPROX-VI) to generate a set of vectors and evaluate the resulting set of
vectors as an approximate version of the value function.

There are two approaches to doing approximate value iteration on an

infinite-horizon MDP problem:

e Do each DP stage exactly, but stop after some finite number of stages,
i.e., use a finite-horizon solution as the approximation to the infinite-

horizon problem:;

e Do each DP stage approximately and stop when some comparison cri-

teria on successive stages is met.

For the first case, actual bounds can be placed on the quality of the so-
lution for both finite [9] and continuous space compps [108], making them
applicable to the poMDP problems. For the second case, one can also put
bounds on the approximation, where the error and the discount factor pro-
vide a limit on how wrong the values can be [26, 102, 140].

We do not undertake a disciplined approach to this problem, but our
implementation makes doing some form of an approximate DP stage read-
ily available. In order to better quantify the effects of our approximations,

we would need to more closely analyze both the algorithms and our imple-

270

mentation in terms of where the approximations are being made and how
the errors can be propagated. Nevertheless, we will use the undisciplined
APPROX-VI approach which does both approximate DP stages and truncates
the number of stages.

The approximation level has an impact on the size of the resulting sets,
which in-turn has an affect on the running times of the algorithms. The
ad-hoc approach stems from trying various approximation levels until the
value function representation sizes were manageable enough to allow value
iteration to proceed a significant number of stages. The APPROX-VI scheme
is mainly provided as simply another lower bound on the optimal solution,
though it also hints at the effectiveness of the exact algorithms when ad-
justed to allow approximations. Doing this is a more disciplined manner is

an interesting area of future research.

271

6.7 Heuristics Empirical Results

In this section we present three sets of empirical comparisons of the heuristics
discussed in the previous sections. We begin by evaluating the performance
of these heuristics on some extremely small toy problems. The purpose of
this comparison is to establish some relationship between the heuristics and
the optimal answers. The difficulty of computing optimal answers requires
these problems to be small.

Our next empirical evaluation is driven by a real application and ad-
dresses the usefulness of the poMDP model and heuristics for moderately
sized problems. The task is one of making navigation decisions in a fully
autonomous robot and the POMDP model and these heuristics were used to
control an actual robot. Our main focus here is to show that some of these
simple heuristics perform quite reasonably in these particular kinds of do-
mains, which demonstrates the usefulness of the POMDP model despite the
negative results from the computational complexity vantage.

The conclusions about the heuristics we establish in the robot navigation
domain are only applicable to that class of problems. Based on these results,
we can say nothing about how the heuristics might perform in other settings.
The structure of this class of problems may make them more amenable to
heuristic solution than other domains. For instance, the robot navigation
domains exhibit some nice locality structure in the transitions, and this may
aid the heuristics or bias the results toward a particular heuristic.

Our final empirical evaluation of the heuristics is on a few moderately

sized synthetic domains constructed for the purpose of these experiments.

272

However, we have based these models on realistic problems and have tried to
sample from a wide array of domains to avoid biasing the results in a specific
direction. As with any empirical comparison where there is no access to the
optimal answer, care must be exercised in choosing the problem set.

Additionally, in the absence of the optimal solution, to establish some
measure of performance, we have included the results from an omniscient
(oMNI) controller which is able to see the actual state of the process at
all times. For the problems where optimal solutions are not known, this
provides an upper bound on the quality of the solution. Note however that
the OMNI controller can be much better than even an optimal controller,
since the optimal controller is still limited by the partial observability of the
domain. When heuristics perform much worst than the omniscient controller
it is difficult to know how sub-optimal they are, but when they come close to
the omniscient controller, we know that they must also be close to optimal.

Nevertheless, although we can derive some conclusions from these results,
until a richer set of POMDP models are available and a more comprehensive
evaluation is completed, caution must be exercised concerning how these
claims might be extended to POMDP problems in general.

We follow with a section containing some discussion and empirical com-
parisons for those heuristics where there were tunable parameters; DM, ADM,
WE and AWE. We briefly present some results and discussion about how
changes in these parameters affect the quality of the control. In the com-
parisons of these parameterizable heuristics against the other heuristics that
precedes this parameter exploration, the results we show for these heuristics

reflect the best performance over all parameter setting tried.

273

We then present a brief section comparing these heuristic solutions to
the RL/NDP results of the previous chapter and then proved some discussion

of related work.
6.7.1 Experimental Set-up

A simulator for the environments was used to generate state transitions,
observations and immediate rewards. Each poMDP model had a problem-
specific initial information state and the starting state was chosen to be
consistent with this distribution. For all, except the robot-navigation ex-
periments, a single trial consisted of a truncated trajectory of 100 simulated
steps starting from the initial state. The immediate rewards, appropriately
discounted, were added to yield a sample of the total reward. This was
repeated for 10,000 independent trials and the results reported are the av-
erages over all trials. For the robot navigation experiments discussed in
Section 6.7.3 the trajectory length was 300 steps and the results are the
averages of 250 trajectories. The discount factor is 0.99 for all problems
except for the suite of small problems discussed in Section 6.7.2 where it is
0.95.

The execution time for evaluating the heuristics varied from problem to
problem based upon the size of the problem, the relative efficiency of the
code for simulating the domain and the particular heuristic used. Since there
is no training period or any extensive calculations required for any of the
heuristics, the execution time is simply the time necessary to simulate 10, 000
trajectories, where the belief state is updated and the heuristic selects an

action for each step. For problems without absorbing states, this amounts

274

to 1,000, 000 steps in the simulator and for problems with absorbing states,
this will typically be less. Note that unlike the RL/NDP training phase, there
is no need to ensure that the absorbing state problems execute the same
number of total steps as other problems since a single evaluation instance is

a full trajectory.
6.7.2 Small Problems

To provide some initial basis for the validity of the heuristics and to present
some cases where we can actually compare the heuristics against the optimal
solutions, we ran the evaluation on the small problems that were the basis
for some of the comparisons of the exact algorithms in Section 4.9.2 and the
RL/NDP algorithms in Section 5.3.2.

Table 6.1 shows the performance of the various heuristics on these small
problems and compares them to the performance of the optimal controller,
where available. The boxed entries are used to display the results from a
two-sample T-test with p = 0.995, where the non-boxed entries are signifi-
cantly worse than the best value. Notice that for some of these problems,
the omniscient controller can be far superior to the optimal controller. It is
also possible for the optimal controller to yield a lower value than some of
the heuristics, since the optimal controller was used in simulation. Addition-
ally, because the trajectories are truncated, the true infinite-horizon optimal
values are higher than what the optimal controller gives for its evaluation
values.

Note that in Section 6.7.5 we will explore the WE, DM-MLS, DM-Q-MDP,

ADM-MLS and ADM-Q-MDP heuristics over a range of parameter settings, but

Heur.

| 4x3| 4x4 | cHEESE | PAINT | SHUTTLE | TIGER | NETWORK | NONLIN SACI
MLS 1.736 | [3.702] | [3.380] | -1.754 | [32.618] | -892.485 108.527 | 6.299 | -31.762
Q-MDP [1.867] | [3.708]| [3.461 2.277 | [32.755| | [19.753| | [285.097|| 6.295 7.567
AV 1.747 | [3.659] | [3.464]| -9.603 | [32.687] | -894.403 131.776 | 6.278 | -44.634
WE 1.819] | [3.720 3.349] | 0.435 | [32.715] | [19.641 210.211 | 6.306 | -4.139
AWE 1.857] | [3.713] | [3:358] | -0.093 | [32.787] | [19.531 252.733 | 6.292 8.500
DM-MLS 1.772 | [3.717] | [3.464]| 3.106 — | |19.843 42.294 | 6.678 | -48.345
ADM-MLS 1.760 — | |3.443|| 2.017 — | 119.745 42.827 | 6.694 —
pM-QMDP || [1.812] | [3.708] | [3.466] | [3.127] — | 119.690 187.911 | 6.688 | -56.146
ADM-QMDP — — 3.467 2.023 — 19.636 187.746 6.686 —
approxvi || [1.883] | [3.702] | [3.468] | [3.250) | [32.678]| [18.422]| [290.624] | [7.158] | [14.817]
OPTIMAL N/A | 3712 3464 3279 32700 [19.181 290.998 | 7.158 N/A
OMNI 2.466 | 4.654 | 3.910 | 12.678 | 32.650 | 198.816 | 490.997 | 12.577 | 16.904

Table 6.1: The heuristic algorithms on the suite of small problems. T-test with p = 0.995.

GL¢

276

Table 6.1 shows the best answer among all the parameter settings for those

algorithms. For the dual-mode controllers, the entries marked with a “—

” indicate that the information state’s entropy never exceeded any of the
thresholds we tried (the smallest being 0.1). This means that no actions
were taken in an attempt to reduce the entropy; e.g., the DM-MLS heuris-
tic performed exactly the same as the plain MLS scheme for the SHUTTLE

“—7 entries in more detail.

problem. Section 6.7.5 will discuss these

An interesting result from Table 6.1 is that the APPROX-VI scheme is
never worse than any of the other heuristics and significantly better that all
on the NONLIN and sacl domains. This shows the potential for using the
exact algorithms of Chapter 3 in approximation schemes, but the drawback
here is that the APPROX-VI controller is the result of significantly more
computation that the other heuristics. Some amount of time is needed to run
the approximate value iteration to produce the answer. The heuristics need
to solve the underlying coMDP first, but this time requirement is extremely
small compared to executing value iteration approximately. This table also
shows that there are domains where all of these heuristics are useful control
strategies, sometimes approaching optimal behavior.

There is an interesting reason why the Q-MDP method does better than
the MLS or AV schemes on the PAINT and TIGER problems. Recall, that
the Q-MDP method is the optimal control strategy if the uncertainty about
the state would be removed after the next action. Although the PAINT and
TIGER problems do not have this property, it is the case that good results can
be obtained on these problems if the controller is willing to take a low cost

informative action for a single step. The MLS and AV schemes do not favor

277

these informative action because of their low cost, but the Q-MDbP method
makes a slightly more informed decision, based on a single step of uncer-
tainty. It turns out that the action chosen, while not completely informative,
is useful enough that after one step Q-MDP’s subsequent decisions are fairly
good omnes. If the domain requires a sequence of informative actions, we
would expect the Q-MDP method to do poorly. We will see an instance of
this in the robot navigation domains to follow.

For the PAINT problem and aside from the APPROX-VI controller, only the
two dual-mode controllers approach the optimal performance. The presence
of low cost information gathering actions, combined with significant penal-
ties for wrong action choices force these heuristics to continually apply the
informative actions until the state is known with sufficient confidence. This
type of behavior turns out to be the general structure present in the opti-
mal controller. The entropy-based heuristics do well on the TIGER problem
because it has similar structure to the PAINT problem.

Ignoring the ApPROX-VI for all of these small problems, there is some
heuristic which yields fairly good control policies. However, there is no single
heuristic which is universally good, meaning that some exploration would
be required to establish which heuristics would be applicable to a particular
problem. These small problems do provide a useful forum for trying to
characterize the structures of problems for which the various heuristics might
do well. However, it could be that the structure that is most important
for applying these heuristics is that the problem be small. The following
subsections show this not to be the case by applying the heuristics to much

larger problems.

278

6.7.3 Robot Navigation

With no theoretical guarantees on the quality of the heuristic solutions, the
usefulness of the heuristics are best determined with their applicability to
actual problems. One question that has remained largely unanswered is the
feasibility of using the POMDP model in a real planning problem. Most of the
previous experimental results have been on either random, toy or synthetic
problems. One step we have taken in the direction of applicability is to use a
POMDP model on an autonomous robot navigating in an office environment.
Although the structure of the office environment has many nice features for
applying the the somewhat abstract POMDP model, there is still a high degree
of uncertainty in the crude observations available and the action outcomes.
The need for algorithms to handle noisy environments is quite noticeable in
autonomous robot research [18]. It is the robot navigation domain which
motivated the development of these heuristics.

Previous work using POMDP models for planning in mobile robots by
Simmons and Keonig [113] on the robot XAVIER used a single heuristic (es-
sentially the voting heuristic) and our research has explored the question of
whether there are better heuristics as well as whether POMDP models can
be applied to realistic problems. Additionally, the work by Simmons and
Koenig used a more intriguing, though more complex, POMDP model of the
environment than a simply discretization of the floor area. It is an open
question whether the results here are applicable to models constructed with
their methods, though we suspect they are.

Another related effort is that by Nourbakhsh et al. [94] on the robot

279

DERVISH. Although not explicitly grounded in an MDP model, they use a
probabilistic model to help predict potential resulting states. They also
use the certainty equivalence principle and assume the robot is in the most
likely state, though their planning schemes tend to be different from that
used for the MLS heuristic. More discussion of the similarities and differences
between their approach and those presented here can be found in Cassandra,
Kaelbling and Kurien [21] along with some empirical comparisons.

One of the shortcomings of all of these approaches in the need for a full
explicit model of the environment. A more natural situation is for the robot
to uncover the structure and model parameters. We present no solutions to
this problem but refer to the work by Koenig and Simmons [59] and Shatkay
and Kaelbling [112].

Synthetic Environments

The general robot navigation domain is discussed in Appendix H.5. Here we
explore 24 specific POMDP model instances of this domain which correspond
to 4 different location configurations, 3 different starting/goal state config-
urations and 2 different noise models. One difference of these navigation
domains from the discussion in the appendix is that being in a non-goal
state and choosing the action that declares the goal state results in a tran-
sitioning to a zero-cost absorbing state with no immediate reward. For the
domains described in Appendix H.5, the outcome is a self-transition and a
penalty in the form of negative reward.

We first present the results for a noise model where there is relatively lit-

tle noise (standard) in the state transitions and observations, which roughly

280

‘ Action H Standard probabilities ‘
move-forward || N (0.11), F (0.88), F-F (0.01)
turn-left N (0.05), L (0.9), L-L (0.05)
turn-right N (0.05), R (0.9), R-R (0.05)
10-0p N (1.0)
declare-goal N (1.0)

‘ Action H Noisy probabilities ‘

move-forward || N (0.05), F (0.7), F-F (0.05),

L (0.1), R (0.1)
turn-left N (0.1), L (0.7),
L-L (0.1), F-L (0.1)
turn-right N (0.1), R (0.7),
R-R (0.1), F-R (0.1)
10-0p (1.0)
declare-goal (1.0)

Table 6.2: Action probability specifications for synthetic robot navigation
domains.

correspond to those of a real robot. We then explore the effects of adding
noise (noisy) to these same 4 configurations. The transition and observation
probabilities for the both the standard and noisy noise models are given in
Tables 6.2 and 6.3, where Appendix H.5 gives the interpretation of these
tables.

The four specific location configurations and three different starting/goal
state combinations were selected to provide a range of challenges to the
heuristics and to eliminate any odd effects that could arise with a single
domain or single configuration of start/goal states. In particular, one set
(experiment 1) of starting states reflect the case where the robot knows with
certainty its starting location. The next set (experiment 2) is a situation

where there is minor uncertainty about the initial state; e.g., the robot could

281

Za Zo P(z | za)
Actual Observed Standard Noisy
wall wall 0.90 0.70
wall open 0.04 0.19
wall doorway 0.04 0.09
wall undetermined 0.02 0.02
open wall 0.02 0.19
open open 0.90 0.70
open doorway 0.06 0.09
open undetermined 0.02 0.02
doorway wall 0.15 0.15
doorway open 0.15 0.15
doorway doorway 0.69 0.69
doorway undetermined 0.01 0.01
undetermined undetermined 1.00 1.00

Table 6.3: Conditional observation probabilities for synthetic robot naviga-
tion domains.
start in one of two possible states. The final set (experiment 3) represents
the case where there is complete uncertainty about its initial state; i.e., the
initial information state is a uniform distribution over all states in the model.

Figures 6.1 through 6.4 show both the location layout and the various
initial and goal states for the three sets of experiments. The dark squares
represent locations that are rooms and the lighter shaded squares are cor-
ridor or hallway locations. These configurations are loosely based upon
actual office buildings and were not constructed to favor any particular con-
trol strategy. They all have between 200 and 300 states, 64 observations
and 5 actions.

When this evaluation was done, the DM, ADM and WE heuristics were still
in an immature state. We have omitted the results of these heuristics and

focus on the MLS, Q-MDP and Av heuristics. The bM, ADM and WE heuris-

282

Exp. 2 Start . | |

(north)

N N
[| Exp. 1 Start
H B - (eas)
| ——= N
i | H
o GLall . EXxp. ZS)tart
(east)

Figure 6.1: Synthetic office environment A.

N

Nzumuzn

X

Goal R
(wutmij N\
1 start

EX(?lorth)

el

EXp. 2 start
(north, south)

Figure 6.2: Synthetic office environment B.

.—. Exp. 1 start
(ﬂorth)

E()éguiL %joal/(Exéout%c))al Exp 3) oal

.2start EXxp. 2 start
West)

(east) Q

AN |

L

Figure 6.3: Synthetic office environment C.

283

/ L] L] ~+— Exp. 2 start
Exp. 2 start — — _ Goal west
south -]

| HE | N

Exp. 1start[|] ¢
)M 1] _H |

Figure 6.4: Synthetic office environment D.

tics are evaluated in Sections 6.7.4 and 6.7.5 where we also consider some
navigation environments similar to the ones in this section. Additionally,
there are also some related heuristics which were tried, but never proved
superior in any of our experiments. We have eliminated these results as
well, and refer the reader to the original paper which introduced the results
given here [21].

For the experiments of this section we performed a T-test to determine
whether or not there were significant differences between the heuristics. In
the tables, the best performance is outlined darkly and those that are not

significantly worse are lightly outlined.
Standard Noise Model

Table 6.4 shows the results of the different heuristics on the four synthetic
office environments when the starting state is known.

Although there is some variability between the methods, for the most
part none of the heuristics do poorly. Since each is an approximation
method, there are particular circumstances where they can be made to to

perform arbitrarily poorly. The data points where one of the methods ap-

284

Heuristic H A ‘ B ‘ C ‘ D ‘
MLS 0.642 | [0.749] | [0.662] | 0.791
AV 0.639 | 0.704 | 0.612 | 0.800

Q-MDP |0.662| 0.743 0.452 |0.825|

| omnt || 0.677 [0.846 | 0.756 | 0.836 |

Table 6.4: Experiment 1: Known starting state, standard noise model.

‘ Heuristic H A ‘ B ‘ C ‘ D ‘
MLS 0.695 |[0.639] | [0.779] | 0.791
AV 0.669 | 0.000 | 0.737 | 0.791

q-mpr || [0.704] | 0.000 |[o.788] | [0.853]
| omnt || 0.728 | 0.848 | 0.845 [0.878 |

Table 6.5: Experiment 2: Multiple possible start states, standard noise
model.

pear significantly worse than the others are examples of such circumstances.
Note that the MLs method is fairly robust across the environments, showing
that not much more than the information captured in the information state
is needed to do exceedingly well in this situation.

The next situation we address is when the agent is not certain of its
starting state. In the experiments shown in Table 6.5, there are two possible
starting states (four possible states for office B) that are similar in their
immediate surroundings.

This is the first case where we see some of the methods performing
poorly. The @-MDP and AV methods are never able to reach the goal in
the office B experiment. This is because they cycle through the same set of
actions without making any progress toward the goal. This cycling behavior
is not always present, as can be seen by their performance in the other

environments. In fact, the Q-MDP method is significantly better than the

285

Heuristic H A ‘ B ‘ C ‘ D ‘
MLS 0.630] | {0.615] | [0.601] | [0.729]
AV 0.599| | 0.570 | 0.257 | 0.648
Q-MDP 0.405 | 0.502 | 0.308 | 0.574

| omnt || 0.750 | 0.868 | 0.853 | 0.898 |

Table 6.6: Experiment 3: Uniform starting belief, standard noise model.

others in the office A and D experiments, where that particular configuration
of starting states and goal states allows it to behave nearly as well as the
omniscient method.

A problem with selecting the AV or Q-MDP methods is that it is not
easy to know beforehand if the particular environment will bring out the
best or the worst in these heuristics. The MLS method performs reasonably
well across all of these situations and would be the preferred choice unless
something more was known about the particular problem instance.

The final situation we explore is the most difficult from the control per-
spective: what if the robot is equally likely to start in any of the statesI’ In
this situation, its initial belief distribution is uniform over all states. Ta-
ble 6.6 shows the results of applying the heuristics to this situation. These
results show that the Q-MDP and Av methods do not usually perform well
when the uncertainty is high. The MLS method is still quite robust and
suggests that for moderately noisy environments, it is the best choice across

different types of environment layouts and starting beliefs.
Noisier Noise Model

The navigation problem becomes harder as the noise in action and observa-

tion increases. In order to gauge the effects of noise on the various methods,

286

Heuristic H Office A ‘ Office B ‘ Office C ‘ Office D ‘

MLS [o.082] |]o0.190] |[]0.070] | 0.264
AV 0.044 | 0.156 | 0.025 |]0.307]
Q-MDP || 0.000 | 0.000 | 0.000 | 0.000
| omnt [J0576 [0.782 [0.654 [0.779 |

Table 6.7: Experiment 1: Known starting state, noisy noise model.

‘ Heuristic H Office A ‘ Office B ‘ Office C ‘ Office D ‘

MLS 0.166 {0.150] |[o0.181] | 0.251
AV [0.206] | 0.124 0.146 [0.293]
Q-MDP || 0.000 0.000 0.000 0.000
| omnt [J0.650 [0.792 [0.78¢ [0.830 |

Table 6.8: Experiment 2: Multiple possible start states, noisy noise model.

we repeated the experiments using the increased noise (noisy) action and ob-

servation probabilities shown previously in Tables 6.2 and 6.3. Tables 6.7,

6.8 and 6.9 show the results of these experiments.

The Q-MDP method was universally bad across all configurations and

starting beliefs. In none of the trials did it ever declare itself to be in the

goal. This is a direct result of Q-MDP’s assumption that it will be completely

disambiguated on the next step. Since the noise is high, it will never have a

very confident belief that it is in the goal. It would prefer to delay declaring

the goal by doing one more action in hopes of knowing where it will be after

‘ Heuristic H Office A ‘ Office B ‘ Office C ‘ Office D ‘

MLS 0.130 0.125 [0.122] | 0.236
AV [0.168] |]0.183] | 0.082 [0.297]
Q-MDP || 0.000 0.000 0.000 0.000
| omnt [J0.660 [0.811 [0.774 [0.852 |

Table 6.9: Experiment 3: Uniform starting belief, noisy noise model.

287

that action. Among the MLS and AV heuristics, neither is clearly superior to
the other, though the MLS heuristic seems to be more applicable when the

initial uncertainty is low.
Real Robot Navigation Environment

The four synthetic environments of the previous sections lay the basic foun-
dation for the performance of the heuristics in navigation domains. However,
the ultimate aim is to use POMDP models on a fully autonomous robot, in
a real office environment. We would like the conclusions from the previous
evaluations on synthetic environments to be applicable to real robot naviga-
tion problems. We therefore took a two-stage approach to connecting those
results to actual autonomous robot navigation.

The first stage consists of building a model of the environment where
the robot needs to navigate and evaluating the heuristics on this model in
simulation. This bridges the gap between the synthetic environments and
a real environment, though both are evaluated using simulations. The sec-
ond stage is to the evaluate the heuristics with the actual robot using this
model. This two-pronged approach is necessitated by the fact that it is ex-
tremely time consuming to gather the data using the actual robot, rendering
hundreds of trials impractical. Moving directly from simulated experience
on synthetic environments to real experiences on a real environment would
leave open the question of whether or not the results were an artifact of the
model or the real experiences. By running hundreds of simulations on the
same model, we eliminate one of the variables.

Figure 6.5 shows the real office environment navigated by the robot which

288

[IT\ [H..

T F C
—+=N u [T
n u 0O
= [T
e amamseaauz
it N
! [[TTT
i\u:\:uuuh\i u n

Figure 6.5: Real office environment.

consists of 1,052 POMDP states. Due to the size of this domain, we used 7
different configurations of initial information states. For all of these ex-
periments, the goal state was the same, location G, facing east. The first
three experiments were for a known starting location, (A-east, B-east and C-
south), roughly corresponding to differing physical distances from the goal.
The next three experiments used a starting belief over two locations; for
each of the previous starting states we added a state, (D-east, E-east and F-
north respectively), roughly the same distance and with similar immediate
observations. The final experiment was conducted with a uniform starting
belief over all states. We used the same standard noise model that was used
in the synthetic domain experiments.

Table 6.10 shows the simulation results for 100 trials. These results are
consistent with the synthetic office A layout, which is a simplified version of
this real environment.

The last step is to connect the results of Table 6.10 to the actual robot

Experiment
Alg. 1 | 2 | 3 | 4 | 5 | 6 | 7
MLS 0.774 | 0.717 | 0.452 | 0.776 | 0.763 | 0.390 | 0.504
AV 0.690 | 0.721 | 0.339 | 0.710 | 0.775 | 0.207 | 0.539
Q-MDP || 0.797 | 0.730 | 0.454 | 0.817 | 0.755 | 0.428 | 0.407

| omn1 || 0.809 [0.746 | 0.489 | 0.855 | 0.780 | 0.481 | 0.652 |

289

Table 6.10: Simulations of real robot office environment, standard noise

model.

experiments. Although we give the results in Table 6.11, we omit the details

of these experiments, the actual experimental set-up and the overall design

of the controlling architecture of the robot, though we note that there are

many interesting implementation issues which arose from this project. The

interested reader is referred to the original paper [21], however there are a

few points to be made about Table 6.11%:

e the number of trajectories run for each experiment was extremely

small: three for experiments 1, 2 and 3, and six for experiments 4,

5 and 6 (three for each of the two starting locations);

e experiment 7 was not rumn, since properly evaluating for the uniform

starting location would require hundreds of trajectories from a sam-

pling of all possible states;

e the data roughly agrees with the simulated results.

Aside from the general usefulness of the POMDP model and these heuris-

tics in the robot navigation domain, this work demonstrated that the flex-

ibility in the high-level PoOMDP model simplifies the task of the low level

2The experiments on the robot are the product of the efforts of James Kurien with the

autonomous robot Ramona.

290

Experiment

Alg. 1 | 2 | 3 | 4] 5 |6
MLS 0.83 1 0.77 | 049 | 0.84 | 0.78 | 0.31
AV 0.86 | 0.77 | 0.50 | 0.00 | 0.77 | 0.00
Q-MDP || 0.83 | 0.78 | 0.46 | 0.78 | 0.76 | 0.25

Table 6.11: Experiments on robot.

control design. Typically, designers of low-level controlling software spend a
painstaking amount of time assuring reliability across all possible situations
which could be encountered. The POMDP model allows for the imperfection
of the low-level control, which can even be combined with the true non-
determinism of the environment. As long as a reasonable failure model can
be built and adhered to by the low-level controller, the high-level model can
recover from the errors, whether they be from the true stochasticity of the

environment or artifacts of the low-level implementation.
6.7.4 Other Domains

In an effort to extend the small problem and robot navigation conclusions,
we have evaluated the heuristics (including the parameterized heuristics WE,
AWE, DM and ADM) on a suite of larger synthetic problems. These domains
were discussed in Section 5.3.5 and are detailed in Appendix H. Note that
the CIT, MIT, SUNYSB, PENTAGON and FOURTH domains are very similar to
the five navigation domains presented in the previous section, where there
is a single known starting state. Since the entropy-based heuristics were not
explored in the previous discussion, this will allow us to gauge their effec-
tiveness in domains with similar structure. We will also explore variations

of these navigation domains where the initial information state is uniform

291

across all locations: CIT-U, MIT-U, SUNYSB-U, PENTAGON-U and FOURTH-U

Although the problems in this sub-section range from 100 to 8, 000 states,
this is not the limit of the applicability of these heuristics. cOMDPs that are
larger than this can be solved and information state vectors larger than this
can be represented. However, as the state and observation spaces increase
the time requirements for the information state update could begin to mat-
ter. Note that the action space also has some bearing upon this, though we
limit our discussion to the cases where the size of state space usually dwarfs
the size of the action space.

We first apply the heuristics to the the 57 and 89 state domains used
in the Chapter 3, and which were shown in Figures 5.2 and 5.3. Although
both domains have the property of complete initial uncertainty, HALLWAY
has a number of landmarks and an asymmetrical layout, helping to disam-
biguate the location, even for a random sequence of actions. On the other
hand, HALLWAY-2 has no distinguishing landmarks, and the property of
being hideously symmetrical. Table 6.12 shows that again, the APPROX-VI
heuristic is significantly better than the rest, establishing again the potential
for the use of exact algorithms in approximation schemes. Besides APPROX-
VI we see that the Wi and AWE heuristics do better in the HALLWAY-2
environment, where the information state entropy is always likely to be
high.

Next, we evaluate the full set of heuristics on the robot navigation envi-
ronments. Table 6.13 shows the results for the 5 domains where the initial
state is know and Table 6.14 shows the the same domains but where there is

complete uncertainty in the initial information state, i.e., maximum entropy.

292

Heur. | HALLWAY | HALL.-2
MLS 0.802 0.174
Q-MDP 0.344 0.097
AV 0.756 0.084
WE 0.598 0.326
AWE 0.776 0.378
DM-MLS 0.818 0.213
ADM-MLS 0.823 0.215
DM-QMDP 0.598 0.193
ADM-QMDP 0.602 0.224
APPROXVI | 1.001 | | 0.416 |
OPTIMAL N/A N/A
OMNI 1.519 1.189

Table 6.12: The heuristic algorithms on the 57 and 89 state problems. T-test
with p = 0.995.

Heur. | cit | wiT | SUNY. | PENT. | FOURTH |
MLS 0.804] | [0.858] | [0.764 0.789 | [0.587
Q-MDP 0.832| | 0.812 | [0.759]| [0.821] | [0.590
AV 0.807| [|0.863] | 0.711 | [0.795] | [0.586]
WE [0.834 0.814 | [0.760] | [0.822 0.592]
AWE 0.833]| 0.812 | [0.760] | [0.822] | [0.592
DM-MLS — — — — —
ADM-MLS — - - - -
DM-QMDP — 0.815 — — —
ADM-QMDP — - - - -
APPROXVI 0 0 0 0 0
OPTIMAL N/A N/A N/A N/A N/A
OMNI 0.845 | 0.894 | 0.809 | 0.836 0.625

Table 6.13: The heuristic algorithms on some robot navigation problems.
T-test with p = 0.995.

293

Heur. | crr-u | MIT-U | SUNY.-U | PENT.-U | FOURTH-U |
MLS 0.626 0.524 0.508 0.682 0.451
Q-MDP 0.366 0.556 0.330 0.573 0.340
AV {0.654] [[0.594] | [0.575]| [0.738] {0.502]
WE 0.368 0.559 0.334 0.577 0.349
AWE 0.373 0.557 0.336 0.580 0.348
DM-MLS 0.480 0.495 0.691 0.440
ADM-MLS — — 0.492 0.692 —
DM-QMDP 0.370 0.556 0.330 0.580 0.347
ADM-QMDP — — — 0.570 —
APPROXVI 0.000 0.022 0.008 0.019 0.007
OPTIMAL N/A N/A N/A N/A N/A
OMNI 0.837 0.893 0.845 0.896 0.652

Table 6.14: The heuristic algorithms on the robot navigation problems with
uniform initial information state problems. T-test with p = 0.995.

For the case of known initial state, we see first, the dual mode controllers
are rarely of any help. The exception is the drastically symmetric MIT
domain, and even then its performance is below what is obtainable with
other methods. The second result is that all the other heuristics do more
or less equivalently. By looking at the omniscient controller’s value, we can
also see that they must not be too far off from the optimal behavior. As
in the previous navigation experiments, we see that very unsophisticated
techniques do quite well in domains with this structure. Finally, we see that
the APPROX-VI heuristic did miserably in these domains. The sizes of the
domains limited the precision and length with which we could obtain results
through the approximate value iteration and the final answers appear to be
poor controllers for these domains.

In Table 6.14, where the initial state uncertainty is maximized, we get

the surprising result that the Av method is significantly better than all the

294

other heuristics, except in the CIT-U domain. This is quite a contrast to the
known initial state case and very similar to the previous results shown for
the other robot navigation environments where there was an uncertain initial
state and noisier actions. Notice that the APPROX-VI controller actually does
better in this situation than it did in the known starting state location. This
is attributable to the randomness in the initial state, since there are some
number of times where the robot will start very close to the goal. In this
case, even random behavior is likely to lead one to the goal, though it still
is required to choose the declare-goal action to get a reward.

The last set of domains we use to explore the usefulness of the heuris-
tics have their results shown in Table 6.15. We see the resurgence of the
APPROX-VI controller, though the size of the BASEBALL domain resulted in
VI taking considerably longer than we were willing to wait to produce even
a single stage at a crude approximation. This is more of a problem with
our particularly unmotivated method for doing approximate value iteration,
than it is with the idea itself. For the most part, the results on this set of
domains are mixed. For a given domain there are a number control heuris-
tics which do well. However, the Av heuristic is the only one which is always
among the best.

Of these domains, only the 1FF and MACHINE domains have explicit in-
formation gathering actions. Because of this, we would expect the MLS,
Q-MDP and AV heuristics to not do so well here, since they are based upon
assumptions of complete observability. The entropy-based heuristics would
seem to have an advantage in these domains, though the results in these do-

mains do not bear this out. Although bM-MLS is the best for the IFF domain,

295

Heur. | IFF | BB | MACHINE | ALOHAL0 | ALOHA30
MLS 18.191] | [0.634] 57.042 | [126.082] | [852.773
Q-MDP 4.496 0.101 59.693 I 127.429 851.035
AV 8.004 0.633 57.901 | 126.227 849.109
WE 3.452 0.658 37.196 110.702 751.993
AWE 3.464 | | 0.668 53.877 110.813 736.230
DM-MLS | 8.389 | — — 126.296 —
ADM-MLS — — — 124.652 —
DM-QMDP — 0.350 — — —
ADM-QMDP 5.684 0.461 — —
APPROXVI 4.590 N/A | |59.884] | [126.808] | |848.830]
OPTIMAL N/A N/A N/A N/A N/A
OMNI 10.079 0.658 66.236 145.572 937.143

Table 6.15: The heuristic algorithms on the other large problems. T-test
with p = 0.995.

MLS is not significantly worse and the MACHINE domain has Q-MDP being
among the best. However, for those two domains, we see that often, the
dual-mode controllers never require taking entropy-reduction actions. This
hints that although these problems have information gathering actions, they
are seldom required. We speculate that problems with information gather-
ing actions and that tend toward highly entropic information states would
be the type of structure where the entropy-based schemes would be signif-
icant improvements to the MLS, Q-MDP and AV heuristics. Although one
could construct models with just this structure, we have not explored this
possibility, since we want to avoid specially constructed domains.
Although the results are as mixed as they were on the suite of small
problems, this does show that for each domain there is some heuristic that

does fairly well. For some, the quality of the heuristic compared to the OMNI

296

controller shows that there is little room for improvement. For others, there
appears to be room for improvement, but this cannot really be assessed
without access to the optimal controller, since the OMNI heuristic can be

significantly better than even the optimal POMDP control.
6.7.5 Parameterized Heuristics

In the preceding evaluations of the heuristics, the bM, ADM, WE and AWE
heuristic results reflected the best results from the range of parameter set-
tings used. In this section we present results for all of the parameter settings

used and discuss the implications of adjusting these parameters.
Dual Mode

The bDM and ADM heuristics are parameterized by an entropy threshold, k.
We ran the heuristics DM-MLS, ADM-MLS, DM-Q-MDP and ADM-Q-MDP on
every domain 9 times and used a different threshold each time, where the
range of the thresholds was 0.1 to 0.9 in increments of 0.1. As a typical

result, Table 6.16 shows the results for the DM-MLS heuristic.

Domain 0.1 | 0.2 | 0.3 | 0.4 | 0.5 | 0.6 | 0.7 | 0.8 | 0.9
4x3 1.416 1.420 1.489 1527 | |L7er] | [La72] [1.741] [1.760 | 1.761
4x4 3.487 3.487 3.494 3.491 3.489 3.491 [3.654] [3.653] 3.717
CHEESE 3.216 3.216 | [3.462] | [3.464]| [3.440 [3.434] | [3.434]| [3.439]| [3.445]
PAINT 1.648 2.117 2.783 2.771 -1.753 -1.771
SHUTTLE 32.606 i 32.724
TIGER 16.178 | [19.837] | [19.132] | [19.843] | [19.378] | [19.291] -72.041 -72.892 -73.513
NETWORK || -595.119 | -595.184 | -595.213 | -595.132 | -595.298 | -435.664 | -414.192 | -254.913
NONLIN [6.659] | [6.678] | [6.665]
SACI -81.993 | -82.350 | -81.881 | -82.293 | -81.982 | -81.655 | -68.306 | [-49.446] | [-48.345
HALLWAY 0.255 0.487 0.534 0.780 | [0.786] | [o.818] 0.804 0.805 0.809
HALL.-2 0.017 0.053 0.118 0.182 0.196 0.203 0.213
cIT -58.076 -0.095 0.753 0.805 0.806
MIT -0.164 0.799 0.857 0.860
SUNY. -9.648 0.266 0.742 0.765 0.765
PENT. -5.179 0.160 0.647 0.754 | [N 0.791
FOURTH -45.376 0.007 0.560 0.587 0.585
IFF 0.370 | [8.181] | [8.138 8.061 8.299 8.193 7.948 8.154
BB 0.343 0.401 0.627 0.640 0.605 0.623
MACHINE || -408.104 | -286.265 | -123.941 | -41.377 5.963 21.595 33.916 54.255
ALOHAL0 92.855 | 97.556 | 105.587 | 112.436 | 118.920 | [126.296] | [125.766] | [125.814] | [125.662
ALOHA30 683.531 | 688.004 | 693.332 | 705.423 | 759.159 | 842.663
CIT-U 26.739 | -16.279 | -6.524 | -0.052 0.050 0.359 -0.080
MIT-U 22.874 | -13.485 | -6.614 | -6.050 0.363 0.375 | [0.480 [0.478 0.466
SUNY.-U 27403 | -19.702 | -15.305 | -11.571 | -5.309 0.384 | [0473] | [0.495] 0.487
PENT .U -27.203 | -26.343 | -13.758 | -0.909 | -0.320 -0.716 -1.435 | [0.686] 0.691
FOURTH-U || -37.774 | -18.168 | -11.376 | -6.123 | -3.852 -0.393 -0.478 0.438 [0.440

Table 6.16: Threshold values and the bM-MLs heuristic. T-test with p = 0.995.

16¢

298
This large table has entries which are visually marked in one of four ways

e Entries that are white text on a black background indicate that the
information state entropy mever exceeded this threshold. If none of
the steps taken were to reduce the entropy, then the heuristic simply
degenerates into either the MLS or Q-MDP heuristic. The full results
showing the percentage of steps for which the threshold was exceeded

are given in Appendix 1.2, Tables 1.13 through 1.16.

e Entries with a thick black box indicate that at least once the entropy
exceeded the threshold level and it is the best value for that domain

across all threshold settings.

e Entries with a thinner black box indicate that this value is not signif-

icantly worse than the best value.

e Entries with no markings are either statistically worse than the best
entry, or it is the case that the best entry for that domain occurred

when no entropy reduction actions were needed.

The most dramatic results concerning the threshold value occur on the
PAINT and TIGER problems, where the wrong threshold can result in exceed-
ingly poor performance. Aside from this, the dual mode controllers seem to
do best when the threshold is relatively high. In other words, relying on a
certainty equivalent type controller is a good heuristic, unless the entropy is
very high.

The varying threshold results for the ADM-MLS, DM-Q-MDP and ADM-Q-

MDP heuristics can be found the Appendix 1.2, Tables .10 through 1.12.

299

Unfortunately, there is no clear-cut best value of &, and the actual value
seems to be domain dependent. Again, we suspect that, for the most part,
these problems do not exhibit the structure where the dual-mode controllers

would be clearly preferable to the non-entropy-based controllers.
Weighted Entropy

The wk and AWE heuristics have an exponent for scaling the normalized
entropy. We ran all the Wg and AWE experiments 3 times using the differing
exponents of 1/3, 1 and 3 each time. Table 6.17 shows the results for the
WE heuristic and Table 6.18 shows the results for AWE. The dark boxed
entries highlight the exponent value which gave the best result, with the
lighter boxes indicating no significant difference.

For many of the domains, these particular exponents give roughly equiv-
alent performance. However, there are domains where the actual value does
matter (e.g., HALLWAY, HALLWAY-2, IFF, BB) and, unfortunately, there is no
clear cut best value. Thus, the proper exponent is either domain dependent
or some function of the combination of the domain and the particular upper
and lower bounds used in the WE and AWE heuristics.

Note also that the particular lower bound we used was to simply evaluate
the value function, once for each action, for a policy which always choose
that action. These one-action policies are not only easy to compute, but

their value functions are linear, making them easy to represent.

300

Exponent
Domain 1/3 ‘ 1 ‘ 3
4x3 0.965 1.296 1.819
4X4 [3700]| [3703]| [3.720]
CHEESE m M m
PAINT 0.435 0.417
SHUTTLE 32.656] | [32.638]| [32.715
TIGER -9.888 8.544 19.641
NETWORK 148.960 197.002 | 1210.211
NONLIN m 6.306 6.274
SACI 1481 4379 | [4.139
HALLWAY 0.598 0.513 0.338
HALL.-2 0326] | 0304 | 0.180
cIT 0.833] | [0.834 0.833
MIT [0.814] lm 0.811
SUNY. [0.760] | [0.758 0.757
PENT. 0.822 0.822] 0.821
FOURTH E 0.592
IFF [3.452] | -12.067
BB 0.634 m 0.210
MACHINE 37.196 37.144
ALOHA10 109.930 I 110.702 109.621
ALOHA30 689.554 691.697 | | 751.993
CIT-U M M i0.368
MIT-U [0.559 0.556] | [0.550]
SUNY.-U @ 0.334
PENT.-U 0.573 E 0.573
FOURTH-U 0.337 0.347| 0.349

Table 6.17: Exponent values and the Wk heuristic. T-test with p = 0.995.

301

Exponent
Domain 1/3 ‘ 1 ‘ 3
4x3 1.373 | [1.843] 1.857
4X4 [3706]| [3713]| [3.713
CHEESE @ |3.254| ﬁ
PAINT [-0.093 -0.224 -0.237
SHUTTLE 32.725| | |32.787] | [32.742]
TIGER -9.904 8.587
NETWORK | 150.696 | 197.650 | [252.733]
NONLIN @ |6.253 |

SACI 8.500 @ 7.495
HALLWAY 0.564 0.776 0.340
HALL.-2 0.049 m 0.212
T 0.833 l0.833] | [0.833
MIT 0.812 [0.811] | [0.810]
SUNY. (0.760] | [0.759] | [0.759
PENT. 0.821 M 0.821
FOURTH E 0.592
IFF [3.007] | [3.464] 2,264
BB 0.668 [0.655] 0.401
MACHINE 40.931 46.670 | 53.877
ALonal0 | [110.266] | [110.813] | [109.921
ALOHA30 689.189 | 693.579 | [736.230
CIT-U M 0.373 @
MIT-U [0.557)
SUNY.-U @ m
PENT.-U 0.580. 0.576] 0.573
FOURTH-U 0.346 0.342 0.348

Table 6.18: Exponent values and the AWE heuristic. T-test with p = 0.995.

302

6.8 Heuristics vs. RL/NDP

Having discussed the usefulness of some heuristic approaches and also the
difficulties present when trying to decide which heuristic is best, we now turn
to the question of comparing our two separate approximation approaches.
First, from the practical side, the RL/NDP methods typically require an
extensive training phase, which may either be undesirable, unavailable or
unneeded. However, they tend to usually lead to useful control policies, or
at least the resulting policies seldom have catastrophic results. The heuris-
tic methods are easy to compute, but have wildly varying results. For a
particular domain, there is usually a heuristic which can do very well for it,
but it is not always clear which heuristic to choose. There is a wide area
of unexplored options for POMDPs which could combine RL/NDP techniques
to possible get the best of both worlds, perhaps combining the heuristics
and training a neural network to assign the proper weightings for particular
situations.

Having said that, we now turn our attention to actually merging the
empirical studies of these two approximation approaches. For each domain,
we have selected the best RL/NDP and best heuristic results and performed a
two-sided T-test to gauge whether one approach was better than the other.
Table 6.19 has the results, and coincidentally they both have three domains

where they are significantly better than the other.

Best RL/NDP Best Heuristic
Domain Alg. Mean | Alg. Mean
4x3 LIN-Q 1.868| | APPROXVI 1.883
4x4 TPWLC 3.710| | WE W
CHEESE LIN-Q 3.465| | APPROXVI E
PAINT TPWLC |3.271 APPROXVI @
SHUTTLE LIN-Q 32.690| | WE _i%m
TIGER TPWLC 19.307| | DM-MLS 19.843
NETWORK || 3PpwWLC [|291.343] | APPROXVI 290.624
NONLIN LIN-Q ﬁ APPROXVI @
SACI LIN-Q [14.787 APPROXVI 14.817
HALLWAY TPWLC 1.008] | APPROXVI @
HALL.-2 TPWLC E APPROXVI 0.416
CIT 3PWLC @ WE | 0.834
MIT TPWLC [0.868] | av 0.863
SUNY. LIN-Q E MLS 0.764
PENT. LIN-Q [0.819] | we | 0.822
FOURTH LIN-Q m WE 0.592
IFF TPWLC m DM-MLS 8.389
BB 3PWLC 0.481 | WE 0.668
MACHINE LIN-Q APPROXVI 59.884
ALOHA10 LIN-Q 123.871 | Q-MDP 127.429
ALOHA30 LIN-Q 825.365 | MLS 852.773

303

Table 6.19: Comparison of best heuristic and best RL/NDP variation. T-test

with p = 0.995

304

6.9 Related Work

This chapter has focused on heuristic methods for approximating POMDP
value functions and policies. This is far from the first research that has
looked at this question and the range of techniques spans a broad space of
approaches. We briefly discuss some of these approaches, though our rough
characterization into topics is more for organizational purposes than it is

precisely correct.
6.9.1 Grid-based

One common method to deal with continuous state spaces for MDPs includes
laying a grid of points over the state space, thereby transforming the problem
into a discrete problem; e.g. multi-grid techniques [17, 107]. Aside from
scaling poorly with the dimensionality of the state space, these are general
techniques which were not specifically developed for poMDPs and thus do
nothing to exploit the shape of the value function.

Some of the earliest work in POMDPs, predating all of the exact algo-
rithms, approached the problem by discretizing the state space [40, 54]. Al-
though specifically geared toward partially observable environments, these
methods scale miserably with the dimensionality of the state space. Love-
joy’s [75] grid-based algorithm uses a more flexible scheme for establishing
the grid, but still is problematic for anything but a small number of states.
One of the more interesting aspects of Lovejoy’s work is his methods and
insights for establishing upper and lower bounds on the POMDP value func-
tion.

All of the above grid-based algorithms could be classified as fized-grid

305

methods, since the grid is established in a very regular way and never
changed. These fixed-grid methods are very rigid, but allow easy inter-
polation for points not in the grid. Recently, Hauskrecht [46] has developed
some techniques for quickly getting upper and lower bounds for the value
functions, which do not depend on any particular fixed grid. The applicabil-
ity to an arbitrary set of points makes his interpolation techniques especially
useful for approximation schemes. Brafman [16] has also looked at applying
variable grid-based methods to PoMDPs, where he uses heuristic rules to
decide where and when to add points to the grid.

We note that the exact algorithms of Chapter 3 can be viewed as variable-
grid methods, since at each DP stage they attempt to uncover a finite number
of points which will give rise to the optimal value function. Our APPROX-VI
scheme is a general, though not yet precise, method for adapting these exact
methods to be approximations. The work by Cheng [26] shows how his linear
support algorithm can be adopted for use in a successive approximation
scheme and Zhang and Liu [140] show the same for the incremental pruning

algorithm.
6.9.2 Finite Memory

Another approach to approximating POMDP solutions is to only keep a fi-
nite amount of history of the process [100, 133]. This can also be viewed
as a discretization of the continuous information state space space, but the
discretization is in a slightly different form; now decisions are made based
upon some discrete number of possible histories, instead of some interpola-

tion from some discrete number of information points. Some of the RL/NDP

306

techniques would also fall into the finite memory approach; for instance
McCallum’s RL work decides how much history is needed to do a good job

predicting rewards.
6.9.3 Exploiting Structure

Although the general POMDP problem is computationally hard [95, 20, 92],
there has been little work done in examining the complexity of sub-classes of
POMDPSs to see if certain useful restrictions could be put on the model which
would make their solution tractable. White [130] shows how structure, in
the form of an order on action quality, can be exploited to speed up Sondik’s
one-pass algorithm. A similar idea is used by Zhang [138], where he shows
how to speed up the witness algorithm for problems with the structure of
having relatively informative observations.

Another effort along these lines is the work by Zhang and Liu [141] which
solves specific deterministically observable POMDPs as approximations to the
true pOMDP. By exploiting characteristics of solving these special POMDPs,
more effective solution procedures can be developed and become a basis for
approximations schemes.

A major limitation on the applicability of pPoMDPs and the techniques
presented in this thesis to larger problems is in the explicit enumerative
representation of all the states, actions and observations. Problems are more
naturally presented in a compositional manner. For instance, the state in the
robot navigation problems is more naturally thought of as consisting of two
attributes, a location and an orientation, rather than a single number. For

problems with more than two attributes, the compositional representation

307

can be exponentially smaller than the enumerative scheme, which leads to
the research direction of finding algorithms that can work directly on the
more compact form.

Boutilier, et al [14, 15] have shown how to adapt some of the comDP
and POMDP algorithms to operate directly on the compact representation,
but experience with these algorithms is severely limited. The basic idea is
to represent the value functions as a tree, where the branches of the tree
correspond to the different values for the state attributes. The leaves of the
value function tree represent sets of states all having the same value. New
leaf nodes are added only when necessary, i.e., when a new value is required
for some subset of states. The unanswered questions surrounding these
algorithms is whether or not useful problems have the structure necessary
for the algorithms to remain compact, and what is the overhead cost in
maintaining the data structures necessary in the implementation. Although
these algorithms are presented as a way to arrive at optimal answers, they
would seem to have the most potential as approximate algorithms where
small differences between the states could be ignored.

There has been work by Dean et al. in solving COMDPs using compact
representations [34, 35] which would seem to have natural extensions to
POMDPs, though the additional complications introduced with the addition

of partial observability have not yet been fully addressed.
6.9.4 Classical AI Planning

The previous discussion concerning the need for compact representations

would seem strange to researchers that have been working in the area of the

308

more traditional A1 planning. In particular, we refer to classical Al planning
schemes as those employing sTRIPS-like operators and which derive partially
ordered sequences of actions [82, 97, 98]. In these planning schemes and their
derivatives, compact representation are, and always have been used, which
raises the question concerning the connection between MDP algorithms and
those used in these planning algorithms. This connection is elaborated in
more detail in Kaelbling et al. [52] and here we just highlight the main
points.

The basic partial order planners have actions which are deterministic, a
starting state and some set of goal states which were to be achieved. With
a known starting state and deterministic operators, a full policy over all
possible states is not required and a plan or sequence of actions suffices.
Although their state and action representations are compact, finding a plan
requires a search through an exponential space of possibilities. Koenig [58]
has shown how to recast such problems as coOMDPs, which permits solution
by polynomial-time algorithms. The catch here is that the conversion makes
a problem that is exponential in size, since the compositional representation
must now be converted into the full cross-product of all attributes. Thus
the oversimplified view is that the classical A1 planning does an exponential
search over a polynomial representation; whereas the MDpP formulation does
a polynomial search over an exponential sized representation.

Discussed previously were techniques which attempt to adapt the MDP-
based algorithms to compact forms; similarly, there has been much work
trying to extend classical planning to handle the full generality of the MDP

formulations. Although there have been many extensions to the classical

309

planning algorithms [88, 29, 79, 136], the one that comes closest to capturing
the true MDP flavor is the work on the BURIDAN [62, 61] and C-BURIDAN [37]
systems, both of which allow actions with probabilistic effects and the lat-
ter which allows partial observability. However, the plans derived from the
C-BURIDAN system have a limited expressibility and are not as general as
possible in the full POMDP framework. Further exploration into the repre-

sentational issues for classical planners is provided by Littman [73].

6.10 Conclusions

This chapter has presented an array of approximation schemes and evalu-
ated them on a range of problems. The first major conclusion is that small
POMDP problems do not pose any great difficulty for getting high quality
heuristic solutions. The second result is that on a specific class of robot
navigation environments, efficient heuristics can give very satisfying control
policies. The rRL/NDP, while applicable to these domains, requires enten-
sive training or, when initialized with the Q-functions, do little to improve
the solution. Thus, some problem have a particular structure which makes
them amendable to heuristic solution. However, there are problems that
do not, or for which the structure is unknown. In these cases, the RL/NDP
techniques are more applicable, since they are somewhat more robust and
seldom yield extremely poor answers. Finally, heuristic solutions can often
give high quality control policies in other domains, though there is still room

for improvements and some hybrid approach mixing heuristics with RL/NDP.

Chapter 7

Conclusions

7.1 Contributions

This thesis has contributed to advances in the exact and approximate solu-
tion of partially observable Markov decision processes. We have organized
the contributions as we have organized the thesis, broken down into exact,
heuristic and RL/NDP contributions.

In conjunction with Littman, Kaelbling and Zhang [23, 72, 24], this work
has helped develop the witness algorithm and has helped to make improve-
ments to the incremental pruning algorithm, both of which are currently
the best exact POMDP algorithms available. Additionally, this work is the
first to analyze these algorithms and their variants in terms of bounding
their best and worst case complexity for the amount of effort required in
their linear programming routines. It has shown that the generalized form
of the incremental pruning algorithm represents an asymptotic improvement
to previous algorithms in this context. We have also added some minor ex-
tensions to ideas concerning finitely transient policies which incorporate a

broader class of policies with the same useful properties.

310

311

Aside from the development and theoretical analysis of these exact al-
gorithms, this work has contributed a comprehensive implementation of the
exact POMDP algorithms, as well as a comprehensive empirical comparisons
of the exact algorithms using this implementation. Aside from its value to
the work presented in this thesis, this implementation has proven as a useful
test-bed for many researchers working on related POMDP problems and has
often been the inspiration for improvements to the existing techniques.

In summary, for the exact algorithms, this thesis has contributed to the

e development of the witness algorithm, with Littman and Kaelbling;

e development of the generalized incremental pruning algorithm, with

Littman and Zhang;
e detail analysis of the witness, 1P, ¢IP and two-pass algorithms;

e various minor optimizations and improvements of the exact algorithms,

with Littman;
e broadening of the class of finitely transient policies;

e implementation and empirical comparisons of all the exact algorithms.

In conjunction with Littman and Kaelbling [68], his thesis has helped de-
rive some novel reinforcement learning rules that are applicable to POMDPs
and presented some variations of previously existing techniques. We have
implemented these ideas, presented some empirical comparisons using these
techniques and explored some of the many possible variations available
within the RL/NDP framework. The reinforcement learning contributions

are the

312

e development of the LIN-Q and k-PWLC algorithms, with Littman and

Kaelbling;
e refinements of the k-PWLC algorithms;
e implementation and empirical comparisons.

In an effort to find effective solutions to large POMDP problems, we have
developed a range of heuristics which can be applied to these problems and
undertook a comprehensive empirical comparison of these on a range of
problems. Aside from evaluating these heuristics in synthetic simulations,
along with Kurien and Kaelbling [21], we have helped to successfully apply
and evaluate the POMDP model and these heuristics on a mobile robot for
the purpose of navigation.

Finally, the contributions concerning the heuristics are in the

e development of various heuristic controllers for PoMDPs, with Kael-

bling;

e implementation and empirical comparison of the heuristics on a range

of synthetic POMDP domains;

e implementation of heuristics and robot controller on autonomous robot,

with Kurien.

Throughout all of the work of this thesis, many POMDP problems, span-
ning many domains have been developed for use in the empirical compar-
isons. This suite of problems has proven useful not only in this work, but

by the work of many other researchers.

313

7.2 Future Work

Although the worst case complexity for POMDPs is somewhat dishearten-
ing, there has been little effort to try and characterize POMDPs that may be
expressively restricted, but which may allow effective algorithms to be de-
veloped. This effort will require finding real POMDP problems and exploring
what type of structure they may have that could be exploited. One example
of an effort along these lines is some work by White [130] which exploits
structure in the problem to speed up Sondik’s one-pass algorithm. Insights
from the structure of the problem and the nature of the algorithms could
make the exact solutions of larger problems possible.

Given the computational complexity of exact algorithms, it is tempting
to ignore improving the exact one-step DP algorithms for poMDPs. However,
although exact VI may never be an effective method for solving realistic
POMDPs, the single DP step can be an integral part of either policy iteration
or some approximation algorithms. Since many of these exact algorithms
may have effective approximations, improvements in the exact algorithms
could lead directly to effective approximations.

There are some efforts currently in progress on policy iteration algo-
rithms [45] using a single exact DP step. Given that PI iteration algorithms
are often more effective than vI in the comMDP context, this hints that the
same can be true for POMDPs. More work on improvements to PI iteration
type algorithms and, more importantly, related approximate p1 algorithms
is the likely place where significant contributions can be made.

Even in the context of VI using the exact algorithms discussed in this

314

thesis, we have had successes in solving problems that would otherwise be
impossible by using approximate versions of these algorithms. Our method
to date has mostly been heuristic and unmotivated. We would like to better
characterize these approximations based upon what the exact algorithms
are actually computing. This effort will lead to a better understanding of
the effects of these approximations and could leads to better approximation
schemes.

We have seen that there are domains where simple heuristics do very
well and some where they do not, which shows much room for improve-
ments in approximate POMDP algorithms. Aside from these heuristics being
an alternative to the RL/NDP techniques, there is an interesting possibility
to combine these heuristics with the RL/NDP techniques. Many successful
RL/NDP efforts use hand-crafted features and let the parameter adjustment
and simulations work to learn the proper function over these features. When
these heuristics are viewed as features, we could use construct an RL/NDP
scheme using them. More importantly, if the heuristics can capture the
salient non-linearities of the environment, then simpler and more effective
linear approximations could be used. There are also many interesting ways
in which the heuristics could be combined using roll-out policies [11] to help
these algorithms to arrive at better solutions with fewer simulations. This
is one of the more promising areas for future research.

Although this and previous work has slowly been expending the sizes of
problems that could be addressed with POMDP models, there are many prob-
lems that have such large state spaces, the only way to tackle them is using

compositional, factored or structured models. Although there is some early

315

work in this area [15], the effectiveness of these techniques remains largely
unexplored. A related approach is to decompose the problem hierarchically,
but there are many details that must first be worked.

The entire effort of this thesis makes the assumption that a full entire
model, or at least a full simulation of the model, is available. Additionally,
it assumes the model is unchanging over time. There are many applications
of POMDPs where either or both these assumptions are not known. Either
the model parameters are unknown or they may change over time. Thus,
the problem becomes complicated because there is now a parameter estima-
tion problem along with a planning problems. Some early work in learning
POMDP models exist [28, 112], but more more work still needs to be done.

Another shortcoming of the POMDP approach is its limitations to dis-
crete states. Many problems are more naturally specified as continuous
space problems or have components of their states that are continuous val-
ued. Kalman filter approaches [55, 65] to localization are the analog of the
the information state update equation for poMDPs. Although this requires
the state transition and observational noise to be Gaussian, Kalman filtering
and the extended Kalman filter have been employed successfully and exten-
sively in many control applications. There may be hybrid approaches that
can combine the more general noise models allowed by POMDPs and those
effective state estimation techniques of the Kalman filter, that permit effec-
tive heuristic solution to the control problem of problems with a mixture of
discrete and continuous states.

One of the most effective methods toward making advances in research

is to have challenging problems to work on. Although slowly growing, there

316

is a need for more POMDP problems and larger POMDP problems to help spur

this research effort.

Appendix A

Baseball in a Nutshell

In this appendix we attempt to briefly review the relevant portions of the
game of baseball necessary for understanding the small example presented
in Chapter 2. Note that we use a larger baseball domain in some of the
empirical evaluations, which we discuss in Appendix H.1, but the following
discussion will not be enough to completely understand that larger domain
description.

Baseball’s two closest relatives are the games of cricket and rounders.
The overall scenario is for one team to attempt to hit a ball (using some
form of long stick) which is thrown by the opposing team. The team that
throws the ball is attempting to have the batter either miss striking the ball
entirely, or to have them hit the ball weakly. The teams also take turns in
the two aspects of throwing and hitting and the team that performs better
than the other at hitting the ball is the winner.

In the game of baseball, the person throwing the ball (called a baseball)
is referred to as the pitcher, whereas the person trying to hit the ball, uses a

bat, and is called a batter. The pitcher has a team of fielders around that can

317

318

catch the batted balls, and if the balls were hit weakly enough, the fielders
can make a play such that the batter’s attempt is deemed unsuccessful.
When the batter’s attempt is unsuccessful, it is called making an out, while
a successful batter is credited with making a hit. After a certain number of
hits, the batter and his team are credited with points or runs in baseball.
After a certain number of outs, the pitcher and his team get a chance at
batting, while the batter and his team go into the field with one of those
players taking on the role of the pitcher.

One series of being the team at bat and then being the team in the field
is called an 4nning. Normally a baseball game lasts 9 innings and the team
scoring the most runs at the end of this time is declared the winner. In case
of ties, a sequence of full innings are played until at the end of one of these
innings one team has gained the advantage over the other; i.e., more runs
are credited.

Roughly, the more hits a team gets, the more runs they score and the
more likely they are to win the game. Likewise, the less hits a team gives
up, the less runs the opponents score and the more likely they are to win.
Thus the main tension in the game is between the pitcher and the batter.

Aside from the players in the game, there is a manager who is responsible
for deciding what order his players should bat, who should pitch, and many
other decisions involving details of the game not discussed here. In baseball,
once a pitcher is removed from the game, they can no longer pitch in that
game. Thus, the manager must carefully decide when and when not to take
a pitcher out of the game. In baseball, pitching is a specialty task that not

all players on the team are competent enough to do. Although a baseball

319

team typically is comprised of 25 or so players, only about 10 of them are
usually good enough at pitching that the manager would decide to let them
pitch. The pitchers not currently pitching are referred to collectively as the
team’s bull-pen for archaic reasons.

Pitching, like any other athletic activity, is subject to complex physical
and mental interactions, which means that the ability and performance level
of a pitcher is subject to fluctuations. The manager would like to get as
much out of each pitcher as possible, but also wants to recognize when a
pitcher might be having a bad day and remove him/her before the other
team accumulates too many hits.

The hidden state in our example is the combined physical and mental
condition of the pitcher. This state is often hidden from the pitchers them-
selves, since the criteria they may use to assess their own condition may not
reflect the criteria necessary for performing well as a pitcher. Even when a
pitcher knows their own physical or mental condition to be below the normal
levels, the pitcher can be reluctant to inform the manager for any of a host
of complicated reasons; e.g., ego, contract status, embarrassment, etc. The
manager is faced with the task of determining the condition of the pitcher
with only limited information.

In our example, the pitcher’s performance against each batter provides
the manager with evidence of the internal condition of the pitcher. Based
upon this evidence, which we break down into the simple cases of the batter
making and out or getting a hit, the manager must decide after each batter
whether to let the current pitcher continue, or to replace him with one of

the pitchers in the bull-pen.

320

Aside from the initial conditions of a pitcher on a given day, the condi-
tion of a pitcher can deteriorate as the game progresses. The physical act
of pitching a baseball requires strenuous activity, which even the most fit
of people can only effectively perform for a limited amount of time. Thus,
at any given point in time, the pitcher can become fatigued, causing per-
formance to suffer. Although we have modeled the probability of a pitcher
becoming fatigued as constant over all time, a realistic model would have
this probability be a function of time; i.e., a non-stationary state transition

function.

Appendix B

PWLC Properties

There are a number of properties of PWLC functions and operations on their
representations which are used throughout this thesis. This appendix sum-
marizes these useful properties. For this appendix, we will use V4 and VP
to represent two PWLC value functions over information space and let A and
B, respectively, be the two sets of vectors representing those value functions

where

VA(b) = maxbh -
a€A

VvB®) = b-3 .
() = maxb- 5

We define an equivalency relation between the representation and the value
function, which notationally is A = V4 and B = VP,

Repeating Propositions 2.3.1 and 2.3.2 we have
e VA 4+ V8 isarwLc function, and

e max(V4 VP)is a pwLc function.

321

322

B.1 Cross-sum

In this section we formally define the cross-sum operator, ¢, and later will
discuss some of its properties when applied to PwLC functions represented

by a set of vectors.

Definition B.1.1 The cross-sum operation on two sets of vectors, A and

B s
AgB={a+plac A pecB} .

As a direct result of the properties of the addition operator, this operator

is commutative and associative.

Definition B.1.2 Similar to the notation, ., for addition, we define

N
@Ai:Al@Az@...@AN .

=1

B.2 Representation Properties

Relating the union and cross-sum operations on the representations we have

that
A@B=V4+ VP
and
AU B =max(VA, VB |

and we see that the union or cross-sum of two sets of vectors are themselves

representations for a PWLC function.

323

As discussed in Section 3.1.1 concerning parsimonious sets, a given value
function can have many different representations as a set of vectors. The
pruning operator, whose semantics are given by the PRUNE routine of Ta-
ble 3.4 in Section 3.1.1, operates on a set of vectors to produce another set
of vectors. The PRUNE operation was introduced as a way to convert a rep-
resentation of a PWLC value function to a unique minimal set. Because of

this we have, Vb € B,

VA(b) = maxb - o
a€A

= max b o
a€PRUNE(A)

and, with some abuse of notation,
A =PRUNE(A) = V4

where the equivalency relation is extended to incorporate a relation between
two sets.

This gives us the properties

PRUNE(AU B) = max(V4, VP)

PRUNE(A @ B) = VA 4+ VE |
which lead directly to

PRUNE(A U B) = PRUNE(PRUNE(A) U PRUNE(B))

PRUNE(A & B) = PRUNE(PRUNE(A) & PRUNE(B)) .

Appendix C

Random Distributions

To problem we address here is how to generate a random discrete probability
distribution, p such that the entire probability space, an N-dimensional
simplex, is sampled in a uniform manner. The obvious approach would be
to first generate N real numbers, p(1),p(2)...p(N), each being drawn from
a uniform distribution on the interval [0, 1] and then normalize this vector

so that

_r
Zf\;1 p(7)

to satisyfy the simplex constraints. This generates a probability distribution,

pi=

9

but does not generate distributions uniformly randomly over the probability
space. This algorithm skews the distribution in such a way that points close
to the simplex corners and borders are much less likely than points on the
interior, or closer to the uniform distribution. Figure C.1 shows 10,000
points generated on an N = 3 simplex. Note that the simplex constraints
force a two-dimensional space.

The correct algorithm for ensuring distributions are chosen uniformly

324

325

Figure C.1: Random probability points generated according to a naive al-
gorithm.

at random is given in Table C.1' In this algorithm, the function rand()
is simply a routine that returns a uniformly random real number on the
interval [0,1]. Figure C.2 shows 10,000 points generated according to this

algorithm.

'Thanks to John Hughes for showing us this algorithm.

326

randomDistribution()
p(l):=1
for each i € {2,3,... ,N}
p(i) :== 1.0 — y/rand()
for each j € {1,...,j}
plj) = 1.0 - p(i)
end for each j
end for each i
return p
end randomDistribution

Table C.1: Routine for generating a uniformly random discrete probability
distribution.

Figure C.2: Random probability points generated according to the correct
algorithm.

Appendix D

Finitely Transient Policies

For a stationary policy of an infinite horizon PoMDP problem, there is a
property called finite transience (f.t.) which was introduced by Sondik [117].
The interest in f.t. policies lies in Sondik’s theorem that if an infinite horizon
policy is f.t., then its value function is p.w.l. and can be computed relatively
easily by solving a system of equations. However, the requirements that
Sondik defines for f.t. policies are much stronger than are needed to ensure
a p.w.l. cost function for a policy as we show here. In this section we will
discuss the finitely transient property and introduce a more relaxed criterion
that will have the same nice properties as the f.t. policies. Before defining
the finitely transient property and our extension, we require some additional
concepts, which are due to Sondik.

We will use a POMDP problem with 2 states, 3 actions and 2 observations,
whose parameters are given in Table D.1!. For this problem, the discount
factor will be p = 0.95 and we will be considering the policy shown in

Figure D.1. Since this is a two state problem, an information state can be

'This problem has appeared elsewhere and is known as the “tiger” problem. [23]

327

328

7(-,0,-) s s’ 7(-,{0,1},-) s s’
s | 1.00 | 0.00 s | 0.50 | 0.50
s 1 0.00 | 1.00 s" 1 0.50 | 0.50
0(0,-,-) z Z o({1,2},-,-) z Z
s | 0.85 1] 0.15 s | 0.50 | 0.50
s 1015 0.85 s 1 0.50 | 0.50
r(-, a) a
0 1 2
s | —11] —100 10
s =1 10 | —100

Table D.1: Model parameters for f.t. example.

(G,)=1 m(G;)=2
i (G,)=0]
8.04 b(S) 0.9:615-

Figure D.1: Policy regions for f.t. example.

represented with a single number, namely b(s) since b(s’) = 1 — b(s). This
policy imposes a partition, G™ = {GT,G5,GE}, on the information space
consisting of three regions. For this example, the precise partition, which

can be represented as a set of intervals over b(s), is

GT=1[0.0000000000 0.0396544425],
Gr=< G7 =] 0.0396544425 0.9603455575 |,
GE =[0.9603455575 1.0000000000]

Since we define a single action over each partition element, we will use the
notation 7(G;) = m(¢) for the action assigned to partition element G;. For

the example policy we have: 7(1) =1, #(2) = 0 and 7(3) = 2.

329

It is of interest to be able to easily find the value of an arbitrary policy
defined over information space, e.g., the value determination step of policy
iteration. We will make the simplifying assumptions that the policy is spec-
ified with a finite number of connected regions, where each region is either
convex or made up of a finite number of convex regions.

Let D, be the set of information points at which a policy is discontinuous.
For the example, as shown in Figure D.1, policy consists only of three regions

with discontinuity set
D, = {0.0396544425,0.9603455575} ,

where we assume that the policy is continuous at the simplex corners. Again,
with two states we can represent the regions borders with a single number.
Note that D, is a set of points and not a set of intervals. Also for |S| > 2
all of the results of this section still apply, but the representation of the
partitions and discontinuities must be done using a more complex system of
hyper-planes instead of simple intervals and points. Sondik [117] shows how
this is done for |S| > 2.

Let A be a subset of the information state space, B, and let the infor-

mation transformation function on a set of points be defined with
T(A,a,2) = b € A} |

and note that T'({b}, a, z) is equivalent to the one element set {6¢}. The T'()

function simply converts one set of points into another.

Definition D.0.1 The set of all possible transformed information states of

330

a set A is
T (A)=A{T(b,w(b),z)|Vbe A Vz € Z} .
Let S = B and define

SE=T.(SEY n>1 .

ki

This states that S7 is the set of all possible information states that the
process could have after following the policy 7 for n steps. This makes no
assumptions about the initial information state, or the sequences of obser-
vations received.

In the example policy, with S2 = B, S1 consists of all information states

in the interval
[0.0072340834 0.9927659166 |

Further, we see that S2 = S., which means that S = S! for all n > 1.

Sondik gives the following definition on page 71 of his thesis:

Definition D.0.2 A stationary policy © is finitely transient if and only if

there is an integer n < oo such that
D,.NSP=0 .

The smallest such n is called the index of the finitely transient policy and is

labeled n .

By this definition, our example policy is not finitely transient since both

policy discontinuity points lie in the interval defined by S7 for all n. The

331

transition dynamics of this example are such that there is a non-zero prob-
ability of being at a discontinuity at any step, n < oo, in the future. This
property removes this policy from the class of f.t. policies, though we shall
see that, despite this, this policy has the same nice properties as f.t. policies.

There is another way to approach f.t. policies (also due to Sondik) that
uses a sequence of sets derived from the discontinuities of the policy. This
looks at the inverse problem, and attempts to find all possible states which
could reach the policy’s discontinuities. We define the inverse information

transformation on a set of information points as

T-YA) = {b|b§(b) € A, for some z € Z} ,n>0 .

ki

Letting D° = D,, which is just the set of discontinuities of the policy, we

then define
Dt =T7-4(D") Vn >0,

which defines the set of all information states which can reach a discontinuity
of the policy in n + 1 steps following the policy 7. We can find these sets
by using the inverse of the information state transformation function and
Sondik’s construction methods [117], though we must handle the special case
of a non-invertible transformation function explicitly.

For actions 1 and 2 of our example, the information state transformation
is non-invertible, since no matter what the information state is, the result of
these actions is the information state [0.5 0.5]. Since this point is not one
of the discontinuities of the policy, those two actions will not contribute to
any of the D" sets, unless we find [0.5 0.5] € D"~!, which does not occur

in this example.

332

Looking at our example policy the sequence of discontinuity sets is

D° = {0.0396544425,0.9603455575}

D' = {0.1896187811,0.8103812189}

D? = {0.4299360872,0.5700639128}

D? = {0.1174593043, 0.1896187811,0.8103812189, 0.8825406957 }

D* = {0.4299360872,0.5700639129} .

At this point we see that D* = D? which means that the sequence will
repeat indefinitely from that point.

Sondik gives the following Lemma

Lemma D.0.1 D" is the first empty set in the sequence D, D?, ... if and

only if the policy 7 is finitely transient with n, = n.

This Lemma follows almost immediately from the definition of a f.t. policy.
Using the f.t. property, Sondik goes on to show that these f.t. policies have
some desirable properties. However, we see again, that the example’s policy
does not satisfy this criterion and is not f.t. It turns out that this example
policy has the same nice properties as f.t. policies, and so we would like a
less stringent criterion that ensures we get those properties.

Define D" = o D', which is simply every point that leads to a dis-

continuity of the policy in n or fewer steps.

333

—n+1

Definition D.0.3 If D = D" for any n < oo we say the policy is ex-

tended finitely transient (e.f.t.) with index n,.

—n+1 o

Theorem D.0.1 If D D", then D" =D" for allm > n + 1.

Proof We prove this by contradiction and note that the construction pro-
cess ensures that D' C D’ for all j > i. Assume D" is the first set in the
sequence that differs from D". Then there must be a point b € D", where
b¢ D", such that for some observation z, b’;(b) € D™, Since this is the first
discontinuity set that differs from D", we know that Dl =D ="

and we must have b7) € D". Since b € T_l({b:(b)})7 b must be in D"

and we have a contradiction because we defined b ¢ D" and D" = D"

For our example, the sequence we get is

D" = {0.0396544425, 0.9603455575 }

D' = {0.03965444257 0.1896187811, 0.8103812189,

0.9603455575 }

D’ = {0.03965444257 0.1896187811, 0.4299360872,

0.5700639128, 0.8103812189, 0.9603455575}

D’ = {0.0396544425,0.1174593043, 0.1896187811,
0.4299360872, 0.5700639128, 0.8103812189,

0.8825406957, 0.9603455575}

334

D" = {0.0396544425, 0.1174593043, 0.1896187811,
0.4299360872, 0.5700639128, 0.8103812189,

0.8825406957,0.9603455575} .

We see that our example policy does have the e.f.t. property, with index
nr = 3. Notice that the e.f.t. property is implied by the f.t. property since
D™ = () ensures that D" = D', We will now closely follow Sondik’s
development for the properties of f.t. policies, except we will extend this to
the e.f.t. case.

For Sondik, his f.t. property assures that, regardless of the initial infor-
mation state, after a finite number of steps it will be impossible to be at an
information state which lies on a border of the policy partition. For e.f.t.
policies, there may be no finite number of steps in which we can give this
same guarantee. However, we will be able to guarantee that, for some fi-
nite number of steps, we only reach a partition boundary point if the initial
information state is itself a partition boundary point.

We define a partition G" = {G?} by using the set D" as the defining
borders for the partition regions. Since D! C D", each partition derived
from the discontinuity set sequence is a refinement of the previous partition
with the final partition G™7, which can not be refined further since D"t =
D" for all n > n,. Since we are mainly concerned with the final partition,
we will drop the superscript such that G" = G and G]" = G|.

For our example policy we have

[0.0000000000 0.0396544425 |
G°=< | 0.0396544425 0.9603455575 |
[0.9603455575 1.0000000000 |

Gl

G2

0.0000000000
0.0396544425
0.1896187811
0.8103812189
0.9603455575

0.0000000000
0.0396544425
0.1896187811
0.4299360872
0.5700639128
0.8103812189
0.9603455575

0.0000000000
0.0396544425
0.1174593043
0.1896187811
0.4299360872
0.5700639128
0.8103812189
0.8825406957
0.9603455575

0.0396544425
0.1896187811
0.8103812189
0.9603455575
1.0000000000

0.0396544425
0.1896187811
0.4299360872
0.5700639128
0.8103812189
0.9603455575
1.0000000000

0.0396544425
0.1174593043
0.1896187811
0.4299360872
0.5700639128
0.8103812189
0.8825406957
0.9603455575
1.0000000000

335

Because this policy is e.f.t. with index 4, we know that G* = G3 for all 7 > 4

and we have

()
Il

which is the final partition and is shown in Figure D.2.

0.0000000000
0.0396544425
0.1174593043
0.1896187811
0.4299360872
0.5700639128
0.8103812189
0.8825406957
0.9603455575

0.0396544425
0.1174593043
0.1896187811
0.4299360872
0.5700639128
0.8103812189
0.8825406957
0.9603455575
1.0000000000

336

GCJ‘ G,G; Gy Gs Gy G;Gg 59

004 | 0.19 043 057 081 | 0.96
0 012 b(S) 088 1

Figure D.2: Final constructed partition for f.t. example.

Lemma D.0.2 All information states in a partition element G are as-

signed the same action, 7 (i), by 7.

Proof Since D, is a subset of the boundaries of G, the partition must
be a refinement of G™. Since the policy partition initially assigns only one
action to each partition element, it must assign one and only one action to

each partition element G7'. |

Lemma D.0.3 For the final partition formed by a e.f.t. policy, if b € G,

and b’;(") € G, then Vb € G; we must have 3’;(") € G?.

Proof Let two distinct points, b and b lie within the region of partition
element GG; where b’;(") € G and 3’;(") € G, for some observation z. We now
assume that G; # G, and proceed to find a contradiction. Let [be the line
segment that lies between b and b. Since we only allow convex regions, [
must lie entirely within the interior of the region of G;.

Thus, the line segment T'(I, 7(¢), z) will have endpoints in G; and Gy. By
our assumption G; # Gy and the properties of the transformation function,
the line segment must cross at least one region boundary, and there must be

a point b* € [such that bz’ﬂ(i) lies on the boundary of two regions. However,

337

B\
- W)@Q;A%M
0

b(s) 1

Figure D.3: Information state transitions on partition for e.f.t. example.

if bz’ﬂ(i) is on the boundary, then bz’ﬂ(i) € D" and there must be some set
D" that contains this point. By nature of construction, * must be in the
set D" If b* € D!, then it must also be in D"". However, b and b
were chosen to be in the partitions element’s interior and the convexity of
the regions means that all points in [must also be in the interior, which is

the contradiction since we find b* in [and in D' [|

Definition D.0.4 When b € G} and b’;(") € G;? then v(i,z) = j.

Thus, given a partition derived from an e.f.t. policy, we can easily define
this v(-,-) mapping by selecting a point in each region and transforming it
for each observation. From Lemma D.0.3, we see it does not matter which
information state we select for each partition element. Returning to our
example, we can construct the mapping shown in Table D.2 and illustrated
in Figure D.3.

The following lemma appears, and is proved in Sondik’s thesis [117]
as Lemma 3.4 on page 72. It shows the form of the value function for any
stationary policy evaluated over the infinite horizon. Note that this theorem

does not say that all policies have p.w.l. value functions. However, below we

338

B
N
l\l\

© 00 -1 O U W N
GO © 00 -1 O Ut Ut
T UL W = Ot

Table D.2: Partition transition function v(-,-) for the e.f.t. example.
will use this lemma to prove that e.f.t. policies do have p.w.l. value functions.

Lemma D.0.4 The value function, V;(b), of a policy = can be written
Va(b) =b-g(b|7)

where g(b|7) is an |S|-vector that is the unique bounded solution to the vector

equation
g(blm) = r(x (b)) +pY_ P g(0I"|x) . (D.1)

Note that this lemma does not assume that there are a finite number of
¢(b|7) which satisfy this equation.

The following theorem just extends Sondik’s Thesis Theorem 3.4 to the
case of e.f.t. policies. The proof is exactly the same as presented by Sondik
for the f.t. case, since his proof relies only upon properties of f.t. policies

which we have shown to exist for e.f.t. policies.

Theorem D.0.2 If a policy 7 is e.f.t. then V() is p.w.l

339

Proof By Lemma D.0.4, the value function can be written as Vp(b) =
b g(b|w) where g(b|r) is the unique solution to Equation D.1. The only
thing remaining to be proven is that there are a finite number of ¢(b|r)
vectors.

Since the policy is e.f.t.,

e we can construct a finite sized partition set G = {G;} using D"" as

the region boundaries by Theorem D.0.1,

e the same action is defined over all information points in a given parti-

tion element by Lemma D.0.2,
e a v(-,-) mapping exists by Lemma D.0.3.

If we assume that for each partition element and for all b € G; we
have ¢(b|7) = g;. Since for all b e G, 7(b) = m(i), Equation D.1 can be

transformed into a finite set of equations
gi=r(w(i)) +p Z Pieg i, (D.2)

which must have a unique solution by the properties of right-hand side?.
Since Equation D.1 and Equation D.2 are of the same form and have

unique solutions, they must be one and the same solution. Thus, the solution

to Equation D.2 must be the policy’s value function, which shows it has a

finite number of segments. |

2The right-hand side is a vector contraction mapping for the function g(-|7) under the
vector supremum norm. See the proofs of Lemma 3.1 and Lemma 3.4 of Sondik’s thesis
which discuss this further.

340

30

V(b)

b(s)

Figure D.4: Optimal value function for f.t. example.

For our example, we can set up the system of equations from the v(-,-)

function and solve to get the p.w.l. value function represented by

g1 =] —81.597200063 28.402799937]
g2 = 0.690888139 25.004972735]
g3 = | 3.014778938 24.695680939]
gs=1[16.493485015 21.541837097]
Ve(-)=<¢ g5s=[19.371368356 19.371368356 |)
gs =] 21.541837097 16.493485015]
gr=1[24.695680939 3.014778938 |
gs=1[25.004972735 0.690888139 |
go =] 28.402799937 —81.597200063]

where this value function is shown in Figure D.4. Note that this value
function is both p.w.. and convex, though convexity of a policy’s value
function is not always guaranteed. In this case, the example policy we used
corresponded to the optimal policy, which explains its convexity.

Sondik makes the following conjecture about f.t. policies:

341
Conjecture D.0.1 A policy with a p.w.l. value function is f.t.

and shows that it is false by way of a counter-example. Thus, the same

question arises in the context of e.f.t. policies:
Conjecture D.0.2 A policy with a p.w.l. value function is e.f.t.

The natural place to start is with Sondik’s counter-example which shows
that the dynamics of the information state transformation makes the infor-
mation states asymptotically approach a single point for a particular combi-
nation of an action and an observation. Since this limiting point lies within
the action’s region, once an information state transforms into the region, for
a the particular observation the information state will approach the limiting
point, but only reach it in the limit. Since this limiting point lies within
the region, the S™ sequence will never be empty. In fact, Sondik shows that
the set of reachable states has lim,, ., S* = [0.075807 0.763158], which
includes the policy discontinuity point 0.6. Since he defines f.t. policies as
D, N ST ={, this policy is clearly not finitely transient.

However, we have defined e.f.t. policies using the sequence of discontinu-
ity sets D... To show a policy is not e.f.t. we have to show lim,_., D, # 0.
We have not yet shown a counter-example to Conjecture D.0.2, but suspect

there are many.

#Sondik states that S is [0.076 0.766].

Appendix E

Neighbor Properties

There are some properties of the neighbor relation from Section 3.2.1 which
may not be immediately obvious. We use this appendix to briefly highlight
a few. We use a simple POMDP where we have only two observations and
two states. Thus we want to explore the relationship between a vector and
its neighbors in terms of how I'? is constructed from the individual I';y* sets.

Consider the case of a vector v which has a non-empty region in I' . One
obvious fact is that for a given neighbor, v, it may or may not be the case
that R(v,T'%) = 0.

The first somewhat counter-intuitive property is the fallacy that for a
neighbor with a non-empty region in I'?, that R(v,I'?) and R(v,I'%) must
be adjacent. Figure E.1 shows a counter-example where a neighbor’s region
is non-adjacent.

Another not so obvious fallacy is that if two regions R(y,T'%) and R(y',I'%)
are adjacent, then 7' € A/ (vy). Figure E.2 is a counter-example. This figure
also shows another non-obvious case where, for all neighbors v of a vector

v, we have R(v,I'¢) = 0.

342

343

a,0

a,l

a,0

erat v y

0 b 1

Figure E.1: A vector’s neighbor with a non-adjacent region.

a,OC_B I_a,l y y,

0 b 1

Figure E.2: A situation where adjacent regions are not neighbors and where
all neighbors have empty regions.

Appendix F

Full DP Example

In this appendix, we show how the witness and incremental pruning algo-
rithms work on a simple example for a few value iteration steps. This is
intended to serve two purposes; to concretely illustrate the operation of the
two algorithms; and to provide a point of reference for researchers that may
attempt to implement these or related algorithms.

We use the the simple 2-state, 2-action, 2-observation POMDP baseball
example from Chapter 2 where the model parameters are given in Tables 2.1,
2.6 and 2.7 and the discount factor is p = 0.95. We assume that the terminal
rewards are all zero so that I, = {[0.0000 0.0000]}. We will use the
following indices to make the notation succinct: action pitch = 0; action
bull-pen = 1; observation out = 0; observation hit = 1. In addition, the
first component of the vectors shown corresponds to state s = good and
the second component is s’ = bad. We show the first 3 DP steps using the

incremental pruning algorithm and the 4" step using the witness algorithm.

344

345

F.1 Incremental Pruning
We start with the no cost terminal value function

I'o={ [-0.00000 —0.00000 | }

and generate the F?’Z sets using Equation 3.2 to get

% ={ [0.03250 —0.46250 | }

' ={ [0.03250 —0.46250 | }

Since there is only a single vector in each set, the full single action value

function is
I'f={[0.06500 -0.92500 | } |,

which simply corresponds to the immediate rewards for action 0. By the
same procedure, we derive the other action’s value function as its immediate

rewards and get
ri={1[] -03750 —03750] }

Combining the two action value functions, we find that each vector has

a non-empty region, so the final value function is represented with

ro_ [006500 —0.92500]
YT [037500 —0.37500 | f

which is shown in Figure F.1.

346

-2.5
b(s)
Figure F.1: Value function Vi(-).

2 Steps-to-go: First, considering action 0 we build the Fg’z value functions

from I’y which yields

poo_ [[002262 -1.03369 |
2 —0.26319 —0.69406

—0.02806 —0.58719

0.1 [0.01008 —0.77006 |
I‘2 — L]

Computing the full cross-sum, Fg’o & Fg’l, we get 4 vectors, though one of
these has an empty region as shown with the dashed line in Figure F.2.

Thus we find that

[0.03270 —1.80375 |
rg=< [—0.29125 —1.28125 |
| —0.00544 —1.62088 |

347

b(s)

Figure F.2: Full cross-sum for Fg’o fas Fg’l with one useless vector.

For action 1, the associated single action and observation sets are

pro_ [[—0.44685 —0.44685 |
2 —0.45469 —0.45469

rit_ | —0.33665 —0.33665 |
2 —0.27656 —0.27656

Since each of these vectors is a horizontal line, the full cross-sum contains

only horizontal lines and the T'} set will consist of a single vector which is
the largest, i.e.,

ry={1] —072341 -0.72341 | }

Combining T') and I'} we find that one of the vectors from I'J has an

empty region, making the final set

[0.03270 —1.80375 |
;=< [-0.00544 -1.62088 | |,
[—0.72341 —0.72341 |

348

-2.5
b(s)
Figure F.3: Value function V3(-).

which is shown in Figure F.3.

3 Steps-to-go: We start with

[—0.05512 —1.57632
I3 =1¢ [—0.07154 —1.46339
—0.53791 —0.90921

[—0.02328 -1.06225 |
st =< [—0.02209 -1.00144 | 5 |
| —0.08433 —0.70303 |

and generate the full cross-sum Fg’o & Fg’l, which yields 9 vectors, shown in
Figure F.4. Although it is difficult to see in the figure, all but four of these

vectors have empty regions, resulting in

[—0.07721 —2.57776
—0.09364 —2.46483
—0.15587 —2.16642

Iy = %
[—0.62224 —1.61224

T 'E | E—

349

b(s)

Figure F.4: Full cross-sum for Fg’o &y Fg’l with 5 useless vector.

For action 1 we have

[—0.73121 —0.73121
r;%=¢ [—0.69014 —0.69014
—0.70293 —0.70293

| —0.48504 —0.48504
ry'=3 | 045736 —0.45736
| —0.35931 —0.35931

As we had for the case of ¢« = 1, n = 2, every vector in the two sets is a

horizontal line, and the final set is simply the maximal line or
ri={[-1.0495 -1.0495 | }

Combining 'Y and I'! we find that one of the I'§ vectors has an empty

350

V(b)

-2.5

b(s)
Figure F.5: Value function V3(-).

region. This makes the final value function representation

[—0.07721 —2.57776 |
[—0.09364 —2.46483

| —0.15587 —2.16642 |
[—1.04950 —1.04950 |

s =
which is shown in Figure F.5.
The basic incremental pruning algorithm continues in this same manner,

though we terminate the example at this step. The next section shows the

following DP step, but uses the witness algorithm.

F.2 Witness

We will discuss the operation of the witness algorithm for a single DP step.
We will pick up where the incremental pruning algorithm left off, computing
'y from I's. An important point to be aware of is that we have rounded

off the vectors to 5 decimal places, though the computations discussed used

351

the full precision. Therefore, there may be appear to be slight discrepancies

between the witness points and the vectors.

Action 0: The witness algorithm begins by selecting any information
state, b, generating its vector, v4(b), and adding that vector’s neighbors

to Y. It will be useful to first show the FZ’Z sets, since we ill need them in

the discussion:

[018279 —2.05426 ()

oo J [018775 —1.98453](347)
4 [—0.21455 —1.80026](v{3)
[—0.79503 —1.11057 ()

0,1

[—0.06311 —1.31960 (%))

0.1

Lo _ [—0.06146 —1.28206](7%711)
4 [—0.05952 —1.18284 |(yy3)
[—0.13699 —0.81146 |(v0)

Notice that we have labeled each vector so that each vector constructed

can be referenced to the vectors that were used to construct it, where v

is the vector for action a, observation z, DP step n and is the it

h

vector in

the set I';°. We arbitrarily choose b = [0.0 1.0] to start and find

79([0.01.0]) =45 + 74’3

=[-0.93203 — 1.92203],

which is added to I'. With [T9°] = 4 and | Z| = 2, this vector has | Z|(|T%"| -

352

1) = 6 neighbors which are added to T

T=N(>J([0.01.0])

[—0.31978 —2.86572 | (940 +743)
[—0.32475 —2.79599 | (947 +74%3)
) [035155 —2.61172 | (745 + 74
T) [-0.85814 —2.43017 | (745 + 740
[—0.85650 —2.39262 | (945 +741)
| —0.85455 —2.20340 | (45 +74%)

We now enter the loop and select an item from Y. Arbitrarily, we will
always select the first item as listed and add items to the end of the list.
Selecting v = [—0.31978 —2.86572 |. First, we check R(v,f’) and, as shown
in Figure F.6 with a dashed line, we find that it is not empty. Since the
findRegionPoint P maximizes the difference between v and f, it returns
the witness point b = [1.0 0.0]. With this witness point we find its maximal

vector to be

Y9([1.00.0]) =50 + 74

=1-0.24231 —3.23710] ,

with neighbors

[—024500 —3.37387 | (700400

[024425 333632 | (750 +701)

. [—0.31978 —2.86572 | (750 + %)
N(y4(b) = 00 4 01
[—0.24728 —3.16737 | (997 +74%)

[—027408 —2.98310 | (700 +0)

[—0.85455 —2.20340 | (399 4+40)

Adding those neighbors to T that are not already in T and v back into

353

V(b)

b(s)

Figure F.6: An agenda item with a non-empty region over T.

T we have

f_ [—0.93203 —1.92203 |
T [-0.24231 -3.23710 |

—0.32475 —2.79599
—0.35155 —2.61172
—0.85814 —2.43017
—0.85650 —2.39262
—0.85455 —2.29340
—0.24590 —-3.37387
—0.24425 —-3.33632
—0.24728 —-3.16737
—0.27408 —2.98310
—0.31978 —2.86572

Returning to the top of the loop, we select v = [—0.32475 — 2.79599]
and compare it to T which vields a non-empty region as shown in Figure F.7.
Again, because findRegionPoint tries to find the point of maximal differ-

ence, it will return the point where the two vectors in T intersect, i.e.,

Figure F.7: Another agenda item with a non-empty region over T.

-2.5

b=1[0.65597 0.34403]. We get

with neighbors

Ny

b(s)

0,0 0,1
’72(19) = Ya T Va3

= [-0.35155 —2.61172]

[—0.31978
[—0.32475
[—0.27767
[—0.27602
[—0.27408
[—0.93203

—2.86572
—2.79599
—3.11987
—3.08232
—2.98310
—1.92203

S N SO S S—

-
k=)

-

e N T T N
2 2 2D
B Ok Ok Ok Ok O
N ON ON O OO

-2
.
W

354

Adding these neighbors and v into T we get

T=

—0.93203
—0.24231
—0.35155

—0.35155
—0.85814
—0.85650
—0.85455
—0.24590
—0.24425
—0.24728
—0.27408
—0.31978
—0.27767
—0.27602
—0.93203
—0.32475

—1.92203
—3.23710
—2.61172

—2.61172
—2.43017
—2.39262
—2.29340
—3.37387
—3.33632
—3.16737
—2.98310
—2.86572
—3.11987
—3.08232
—1.92203
—2.79599

355

Returning to the top of the loop, the next vector we remove from T is v =

[—0.35155 —2.61172], but we find that v € f, so we discard this, return to

the top of the loop and remove the next item to v = [—0.85814 —2.43017 |.

As shown in Figure F.8, the R(v,f’) = () and we return to selecting items

from T. We find that the next 4 items selected, assuming we select them in

order they are listed above, all have empty regions over T. In all, 6 vectors

have been removed from T without adding anything to I. The vectors

removed are

—0.35155
—0.85814
—0.85650
—0.85455
—0.24590
—0.24425

—2.61172
—2.43017
—2.39262
—2.29340
—3.37387
—3.33632

Not until v = [—0.24728 — 3.16737] do we find a non-empty region.

In this case, although the region is quite small, findRegionPoint returns

356

V(b)

25
b(s)

Figure F.8: An agenda item with an empty region over T.

b=10.851310.14869 | and we generate

0,0 0,1
’72(19) = Va1 T Val

=1-0.24728 — 3.16737] ,

which just happens to be the same vector as v.

At this point, following the algorithm to the letter would require adding
this vector both to T and Y. However, putting it in r guarantees that we will
not check this vector when we later remove it from T, since the algorithm
specifically checks for this condition. Thus, we will elect not to add them to
T.

Even if we do not add the vector v to T, we are still required to add its

357

neighbors to Y. We have

[—0.24231 —3.23710 | (4204420 (a)
0,0 01
[—0.25087 —3.30414 | (357470 (a)
20)) = [—0.24922 —3.26650 | (+204400) (a)
TEOUTY T 032475 279509 | (100440 (b) [
[—0.27408 —2.98310 | (v45+7ys) (D)
[—0.85455 -220340 | (135 +71s) ()

which allows us to relate some of the optimization ideas from Section 3.2.3.

Looking at the neighbor set above, we see three types of vectors which we

have

(a)

labeled (a), (b) and (c) above. We find:

There are vectors which are not, and have never been in Y. In this

case there are three of these, and we have no choice but to add it to

T.

There are two vectors which are currently in the agenda. By nature of
taking the union of the neighbor set and T, these will not contribute

to making T any larger.

There is one vector that is not currently in T, however, it previously
was in T until it was removed, due to it producing an empty region.
The algorithm, as it appears in Table 3.7, will add this to T, but this
is not necessary. If the region was empty before, having added more
vectors to I' cannot make this region non-empty. Thus, an optimiza-
tion that can be added keeps track of vectors removed from T. We

will use this optimization here and not add this vector to T.

With the optimizations in place, we end up adding only three vectors to

358

T giving

—0.93203 -1.92203
—0.24231 —-3.23710
—0.35155 —2.61172
—0.24728 —-3.16737

—0.27408 —2.98310
—0.31978 —2.86572
—0.27767 —3.11987
| —0.27602 —3.08232
T=< | —093203 —1.92203
| —0.32475 —2.79599
—0.24231 —3.23710
—0.25087 —3.30414
—0.24922 —3.26659

=
Il

The next item selected at the top of the loop is v = [—0.27408 —2.98310 |
which has a small, non-empty region, yielding b = [0.84200 0.15800]. We

find that this item happens to be the maximal vector for this point and has

[—0.24231 —3.23710 | (4204420 (b)

[—0.24728 —3.16737 | (1204400 (o)

. [—0.27767 —3.11987 | (1204490 (b)
NS = ,

[—0.27602 —3.08232 | (735 +741) (D)

[—0.35155 —2.61172 | (1204400 (c)

[—0.85455 —2.20340 | (120+4%0) (o)

where we have again indicated the types. For this vector, since all neighbors

are either in T or were previously in T, we do not have to add anything to

the agenda. We now have

359

~0.93203 —1.92203
~0.24231 —3.23710
T = ~0.35155 —2.61172
—0.24728 —3.16737
—0.27408 —2.98310
~0.31978 —2.86572
—0.27767 —3.11087
~0.27602 —3.08232
v ~0.93203 —1.92203
—0.32475 —2.79599
~0.24231 —3.23710
~0.25087 —3.30414
~0.24922 —3.26659

We will now find, selecting one vector at a time, that all the remaining
items in T yield empty regions over T. When T has been exhausted, we
are left with '} = T and the witness algorithm is complete. The final value

function, V(+), represented by I'{ is shown in Figure F.9.

Action 1: The witness algorithm proceeds in the same for action 1, ex-
cept the structure of the solution makes this somewhat simpler. Instead of
showing the full witness algorithm for this case, we show how one of the
optimizations discussed in Section 3.2.3 can save a large amount of work.
Recall from Section 3.2.3 that the witness algorithm can be modified
to initialize T with vectors generated from any number of points. For
this case, assume we select our set of point to be the information space
simplex corners. After checking all (two) simplex corners, we find that
v4([0.01.0] = 5[1.00.0] =] —1.3561 — 1.3561]. We had mentioned
that checking all the simplex corners is guaranteed to yield at least two vec-

tors if and only if |T'}| > 1. From this we can conclude that we have already

360

V(b)

b(s)

Figure F.9: The value function V(-) for the witness example.

determined T'} and we never have to enter the witness loop.
Without this optimization, we would have been required to add all the
neighbors of the vector to T and the witness loop would execute once for

each neighbor (6 times), each time doing an LP only to find an empty region.

Merging 'Y and T} The final step for the n = 4 step is to merge the sets

for all the actions. Figure F.10 shows that one vector from I'} (with the

dashed line) becomes useless.

361

-2.5
b(s)

Figure F.10: The final value function Vj(-) for the witness example with one

useless vector from I'} shown.

Appendix G

Policy Graph Construction

In this section we will show the construction of a finite state controller
for the infinite horizon version of the simple baseball example presented in
Chapter 2 with Tables 2.1 and 2.6. This controller, which we call a policy
graph, is derived from executing value iteration for a large horizon. We
note that the technique shown in this section cannot always be applied,
or may require a more complicated construction. This example is simply
to illustrate how an optimal policy graph can be constructed for certain
policies. Appendix D discusses the conditions on the policies required to
be able to accomplish this, where the property required is are called finite
transience .

There is a corresponding finite-horizon policy graph, which has a tree
structure, where the infinite horizon policy graph can have cycles. We will
use the general term policy graph for both in this appendix, allowing the
context to disambiguate the two.

We begin with Figure G.1 which shows the finite horizon policy graph

for the first 4 value iteration steps. Each node in this graph represents one

362

363

Figure G.1: Finite horizon policy graph structure.

of the vectors in I';,. The edges in the graph indicate which of the previous
vectors where used in the construction of that particular vector; i.e., the
choices made in the y,_i(-) function of Equation 3.2. The labels on the
nodes indicate the action associated with the vector.

Since each vector defines a region of information space, each node can
also be viewed as representing a region. This graph also indicates the in-
formation state transformation function between these regions; if the in-
formation state is in the region of a vector and we perform its associated
action, then the edges of the graph indicate which region the transformed
information state will lie in for each possible observation. We have omitted
the partition information to keep the figure uncluttered, but the nodes are
ordered by the partitions so that the node corresponding to the vector that

has b = [0.0 1.0] in its region is on the far left. Note that the ordering is

364

made possible by there being only two states, making the information state
space essentially one-dimensional.

Aside from indicating which I',,_; vectors helped construct a vector or
the information state transformation process, the main use of this graph
is how it specifies the optimal finite horizon policy to follow. Given an
information state and a certain number of steps to go, n, we can find the
maximal vector (or simply see which region the information state is in),
which will be one of the nodes in the graph from among those in horizon
n. Following the action of the node label, we will get an observation and
we follow the edge based on that observation to arrive at another node with
one less step to go. In this way, the node indicates the action, and the edges
indicate the next node and consequently, the next action. Therefore, given
this finite horizon policy graph and the initial starting state, we can use it to
optimally control the POMDP by selecting actions according to the current
node, and moving in the graph according to the observations received.

Picking up where the algorithm examples left off in Appendix F, n = 5,
we find that for all n > 5, the sizes of the I',, sets stop growing and for all
n > 4 the parsimonious representation of V;,(-) is of size 5. By the 385th
step, the machine precision limitations no longer allows us to distinguish
between Vigy(-) and Vigs(-). The infinite horizon value function, V() is

shown in Figure G.2 and is represented by the set of vectors

[—5.7178259162 —9.5605069575 |

| —7.0743380696 —7.0743380696 |
I'=< [—5.8794976079 —8.5678886466 | ,

| —5.7759198754 —9.0644942135 |

[—5.7313101520 —9.3711481510 |

presented with more precision than the example in Appendix F.

365

6.2 |
6.4 |
6.6 |

V(b)

72t .
74t -

b(s)

Figure G.2: Infinite horizon value function for baseball example.

Looking at the finite horizon policy graph, it has exactly the same struc-
ture for every step after the fourth as is shown in Figure G.3.

Figure G.4 shows the final partition imposed by the policy and the policy
graph structure as it relates to these partitions. Note that the n = 384 and
n = 385 portion of Figure G.3 is conveying exactly the same information
as Figure G.4, which explicitly shows the policy graph structure on the
information state space partitions.

At the infinite horizon, the vectors in one iteration are equivalent to the
vectors in the next. With the repeated policy graph structure, we can redraw
the edges from the nodes back onto themselves as is shown in Figure G.5.
This can only be done because of the property of the optimal policy for this

problem: this policy is finitely transient!, as was discussed on Page 45.

"This policy is finitely transient with degree 4 [117].

366

Figure G.3: Repeated policy graph structure.

0
0
=0

a=1 a=0

a
a
a

z=1

olo]o

a=1 a=0 I8 RI BI

c|lc|m

0.0 0.56 0.83
b(s) 0.87

0.93
1.0

Figure G.4: Policy graph structure shown in relation to information state
space partitions.

367

‘ (=9 Nn=384

~
~
RN ~
~ <~ N -—=-
~ . N

407470 n=385
z=1

z=1

Figure G.5: Redrawing the edges for finitely transient policy.

The end result is an optimal controller that is a finite state machine
as shown in Figure G.6. With this controller, we no longer need to track
belief states, since the state machine transitions on the observation. In the
figure, we have marked the starting node with an arrow, which represents
the starting node for the initial belief state b =[0.9 0.1], i.e., the manager
initially believes that it is a good match-up for the pitcher with probability
0.9. Notice that the optimal policy to follow is not very realistic; this is
simply a function of the simplicity of the problem which does not nearly
capture the essence of the game of baseball. However, assuming the model

is correct, using this small controller will yield optimal performance.

368

z=1 z=0

Figure G.6: Optimal infinite horizon controller for baseball example.

Appendix H

Example Domains

This appendix provides descriptions for some of the example domains used

in the empirical comparisons'.

'Every effort will be made to ensure that the actual problems used for the empirical
results are available through the author or Brown University.

369

370
H.1 Large Baseball Domain

This domain is roughly based upon the example that appears in Howard’s
book [49] though others have applied decision theory to this domain [19].
It considers the strategic decisions of a baseball manager, for some number
of innings, when their team is batting?. The discussion in here assumes
some knowledge about the game of baseball. Appendix A provides enough
discussion to understand the small baseball example of the main text, but
it probably insufficient for full comprehension of this section. Note that the
fundamental probabilities for this case are different than the simpler baseball
example used in Chapter 2.

The choices available to the manager concern what the runners on base
(if any) and the batter should do. The actions the manager has to choose

from are

e hit - tells the batter to swing normally and the runners to wait and
see the result before deciding to advance a base. This is typically what
is chosen when there is no one on base or when the manager thinks

the hitter is likely to get a hit.

e bunt - tells the batter to bunt the ball softly and the runners to start
to advance as the pitch is being thrown. This decision is typically
used when the manager is willing to sacrifice an out for advancing the
runners a base. The drawback is that the batter is very likely to be

out.

2As Howard does, we make no claim to the validity of the modeling assumptions,
decisions or data toward the real situation in a baseball game.

371

e hit-and-run - tells the batter to swing normally, but for the runners
to be moving as the pitch is delivered. The advantage here is that they
will advance further on a hit and avoid a double-play. The disadvan-
tage lies in the potential for a double-play on a strike-out, resulting

from the runner being thrown out trying to steal.

e steal-2nd - tells the runner on first-base to attempt to steal second-
base. This action is only valid if there is a runner on first and no

runner on second.

e steal-3rd - tells the runner on second-base to attempt to steal third-
base. This action is only valid if there is a runner on second and no
runner on third. If there is also a runner on second-base, it has the

effect of a double steal.

e steal-home - tells the runner on third to attempt to steal home. This
is only valid if there is a runner on third, and if there are other runners,

if has the effect of all of them attempting to steal.

Howard considers a completely observable situation, but here we add
some hidden state to complicate the manager’s decision. The hidden state
consists of the quality of the pitcher, batter and catcher. All three of these
players can either be in a good or bad state and their performance is directly
related to their state. Thus there are 8 possible combination of the hidden
state of these three players. For the specific parameters used, we have veri-
fied that these hidden state components would influence the optimal action

selection if the state was fully observable.

372

There is actually only one observable component of the state space: the
result of the last play. However, this component fully determines the values
of a number of other components of the state space, since we have pre-
cisely defined the resulting situation for every initial situation and outcome.
Thus these other components are, in effect, fully observable. The full set of

effectively fully observable state components is

e The inning itself. The problem is extensible along this dimension. For

the data shown, we only consider a single inning.

e The number of outs in the inning. Valid values are 0, 1 or 2. We do
not need a 3 out state, since this is the same as the start of a new

inning or the end of a game.

e The situation on the base-paths. Whether or not there is a runner on
first-base, second-base or third-base. There are eight possible situa-

tions.

e How many players scored on the last play. This doesn’t really have
much effect on the current decision, but allows the rewards to be based
upon the state, since a reward of 1 is received for each run that is
scored. There are 5 valid values here, representing 0 through the

maximum of four runs scoring on a single play.

e The result of the last play. This is the component that completely
determines these other state variables and is directly related to the

observations. The possible values here are discussed below.

373

In addition to all possible combinations of the above state variables, there
is an extra state which is an absorbing state which represents the game being
over. There are also the 8 combinations of hidden state discussed previously.
Using only a single inning, this makes a total of 7681 states for the problem.

The observations are the results of the last play and there are 10 pos-
sible. When any of the three hitting actions are chosen, one of 8 obser-
vations are possible: single, double, triple, home-run, base-on-balls,
strike-out, fly-out, ground-out, which all correspond to the usual base-
ball interpretation and whose semantics are described below. If one of the
three stealing actions are chosen they there are only two possible obser-
vations: stolen-base and caught-stealing both of which pertain to the
outcome of the lead runner?.

To simplify both the description and coding of this example, we define
outcome probabilities for a typical batter and then scale these probabilities
accordingly to incorporate the states of the pitcher, batter and catcher.

Table H.1 shows the statistics that we used as a basis for this example.
These translate into a probability of 0.336 for not making an out on a given
play when the hit or hit-and-run action is chosen. This is the nominal
value, and the actual value will be adjusted twice: once to account for the
quality of the batter and once more to account for the quality of the pitcher.

We next define conditional probabilities for the type of non-out and the
type of out as shown in Tables H.2 and H.3. Although the probability of

making an out will be scaled according to the state of the batter and pitcher,

3Since the 8 hitting and 2 stealing observations are mutually exclusive, we only actually
need 8 total observations in the model.

374

550 plate appearances

non-outs ‘ outs
85 singles 55 strike-outs
25 doubles 155 fly-outs
5 triples 155 ground-outs

20 home-runs
50 base on balls

Table H.1: Statistics for a typical batter which are used as the basis for the
probabilities in the baseball domain.

| Outcome | Pr(- | hit) |
single 0.460
double 0.135
triple 0.027
home-run 0.108
base-on-balls 0.270

Table H.2: Conditional probabilities for “non-out” outcomes for the hit and
hit-and-run action.
these conditional probabilities will not be affected.

As mentioned, we will scale the probability that the batter does not
make an out by the quality of the pitcher and catcher. We first adjust the
non-out probability to compensate for the batter. If the batter is good, then
the probability is multiplied by 1.15 and if the batter is bad we multiply the
non-out probability by 0.80. Note that this scaling requires the non-out

probability to not be too close to 1. After the non-out probability has been

| Outcome | Pr(: | hit) |

strike-out 0.16
fly-out 0.42
ground-out 0.42

Table H.3: Conditional probabilities for “out” outcomes for the hit and
hit-and-run action.

375

Outcome ‘ Pr(- | bunt) ‘
single 1.0
double 0.0
triple 0.0
home-run 0.0
base-on-balls 0.0

Table H.4: Conditional probabilities for hit outcomes for the bunt action.

| Outcome | Pr(- | bunt) |

strike-out 0.05
fly-out 0.10
ground-out 0.85

Table H.5: Conditional probabilities for out outcomes for the bunt action.

adjusted for the batter, we adjust it for the quality of a pitcher with the
factors 0.75 and 1.15 for a good and bad pitcher respectively.

For the bunt action we have a slightly different situation. Here we define
the probability of making an out as 0.9 and assume that the quality of the
pitcher and batter do not have an effect on this probability. For bunting,
we use the condition probabilities shown in Tables H.4 and H.5.

Finally, for the actions corresponding to stealing a base, Table H.6 shows
nominal success probabilities for stealing the various bases. These are un-
adjusted values and they are scaled by 0.8 if the catcher is good and 1.10
if the catcher is bad. For all steal actions except one, it is assumed that
all runners attempt to steal with only the lead runner having the potential
of being thrown out. The one exception is when there is a runner on first
and a runner on third and the steal-2nd action is chosen. In this case, the
runner on third does not advance regardless of the outcome of the stealing

action.

376

‘ Stealing ‘ Prob. of Success

2nd 0.75
3rd 0.50
home 0.10

Table H.6: Stealing base probabilities prior to adjustment for the state of
the catcher.

To complete the problem description, we must define the semantics of
the outcomes of various actions given the initial situation. For each of
the single, double and triple actions all base-runners advance the same
number of bases as the batter, except if one of three conditions hold: either
the action was hit-and-run or bunt or there are two outs. In these three
cases, the runners advance one more base than the batter. Naturally, any
that make it to home would result in the state where that many players
scored. For a home-run all runners score and for a walk, only runners that
are forced to advance will change position.

For a strike-out, no runners advance if the hit action is specified. How-
ever, if the action was either hit-and-run or bunt, if there are any runners
on base and there are less than two outs, then the lead runner is also out,
resulting in a double play.

For a fly-out, all runners stay put with the exception of a possible
sacrifice fly. When there are less than two outs and a runner is on third-
base, a fly-out will result in the player on third scoring with any other
runners staying on their respective bases. The potential for a sacrifice fly
does not apply to the bunt action. Here, the fly-out is interpreted as a
short pop-up with no one advancing.

Finally, the ground-out outcome is very much dependent upon whether

37T

‘ Catcher Batter Pitcher ‘ Value ‘
bad bad bad 0.574512688
bad bad good 0.319788843
bad good bad 1.281795868
bad good good 0.512531047
good bad bad 0.558606169
good bad good 0.257343051
good good bad 1.275406063
good good good 0.489496861

Table H.7: Optimal completely observable values for one inning variation of
the large baseball domain.

a hit, bunt or hit-and-run action is specified and where the runners are
at the time. For a bunt and hit-and-run, we assume that the base-runners
have gotten a jump and will advance a base on the out, which also precludes
any double-play when the outcome is a ground-out. For a hit action, the
ground-out has the potential to produce a double play. Whenever there is
a runner on first and the hit action results in a ground-out, the runner on
first is out at second-base and the batter is out at first-base. On a double
play any runners on second or third advance a base, if the inning isn’t over.
If the base situation has no one on first, then the ground-out results in those
runners remaining at their respective bases.

The discount factor used is 0.999 and the optimal completely observed
values (the expected number of runs for a one inning game) for the 8 possible
starting state are given in Table H.7. Note that the only unknown in the

starting state pertains to the values of the hidden state variables.

378

H.2 Slotted Aloha

In a packet switched network, efficiency is gained by allowing multiple trans-
mitters to share a common channel. However, the physical limitations of a
channel allow only one packet to be transmitted at a time. If two or more
transmitters attempt to send a packet at the same instant, the messages get
garbled and a collision results. In this case, both packets are assumed to be
backlogged and must be re-sent at a later time.

We make the simplifying assumptions that time is divided into fixed
intervals called slots, packets can only be transmitted at the beginning of a
slot and that all packets require exactly one time slot to be transmitted. All
transmitting stations are synchronized with respect to the clock, but there
is no other way for them to communicate.

The slotted Aloha protocol is a strategy for scheduling packet trans-
missions, where each packet waiting to be transmitted is transmitted with
probability @ [10]. If at a given time, there are s, backlogged packets and all
transmitting stations have access to the this number, then the optimal strat-
egy is to transmit each backlogged packet with probability 1/s, *. However,
the transmission stations do not have access to the total backlog. The only
thing the transmission stations have access to is the status of the channel
and there are only three possible states of the channel: idle - no packets
transmitted; transmit - a packet was successfully transmitted; collision

- two or more packets collided.

*The probability of a successful transmission is spa(l — a)sb_l. Taking the derivative
with respect to a and finding the critical points, we see that the successful transmission
probability is maximized when a = 1/s,.

379

For our example domain, we assume that packets arrive in the system
according to a truncated Poisson distribution with mean 0.9. We fix the
maximum number of arrivals at any slot to be 10 and the remaining prob-
ability mass of the Poisson distribution is given to the probability that no
packet arrives. We also set a maximum number of backlogged messages in
the system. This maximum number of backlogged messages is adjustable
and we used the values 10 and 30 for the empirical comparisons.

We now discuss modeling this with a poMDP. The state of the system
consists of the number of backlogged messages and the status of the channel
for the previous transmission slot. The observations are the three possible
states of the channel, idle, transmit, collision.

The actions are transmission probabilities which we must discretize to
ensure a finite set. Since we know that choosing ¢ = 1/s, maximizes the

probability of a successful transmission, we choose the action set to be

1
A:{—|sb:1,2,...,M} ,
Sb

where M is the maximum backlogged allowed.

The state transition probabilities account for the individual packet trans-
mission probabilities for the given action and the Poisson arrival probability
of new packets entering the system. When a packet is successfully trans-
mitted, the backlog is reduced by one packet (and incremented by however
many new packets arrived). When the channel is idle or there is a collision,
then the backlog stays the same with the possible addition of new arrivals.
We assume the observations of the channel status are deterministic based

upon the last channel state.

380

For the rewards, we use a reward of zero when the maximum backlog is
reached and +1 for each packet below maximum the system is at. Thus, the

maximal reward is when there are no backlogged messages.

381

H.3 Machine Maintenance

We assume there is a machine with ¢ internal components that is used to
produce a part. The quality of the part produced is directly related to the
condition or state of these internal components, which are only observable
if the machine is disassembled. Each components can be in one of four
conditions: good - the component is in good condition; fair - the component
has some amount of wear, but would benefit from some maintenance; bad
- the part is very worn and could use repairs; broken - the part is broken
and must be replaced. Thus, the state of the machine is the combined state
of the individual components and there are a total of 4° states. For our
examples we used ¢ = 4.

The actions available to the decision maker are: manufacture - use the
machine to produce parts for the day; inspect - allocate part of the day to
disassembling the machine and inspecting the internal components; repair
- allocate the day to maintenance of the machine’s internal components;
replace - replace the machine.

The state transitions depend upon the action. For the manufacture
action, each component deteriorates with the probability 0.03 after each day
of producing parts. Thus, a component in good condition may transition
into the fair state, a component in fair condition may become bad and
a bad component could become broken. A broken component does not
deteriorate any further.

For the repair action we assume that the condition of each component

improves with probability 0.8. A component in broken condition cannot be

382

repaired, so it does not improve. A component in bad condition is likely to
become fair, a component in fair condition is likely to become good with
a good component not getting any better.

For the inspect action, the machine does not change state and for the
replace action, all components deterministically move to the good condi-
tion.

The observations also depend upon the action taken. For the manufacture
action, the observation is that either the machine produced good parts or
bad parts for the day. In order for the machine to produce good parts,
all components must perform properly during the day. A good compo-
nent always performs properly during the day. A fair component produces
properly with probability 0.95 and a bad component has probability 0.75 of
performing properly. A broken component never performs properly.

For the inspect action, the observation is the composite of individual
observations for each component, each of which is observed to be in a either
a good or bad condition. The probabilities of the individual observations are
dependent upon the actual condition of the component. A good component
will yield a good observation with probability 0.97, a fair component looks
good with probability 0.80, bad with probability 0.05 and broken is 0.02.

For the repair and replace actions, we assume that no observation is
made, which is the same as deterministically getting the same observation,
regardless of the state.

The rewards for the problem are 1 when good parts are manufactured
for the day. Inspecting gives a —1 reward corresponding to the price to

dismantle the machine and keep it idle. Repairing requires more effort and

383

has a reward of —3. Finally, replacing the machine is the most costly and

has a reward of —15.

384

H.4 Aircraft Identification (IFF)

This example is loosely based upon a model used by D’ambrosio and Fung [33].
The scenario involves an incoming aircraft where using various forms of sen-
sors available at a base, the task is to determine if the aircraft is a threat or
not. If the aircraft is a threat and nothing is done, then when the aircraft
gets close enough, the base may be destroyed. However, if the aircraft is at-
tacked and is not a threat (i.e., it is a friendly aircraft), then a significant
penalty is accrued. The tension of deciding between the various sensors is
that the better sensors tend to make the location of the base more easily
identifiable or visible to the aircraft, while the more stealthy sensors tend
to be less accurate. The sensors give information about both the aircraft’s
type and distance, though the distance information is generally more reliable

than the aircraft type information.

State Space The state space of this problem is comprised of three main

components:
e aircraft type - either the aircraft is a friend or it is a foe;

e distance - how far the aircraft is currently from the base discretized

into an adjustable number, D, of distinct distances;

e visibility - a measure of how visible the base is to the approaching

aircraft, which is discretized into 5 levels.

For the example domain we used D = 10. In addition to all combinations

of these values, there are 4 extra states, which serve as zero-cost absorbing

385

states:

e base-safe - results from a friend type aircraft reaching the base or

an enemy reaching the base, but failing to destroy the base;

e base-destroyed - corresponds to a foe getting close enough and suc-

cessfully attacking the base;
e foe-destroyed - results from successfully attacking a foe aircraft;

e friend-destroyed - results from attacking a friend aircraft and de-

stroying it.
This brings the total number of states to
|S| =10D +4 .
State Transitions The transitions between the states depend upon the
actions taken. There are | A| = 4 actions available

e active - a sensing action using the more reliable sensor, which also

renders the base more visible;

e passive - a sensing action using the less reliable sensor, but which

does not make the base too visible to the incoming aircraft;
e no-op - employ no sensors;
e attack - attack the incoming aircraft;

The distance of the aircraft is measured in discrete locations from the

base. Unless an absorbing state is reached, as described below, on a single

386

Pr(si,, =Jls{ =1)
action |j—i-1 j=1i j=1i+1

no-op 0.25 0.75 0.00
passive 0.00 0.90 0.10
active 0.00 0.05 0.95

attack 0.00 0.20 0.80

Table H.8: Transition probabilities for the change in visibility level portion
of the state.

step the aircraft will always advance a single discrete location with probabil-
ity 0.8 and not advance with probability 0.2. It is impossible for the distance
to get larger or to decrease by more than 1 discrete location. The change in
distance is independent of the action chosen (assuming an absorbing state
is not entered), the visibility level of the base and the type of aircraft.

The visibility level change depends upon the type of action chosen. There
are b visibility levels and the visibility level can only change by at most one
discrete unit per step. Letting s; be the current visibility level and s}, be
the next visibility level, Table H.8 shows the probability of the visibility level
for each action. If the maximum/minimum visibility level is achieved, then
the probability that the visibility level increases/decreases is zero. making
a change in the visibility level of the base that much more probable. For
the attack action, these probabilities are conditioned upon the aircraft not
being destroyed and, for all of them, it is conditioned on the aircraft not
destroying the base. Note that the aircraft type portion of the state never
changes.

This defines the normal state transitions in terms of how the aircraft’s

distance changes and how the visibility level of the base changes. However,

387

these transitions are all predicated on not arriving in one of the absorbing

states.

Absorbing States For the attack action, the probability that the aircraft
is destroyed is a function of how far away the aircraft is, independent of the
base’s visibility level or the aircraft’s type. The probability that the aircraft

is destroyed when the attack action is taken is given by

(D — sd)2
D2 ’

where D is the number of discrete distances used in the model and s¢ is the
distance of the aircraft in terms of the number of discrete locations it is away
from the base. The range on s? is the interval [0, D — 1]. If successful, the
resulting state is either the foe-destroyed or friend-destroyed absorbing
state depending on the aircraft type. If unsuccessful, then the state changes
according to the previously discussed, though they are conditioned on the
attack action failing, so their probabilities must be scaled by the probability
that the aircraft was not destroyed.

If a friend aircraft is at s? = 0, then on the next transition, with
probability 1 the resulting state is the base-safe absorbing state. If a
foe aircraft is at s? = 0, then on the next transition, the state will be in
the base-destroyed absorbing state with a probability proportional to the

visibility level of the base given by
0.1xs"+0.25 ,

where sV is the current visibility level of the base. This make the probability

range for destroying the aircraft [0.25,0.65 |. If a foe aircraft fails to destroy

388

the base, then the state becomes the base-safe absorbing state. Note this
does not pertain to the attack action, since at s¢ = 0, with probability 1

the plane is destroyed.

Observations The observations consist of two independent components:
the aircraft type and the aircraft distance. In addition to these 2D possi-
ble observations, there are 2 additional observations: nothing which results
from the no-op action with probability 1 and absorb which is the observa-
tion made in the four absorbing states with probability 1. We also assume
that the attack action, if unsuccessful, returns the same information as
the active sensing action, though the probabilities are then conditioned
upon the attack failing and so must be multiplied by the probability of an
unsuccessful attack.

For simplicity, we assume that the distance the sensors report is never
more than 1 discrete location away from the true distance. An active
sensing action will detect the true distance with probability 0.9 whereas a
passive sensing action only detects the true distance with a 0.8 probability.
The remaining probability mass for both actions are equally distributed
among detecting the distance as being one location too close and one location
too far. Since there are maximum and minimum distances, the boundary
conditions are handled by adding the impossible distance’s probability to
the probability of detecting the true distance.

The sensors’ detection of the plane type is independent of the distances
reported by the sensors. An active sensing (or attack) action will detect

the correct type with probability 0.8 and a passive sensing succeeds with

389

State H Reward ‘
base-safe 0
base-destroyed -100
foe-destroyed +20
friend-destroyed -30

Table H.9: Immediate rewards for entering the different absorbing states for
the aircraft identification domain.

probability 0.6.

Immediate Rewards The only rewards that are defined are for transi-
tions into one of the 4 absorbing states, corresponding to the final outcome.

Table H.9 shows the immediate rewards for this domain.

390

H.5 Robot Navigation

The robot navigation problems concern themselves with a simplified robot
with fairly crude sensors, navigating in an environment that is fairly struc-
tured as in an office environment. Although any reward structure can be
incorporated into the POMDP, we use the simple idea of there being a single
location the robot is trying to navigate to, which we refer to as the goal or
goal state.

The crude sensors of the robot force it to have a simplified view of the
world and in our case the robot only has the capability to make a simple
observation directly in front of it and on either side of it. These three simple
observations individually consist of either detecting a wall, a door, free space
(open) or some undetermined sensor status. Thus, the full observation set for
the robot consists of the four possible observations in the three directions,
making a total of 64 possible observations. The observations the robot
gets from these sensors are subject to noise and can result in the wrong
observation being made with some probability.

The robot has a few fairly abstract actions which consist of moving for-
ward, turning either left or right, doing nothing (no-op) and declaring that
it has reached the goal state. Because of hardware limitations and other
external conditions, the movements of the robot are subject to noise and
are not completely reliable. Furthermore, the environment is assumed to
consist of a finite number of discrete locations and a forward movement, if
it succeeds, results in the robot moving one discrete location in the direc-

tion it is currently facing. The PoMDP state of the robot consists of two

391

components: its physical location in the discreteized world, and its orienta-
tion. We assume that the orientations themselves are discretized into four
possible values, roughly corresponding to the four main compass directions.
The actual number of states depends upon the actual physical layout of the
environment. There is the addition of a zero-cost absorbing state which is
entered when the robot issues the declare-goal action.

The immediate rewards for this POMDP are zero for all state-action pairs
except for the pair consisting of declaring the goal when the robot is in
the goal state. For this the immediate reward it receives is 1. If the robot
declares itself to be in the goal when it is not, a penalty in the form of a —1
reward is received.

The POMDP models for a robot navigation problem are easy to specify
compactly, despite the potential for a fairly large state space. The reason
is that for the most part, the observation and transition probabilities are
independent of the actual physical layout of the navigation domain. The only
dependency on the transitions and observations is the local configuration
immediately surrounding the robot’s current location. Therefore, given the
layout of the physical arrangement of the discretized environment and local
transition and observation probabilities and semantics, the full transition
and observation function of the pOMDP is completely determined. This

should become clearer below.
Transition Probabilities

To define the semantics of a robot’s movement we will define some primitive

actions, which should not be confused with the actions the robot executes,

392

| Action | Outcome (probabilities) |
move-forward | N (0.11), F (0.88), r-r (0.01)
turn-left N (0.05), L (0.9), L-L (0.05)
turn-right N (0.05), r (0.9), r-R (0.05)
10-0p N (1.0)
declare-goal | A (1.0)

Table H.10: Action probabilities for robot actions in terms of primitive
actions.

i.e. those in the poMDP model. The primitive actions are:

e N - no robot movement,

F - robot movement forward one discrete location,
e L - a change in robot orientation 90 degrees leftward and

e R - a change in robot orientation 90 degrees to the right.

A - the robot, conceptually, goes into the absorbing state.

With these primitive actions we can specify the noise model for a given
robot action by given a sequence of primitive actions and a probability
that that sequence results. For example, consider Table H.10 where we see
the move-forward action specified as having three possible outcomes: with
probability 0.11 the robot will not change its state (location and orientation)
at all; with probability 0.88 the move-forward action succeeds in moving
the robot forward one location; and finally, with probability 0.1 the robot
actually moves one location too far, which corresponds to two primitive F
actions. The remaining actions are interpreted similarly.

The only complication that arises is that a particular location’s configu-

ration could render some of the possible outcomes impossible. The semantics

393

we define is that the sequence of primitive actions proceeds are far as possi-
ble until an infeasible primitive action is encountered. The probability mass
of the sequence of primitive actions is then added to the transition proba-
bility between the starting state and the final resulting state. For example,
using the probabilities from Table H.10, suppose the robot was in a location
where it could move forward one location, but a wall blocked it from moving
forward two locations. The probability that the robot moves forward one
location would be 0.89 which corresponds to the sum of two of the primi-
tive action sequences, since the F-F sequence can only progress as far as one

forward movement.
Observation Probabilities

There are only four basic things the robot can see: a wall, a door, open space
or undetermined. We can completely specify the observational probabilities
with a small table of conditional probabilities and some simple semantics for
their application.

We consider every discrete location in the environment to either being
part of hallway or part of a room. Between two adjacent locations of the
same type, the space is open, navigable and the robot would, without noise,
observe an open space in that direction. When two different types of loca-
tions are adjacent, we assume that it is navigable, but that the robot must
pass through a door and so the observation received by the robot, again
without noise, would be a door in that direction.

With these semantics, a small table of condition probabilities can com-

pletely specify the observational probabilities for the POoMDP model. As an

394

Actual Observed

Za Zo P(z | za)
wall wall 0.90
wall open 0.05
wall doorway 0.05
wall undetermined 0.00
open wall 0.03
open open 0.90
open doorway 0.07
open undetermined 0.00
doorway wall 0.15
doorway open 0.15
doorway doorway 0.70
doorway undetermined 0.00
undetermined undetermined 1.00

Table H.11: Conditional observation probabilities used to construct the ob-
servation probabilities.

example, Table H.11 gives the conditional probabilities for each observation
based upon the true configuration and what its sensors are liable to report.

Thus, the full probability for a given observation in a given state can be
computed by examining the locational layout to see what the true observa-
tions would be for that state, then computing the conditional probabilities
once for the three directions its sensors report it, and finally multiplying
these all together. Note that this assumes that the observations are all

independent, which is not necessarily a valid assumption for a real robot.
Specific Domains

All of the example POMDPs constructed used all the previous rules for build-
ing the POMDP model. The only variables are the layout of the discretized

locations, the initial state and the goal state. These are problem specific

395

and described in Section 6.7.3.

Appendix 1

Extra Data Tables

This appendix contains extra tables for the empirical studies done through
this thesis. They are included here for completeness, and to keep the main

body of text uncluttered.

I.1 Exact Algorithms

Section 4.9.1 showed most of the data in the form of a line graph, here
we present the actual numbers and have done a simple two-sided T-test to
gauge the significance of the differences. Tables 1.1 through 1.3 show the
total number of LPs for constructing the 'Y sets and Tables 1.4 through 1.6

show the total number of constraints.

396

397

‘Obs. H IpRr‘ IpNes TwoPass‘ Witness‘
3 150.800 117.160 525.520 | 564.840
4 298.800] | 1176.440 1255
5 733.800 2740 | 2899.400
6 [1282.520| | 4797.800 | 5053.440
7 2880.493| | 10896.137 | 11368.137
8 3820.560] | 13963.800 | 14548.640
9 5585.680] | 21989.560 | 22524.760
10 8775.960] | [8674.360] | 29999.680 | 30482.960
11 13977.360] | [13565.480] | 52762.800 | 38906.960
12 20639.200] | [18584.040] | 77682.400 | 46657.440
13 25558.920] | [22982.640] | 98905.280 | 50200.840
14 [32469.880] | [26716.560] | 1.513e+05 | 52681.600
15 44727.080 | [31763.800] | 2.002e4-05 | 50458.840

Table I.1: Total LPs for constructing all I'? sets for the random
problems with |S§| = 7. T-test with p = 0.95.

POMDP

States. H IpRr‘ IpNes TwoPass‘ Witness‘
3 537.160 | [508.120] | 1038.680 1100
4 [1014.760] | 2696.240 | 2829.280
5 1123.560] | [1350.040] | 4065.120 | 4265.440
6 1508.840 4613 | 4848.600
7 2_880.493? 10896.137 | 11368.137
8 3965.840 (3540 | 16047.080 | 16088.520
9 4730.720] | 20933.840 | 21764.960
10 5233.880] | 24049.320 | 24175.160
11 7156.400] | 36143.920 | 30195.200
12 10102.960] | [8761.760] | 56960.440 | 32591.280
13 10987.560] | [9905.840] | 60794.320 | 36203.160
14 114982.440| | |13116.880] | 82408.280 | 32967.600
15 16849.280 | [14395.840] | 1.056e+05 | 39311.640

398

Table 1.2: Total LPs for constructing all I'? sets for the random poMmDP

problems with |Z| = 7. T-test with p = 0.95.

399

‘ States/Obs. H IpRr ‘ IpNes TwoPass ‘ Witness
3 75.391 63.913 178.304 194.870
4 [195.565 566.913 611.522
5 580.783 540.783 1726 | 1831.348
6 [1041.435] | 3460.087 | 3645.435
7 5880.493] | 10896.137 | 11368.137
8 [6957.570] | 20132.261 | 29929.391
9 17539.261 15900 | 80523.304 | 43977.261
10 35760.391 | [22676.217] | 1.833¢4-05 | 39589.043
11 48863.652 | [24591.304] | 3.454e405 | 33812.348
12 40611.565 | [22932.609] | 4.442¢405 | 29497.696
13 42541 | [24036.304] | 4.267e+05
14 34272.304 | |18397.130] | 4.820e+05
15 32184.696 | [16241.087] | 4.114e405 | [17003.174

Table 1.3: Total Lps for constructing all I'? sets for the random pomDP
problems with |S| = |Z|. T-test with p = 0.95.

‘ Obs. H IpRr ‘ IpNes TwoPass ‘ Witness ‘
3 974.840] | 1758.880 | 5481.840 | 13025.280
4 [2975.520] | 7217.680 | 16206.160 | 53991.840
5 10570.640] | 29034.960 | 46633.680 | 2.255¢4-05
6 20453.400| | 62946.840 | 91369.920 | 5.175e+05
7 70838.438| | 2.769¢+05 | 2.646e+05 | 2.395e+06
8 1.094e+05| | 4.373e405 | 3.527e4-05 | 3.461e406
9 2.270e405| | 9.157e4+05 | 6.494e+05 | 8.684e+06
10 4.054e+05| | 1.538¢+06 | 9.045¢+05 | 1.199¢407
11 1.090e+06 | | 3.889e+06 1.937e+07
12 2.048¢+06 | | 7.073e+06 2.874e+07
13 3.316e4-06 1.0e+07 3.326e4-07
14 4.779e+06 | | 1.190e407 3.619¢-+07
15 7.523e+06| | 1.507e+07 | [9.651e+06] | 3.845e+07

400

Table 1.4: Total constraints for constructing all I'? sets for the random
POMDP problems with |S| = 7. T-test with p = 0.95.

States. H IpRr ‘ IpNes TwoPass ‘ Witness
3 3812.280] | 7619.280 | 18035.360 | 30382.160
4 11495.120] | 33590.240 | 58241.040 | 1.793¢+05
5 19550.640] | 57306.240 | 84982.800 | 3.702¢+05
6 23230.640| | 68220.240 | 94734.880 | 4.509e+05
7 70838.438| | 2.769¢+05 | 2.646e+05 | 2.395e+06
8 1.337e405| | 5.717e405 | 4.121e+05 | 5.263¢406
9 1.678¢4-05| | 6.841e+05 | 5.460e+05 | 6.626e+06
10 2.0960+05 | | 9.145¢4-05 | 6.364e+05 | 8.722¢+06
11 4.445e+05 | | 2.107e+06 1.4e4+07
12 9.587e+05 | 3.138e+06 1.690e+07
13 8.671e+05| | 3.879¢406 1.951e+07
14 1.411e+06] | 6.367e+06 2.030e+07
15 1.914e+06 | | 6.514e+06 | [3.332e+06] | 2.527e+07

401

Table 1.5: Total constraints for constructing all I'} sets for the random
POMDP problems with |Z| = 7. T-test with p = 0.95.

402

‘ States/Obs. H IpRr ‘ IpNes ‘ TwoPass ‘ Witness
3 368.478 474.522 1617.565 2090
4 [1369.087 2408.783 6688.609 | 12121.304
5 5345.087 12772.087 28049.826 | 81469.826
6 13605.913] | 42373.261 65884.609 | 2.778e+05
7 70838.438] | 2.769e+05 2.646e405 | 2.395e+06
8 3.573e+05] | 1.443e+06 8.391e405 | 1.326e+07
9 1.615e4-06| | 6.742e4+06 2.817e406 | 2.983e+07
10 5.602e-+06] | 1.264e4-07 3.232¢-+07
11 1.042e+07] | 1.679e+07 1.518e+4-07 | 3.385e+07
12 1.056e4-07] | 1.553e+07 | 2.077e+407 3.0e4+07
13 1.051e4+07] | 1.621e+07 | 2.115e+07 | 2.993e407
14 1.147e4+07] | 1.481e+07 | 2.519e+07 | 2.605e4+07
15 1.026e+07] | 1.304e+07 | 2.413e+07 | 2.212e407

Table 1.6: Total constraints for constructing all I'} sets for the random

POMDP problems with |S| = |Z|. T-test with p = 0.95.

Table 1.7:

I.1.1

‘ Obs. H IpRr ‘ IpNes ‘ TwoPass ‘ Witness ‘
3 1.126] | [0.983 0.992] 1.718
4 [2.622]| [2516]| [2.123] 4.354
5 [6.130] | [6.620]| [%847) 12.819
6 [11.220] | [12.772] [0.042| | 25.860
7 28.087 | 38.388 | [22.463] | 100.498
8 55.178 | [30.261] | 135.446
9 104.318 | [52.009] | 342.910
10 169.262 | [77.995] | 457.261
11 [264.084] | [371.350] | [182.213] | 722.968
12 596.626 | [237.799] | 1075.503
13 542.768 | 840.177 | [319.090] | 1241.831
14 987.782 | [488.382] | 1351.313
15 [1077.523] | 1222.523 | [826.304] | 1455.357

403

Total execution time for constructing all '), sets for the random
POMDP problems with |S| = 7. T-test with p = 0.95.

Total Running Time

Although we presented the running time for simply building the I'? sets,

Tables 1.7 through 1.9 show the total mean running time for constructing

I',, required by each of the algorithms on this data set. This include the

additional time the PRUNE routine using to merge the set. Although this

time is predominantly the same for the algorithms, using the PRUNE routine

to merge the I'¢ into I',, means that the total number of constraints is

sensitive to the order in which the vectors are processed.

States. H IpRr ‘ IpNes ‘ TwoPass ‘ Witness ‘
3 3.036] | [2.902 1.316] 2.488
4 6.618]| [6.972]| [3.615] 8.783
5 19.804] | [10.790] 6.108) 17.053
6 [1r201]| [12897]| [7.430]| 21.602
7 [2s.087| | [38.338] | [22.463] | 100.498
8 77.846 | [42.457|| 231.338
9 98.801 | [58.880] | 308.017
10 140.467 | [82.312] | 422.917
11 [194.620] | [331.244] | [176.911]| 720.640
12 486.314 | |339.195] | 954.094
13 407.308 | 584.145 | [388.002] | 1124.459
14 934.044 | 1623.117] | 1254.969
15 878.698] | 1183.329 | |843.705] | 1602.123

Table 1.8:

404

Total execution time for constructing all '), sets for the random
POMDP problems with |Z| = 7. T-test with p = 0.95.

‘ States/Obs. H IpRr ‘ IpNes ‘ TwoPass ‘ Witness ‘
3 0.474 0.409 0.337 0.490
4 1.343 1.227 [0.856 1.497
5 3.758 3.768 5.613] 5.442
6 7.672 8.496 5.570] 14.013
7 28.087 38388 | [22.463 100.498
8 164.842 | [79.480] 548.893
9 725.270 | [359.523] | 1316.605
10 1201.559 | [920.050] | 1573.244
11 1714.217] | 1755.611 | [1562.737] | 1803.747
12 [1643.082] | [1665.157] | [1593.402
13 1758.537] | 1820.684 | [1663.758] | 1803.529
14 1835.887 | 1821.383 | 1814.387 | [1803.511 |
15 11684.703] | [1674.622] | [1659.929] | [1673.424

405

Table 1.9: Total execution time for constructing all I',, sets for the random
POMDP problems with |S| = |Z|. T-test with p = 0.95.

406

I.2 Heuristic Algorithms

Section 6.7.5 discussed the results obtained by varying the entropy thresh-
olds in the dual mode controllers. There the full table of results for the
DM-MLS heuristic was presented. Here, Tables 1.10 through 1.12 show the

results for the other dual mode controllers used in the emprical results.

Threshold

Domain 0.1 | 0.2 | 0.3 | 0.4 | 0.5 | 0.6 0.7 0.8 0.9
4x3 0.971 1.665 | |1.731]| [1.760] 1.739 1.760 1.732 1.726 1.754
4x4 0 0 0 0.104 3.714 3.709
CHEESE [3a17]| [3.424]| [3.428] 3.07] | [3.436] | [3.440] [3.440)
PAINT 1.416 1.756 | [2.011] 0.913 -8.515
SHUTTLE 32.658 32.725
TIGER 15.897 | [19.353] | [19.745] | -73.340 | -74.279 | -74.161
NETWORK || -594.924 | -595.161 | -436.487 | -314.882 | -225.196 | -47.685 18.387
NONLIN [6.694] | [6.678] | [6.682] 6.655 6.685 6.682
SACI -80.657 | -52.901 | -48.926 | NG
HALLWAY 0.470 0.527 0.593 0.605 0.823 10.815] 10.812] 0.804 0.804
HALL.-2 0.013 0.014 0.012 0.024 0.153 | [0.206] 10.213] 0.215
cIr 0.028 0.348 0.306 0.197 0.687 0.796 0.805 0.806
MIT 2465 | -0.197 | -0.020 0.270 0.816 0.851 0.854
SUNY. -42.653 | -41.498 | -8.017 -1.377 -0.112 0.677 0.751 0.766
PENT. 4765 | -2.646 | -0.365 0.115 0.693 0.780 0.785 0.793
FOURTH 3138 | -1.376 | -0.419 -0.203 0.220 0.558 0.573 0.585 0.588
IFF 3.677 6.178 5.932 7.677 8.238 8.194 8.347 8.300
BB 0.468 0.558 0.572 0.623 0.637 0.628
MACHINE || -123.617 | -33.045 1.667 17.018 20.458 49.620 56.875
ALOHAL0 90.217 | 92489 | 97.725 | 102932 | 106.940 | 112.516 116.099 119.006
ALOHA30 || 679.141 | 684.598 | 689.384 | 694.387 | 702.627 | 728.664 770.127 833.304 | EEEER
cIT-U 27744 | -27.275 | -27.222 | -24.151 -7.825 -0.827 -0.760 -0.311
MIT-U -31.144 | -30.988 | -30.383 | -29.963 | -14.465 -2.553 -0.631 -0.337 0.531
SUNY .U -20.806 | -19.940 | -15.771 | -15.172 | -10.252 -0.225 0.180 [0.492] 0.490
PENT.-U -28.153 | -27.896 | -27.448 | -24.072 -4.804 -0.703 -0.656 -0.238 0.692
FOURTH-U || -26.836 | -25.355 | -24.234 -23.703 -12.214 -0.136 0.054 0.456

Table 1.10: Threshold values and the ADM-MLS heuristic. T-test with p = 0.995.

L0¥

Threshold

Domain 0.1 | 0.2 | 0.3 | 0.4 | 0.5 | 0.6 | 0.7 | 0.8 | 0.9
4x3 1.387 1.431 1.503 1514 | [1.774] | [1.812] [1.796] [1.790] 1.790
4x4 3.491 3.485 3.492 3.491 3.494 3.491 [3.651] [3.659] 3.708
CHEESE 3.213 3.207 | [3460] | [3465] | [3466] | [3461]| [3.462]| [3.465] [3.460
PAINT 1.643 2.128 2.778 2.788 | [3.127 2.299
SHUTTLE
TIGER 16.192 | [19.470] | [19.258] | [19.651] | [19.197]| [19.292] | [19.221]| [18.494] 19.690
NETWORK || -595.332 | -595.064 | -595.218 | -595.097 | -595.177 | -435.335 | -410.796 | -235.787 | |187.911
NONLIN [6.669] | [6.688] | [6.680]
SACT -81.677 | -81.525 | -81.781 | -80.996 | -80.693 | -80.639 | -77.985 | -65.096 | [-56.146
HALLWAY 0.258 0.489 0.528 | [0.598 0.466 0.355 0.348 0.344 0.356
HALL.-2 0.014 0.080 0.164 | [0.193] 0.171 0.142 0.130 0.124 0.122
crr -58.072 | -0.175 0.759 0.826 | R | [EES 0.834 0.833 0.832
MIT -0.172 | [0.802] | Jo.815] | [0.809 0.810 0.810 0.808 0.814 0.811
SUNY. -9.166 0.482 0.743 0.758
PENT. -7.051 0.117 0.717 0.804 0.821
FOURTH -9.686 0.327 0.584 0.590
IFF -3.101 | -2.974 | -2.073 | -1.313 2.323 4.552 4.419 4.532 5.004
BB {0.350] | [0.322] 0.101 il 0.099 | 0.099 |
MACHINE || -408.124 | -286.247 | -124.016 | -41.201 5.903 | 21.258 33.379 52.097
ALOHAL0 92.184 | 97.971 | 104.935 | 112.146 | 119.541 | 126.803
ALOHA30 686.231 | 687.099 | 696.308 | 711.341 | 754.577 | 839.081
CIT-U -26.730 | -15.061 | -6.567 | -0.233 | -0.160 0.063 -0.747 0.358 [0.370]
MIT-U 22.904 | -13.267 | -6.576 | -5.842 0.345 0.408 0.556 [0.554
SUNY.-U -26.827 | -19.301 | -14.816 | -11.970 | -4.979 | 0.090 0.305 0.328 [0.330)
PENT .U 27.536 | -26.804 | -15.377 | -1.797 | -0.424 | -0.766 -1.395 (0530
FOURTH-U || -36.943 | -17.536 | -10.910 | -5.625 | -3.784 | -0.599 -0.966 0.338 [0.347]

Table I.11: Threshold values and the DM-QMDP heuristic. T-test with p = 0.995.

80%

Threshold

Domain 0.1 | 0.2 | 0.3 | 0.4 | 0.5 | 0.6 0.7 0.8 0.9
4x3 0.947 1.680 1.718 1.763 1.807 1.812 [1.879
x4 0 0 0| 022
CHEESE [3423] | [3428]| [3.423]| [3422]| [3.463]| [3.466]| [3.467]| [3.459] | [3.465]
PAINT 1.416 1.755 0.873
SHUTTLE 32.584
TIGER 16.250 | [19.253] | [19.636] | [19.547] | [18.858] | [18.893] | [18.600] | [18.919] 19.351
NETWORK || -595.253 | -595.001 | -436.661 | -313.824 | -224.401 | -48.206 | 19.763 187.746
NONLIN 16.665] | [6.658] | [6.667]| [6.672 I 6.686 | 6.673
SACI -81.432 | -72.988 | -68.831 | |i%Ed 7.548 7.651 7.583
HALLWAY 0.465 | 0.521 0.540 | 0.515 | 0.382 | 0.357 0.351
HALL.-2 0.016 0.014 0.013 0.026 0.179 0.140 0.132
cIT 0.049 0.367 0.328 0.234 0.701 0.821 0.827 | [EEB 0.832
MIT -2.027 0.019 0.043 0.304 0.763 0.802 0.808 | [XXE 0.810
SUNY. 42,626 | -42.075 | -7.967 | -1.441 | -0.251 0.627 0.686
PENT. -5.056 | -2.345 | -0.745 | -0.205 0.647 0.803 0.811 0.821
FOURTH -8.650 | -5.874 | -1.176 | -0.217 0.331 0.574 0.591 0.592
IFF 3.067 4.415 | |5.684) | [5.435] | [5.654] 4.873 4.369
BB 0.240 | 0227 | 0127 | 0117 | 0.119
MACHINE || -123.453 | -33.170 1.882 | 17.058 | 20.265 | 51.112
ALOHAL0 89.948 | 92.684 | 96.829 | 102.581 | 106.651 | 112.249 | 117.271 | 118.960
ALOHA30 || 680.278 | 684.565 | 687.499 | 695.593 | 704.424 | 731.142 | 770.233 | 840.747 | EELARRN
CIT-U 27.746 | -27.146 | -26.907 | -24.644 | -7.916 | -0.894 | -0.816 -0.563 0.369
MIT-U -31.223 | -30.725 | -30.362 | -30.286 | -14.900 | -4.204 | -0.620 -0.402 0.553
SUNY.-U -20.595 | -19.940 | -15.764 | -14.995 | -11.849 | -0.202 0.053 0.320 0.326
PENT.-U -28.260 | -27.932 | -27.434 | -24.013 | -5.002 | -0.679 0.656 -0.380 0.570
FOURTH-U || -26.839 | -25.371 | -23.910 | -23.693 | -12.434 | -0.183 | -0.004 0.341
Table 1.12: Threshold values and the ADM-QMDP heuristic. T-test with p = 0.995.

60%

410

We presented the results for various entropy thresholds for the dual mode
controllers, DM-MLS, ADM-MLS, DM-Q-MDP and ADM-Q-MDP in Section 6.7.5
and used a black background to indicate settings for which the entropy
never exceeded that level. Tables I.13 through I.16 show the percentage of
entropy actions taken for the dual mode controllers; i.e., the number of steps

for which the information state entropy exceeded the threshold.

411

Threshold
Domain 01| 02] 03] 04| 05| 06] 07] 08| 09
4x3 34% | 31% | 22% | 21% | 15% 1% 1% 1% 1%
4x4 TT% | 77% | 67% | 53% | 53% | 53% | 38% | 38% | 20%
CHEESE 26% | 26% | 6% | 6% | 1% | 1% | 1% | 1% | 1%
PAINT 85% | 80% | 72% | 72% | 50% | 33% | 33% 0% 0%
SHUTTLE 0% | 0% | 0% | 0% | 0% | 0% | 0% | 0% | 0%
TIGER 81% | 73% | 73% | 73% | 73% | 73% | 50% | 50% | 50%
NETWORK 50% | 50% | 50% | 50% | 50% | 34% | 32% | 22% | 1%
NONLIN 2% 1 27% | 27% | 0% | 0% | 0% | 0% | 0% | 0%
SACI 82% | 77% | 5% | 66% | 64% | 64% | 25% 4% 4%
HALLWAY 93% | 81% | 6% | 31% | 21% | % | 3% | 1% | 1%
HALL.-2 100% | 88% | 62% | 23% | 14% 8% 2% 1% 1%
CIT 9B% | 9% | 1% | 0% | 0% | 0% | 0% | 0% | 0%
MIT 20% | 2% | 0% | 0% | 0% | 0% | 0% | 0% | 0%
SUNY. 50% | 6% | 0% | 0% | 0% | 0% | 0% | 0% | 0%
PENT. 3% % | 2% | 1% | 0% | 0% | 0% | 0% | 0%
FOURTH 2% | 3% | % | 0% | 0% | 0% | 0% | 0% | 0%
IFF 1% 1 28% | 9% | 1% | 0% | 0% | 0% | 0% | 0%
BB 100% | 95% | 0% | 0% | 0% | 0% | 0% | 0% | 0%
MACHINE 33% | 26% | 14% | 9% | 6% | 4% | 4% | 1% | 0%
ALOHA10 53% | 40% | 26% | 11% | 5% | 0% | 0% | 0% | 0%
ALOHA30 69% | 54% | 40% | 34% | 25% | 4% | 0% | 0% | 0%
CIT-U 95% | 81% | 58% | 19% | 16% | 13% | 14% 4% 3%
MIT-U 93% | 82% | 63% | 58% | 11% | 8% | 5% | 3% | 3%
SUNY.-U 94% | 83% | 72% | 61% | 43% | 6% | 4% | 2% | 2%
PENT.-U 96% | 94% | 7% | 32% | 28% | 30% | 34% 6% 4%
FOURTH-U 95% | 66% | 51% | 36% | 28% | 10% | 10% | 3% | 2%

Table 1.13: Percentage of entropy reduction actions taken for the DM-MLS

heuristic.

412

Threshold
Domain 01| 02| 03] 04] 05| 06| 0.7]08]0.9
4x3 45% 28% 24% | 21% 1% 1% 0% | 0% | 0%
4x4 50% | 50% | 50% | 50% | 0% | 0% | 0% | 0% | 0%
CHEESE 10% | 10% | 10% | 10% | 5% | 1% | 1% | 1% | 1%
PAINT 85% | 80% | T2% | 2% | 50% | 33% | 0% | 0% | 0%
SHUTTLE 0% 0% 0% | 0% | 0% | 0% | 0% | 0% | 0%
TIGER 81% | 73% | 73% | 50% | 50% | 50% | 0% | 0% | 0%
NETWORK 50% | 50% | 34% | 26% | 21% | 14% | 11% | 1% | 1%
NONLIN 21% | 27% | 27% | 27% | 27% | 27% | 0% | 0% | 0%
SACI 56% | 11% 5% |1 0% | 0% | 0% | 0% | 0% | 0%
HALLWAY 81% | 78% | 1% | 68% | 11% | 5% | 2% | 2% | 0%
HALL.-2 100% | 100% | 100% | 98% | 29% | 12% 4% | 2% | 0%
CIT 15% | 10% 9% | 12% | 4% | 2% | 1% | 0% | 0%
MIT 3% | 21% | 20% | 15% | 5% | 1% | 1% | 0% | 0%
SUNY. 80% | T9% | 43% | 22% | 13% | 3% | 1% | 0% | 0%
PENT. 49% | 41% | 20% | 15% | 5% | 2% | 1% | 0% | 0%
FOURTH 15% | 11% % 6% | 4% | 1% | 1% | 0% | 0%
IFF 54% | 38% | 38% | 17% | 15% | 0% | 0% | 0% | 0%
BB 23% | 16% | 16% | 2% | 1% | 1% | 0% | 0% | 0%
MACHINE 14% 8% 6% | 5% | 5% | 2% | 0% | 0% | 0%
ALOHA10 61% | 52% | 41% | 25% | 18% | 12% | 8% | 5% | 1%
ALOHA30 70% 62% 47% | 40% | 36% | 30% | 21% | 4% | 0%
CIT-U 94% 94% 94% | 89% | T1% | 45% | 43% | 3% | 0%
MIT-U 99% 98% 98% | 98% | 69% | 44% | 38% | 3% | 0%
SUNY.-U 83% 82% 8% | 6% | 57% | 40% | 31% | 3% | 0%
PENT.-U 98% 98% 98% | 96% | T1% | 47% | 46% | 4% | 0%
FOURTH-U 94% | 92% | 90% | 89% | 62% | 45% | 41% | 0% | 0%

Table 1.14: Percentage of entropy reduction actions taken for the ADM-MLS

heuristic.

413

Threshold
Domain 01| 02] 03] 04| 05| 06] 07] 08| 09
4x3 34% | 31% | 22% | 21% | 16% 1% 1% 1% 1%
4x4 TT% | 77% | 67% | 53% | 53% | 53% | 38% | 38% | 20%
CHEESE 26% | 26% | 6% | 6% | 1% | 1% | 1% | 1% | 1%
PAINT 85% | 80% | 72% | 72% | 50% | 12% | 0% | 0% | 0%
SHUTTLE 0% | 0% | 0% | 0% | 0% | 0% | 0% | 0% | 0%
TIGER 81% | 73% | 3% | 73% | 73% | 3% | 37% | 37% | 37%
NETWORK 50% | 50% | 50% | 50% | 50% | 34% | 32% | 22% | 1%
NONLIN 2% 1 27% | 27% | 0% | 0% | 0% | 0% | 0% | 0%
SACI 82% | 80% | 76% | 66% | 63% | 62% | 53% | 26% | 16%
HALLWAY 93% | 81% | 5% | 18% | 10% | 3% | 2% | 1% | 1%
HALL.-2 100% | 80% | 52% | 11% | 7% | 5% | 2% | 1% | 1%
CIT 9% | 10% | 1% | 0% | 0% | 0% | 0% | 0% | 0%
MIT 20% | 2% | 0% | 0% | 0% | 0% | 0% | 0% | 0%
SUNY. 48% | 4% | 1% | 0% | 0% | 0% | 0% | 0% | 0%
PENT. 49% | 10% | 2% | 0% | 0% | 0% | 0% | 0% | 0%
FOURTH 4% | 2% | % | 0% | 0% | 0% | 0% | 0% | 0%
IFF 8% | 58% | 38% | 20% | 6% | 1% | 0% | 0% | 0%
BB 100% | 46% | 0% | 0% | 0% | 0% | 0% | 0% | 0%
MACHINE 33% | 26% | 14% | 9% | 6% | 4% | 4% | 2% | 0%
ALOHA10 53% | 40% | 26% | 12% | 6% | 0% | 0% | 0% | 0%
ALOHA30 69% | 54% | 40% | 34% | 25% | 4% | 0% | 0% | 0%
CIT-U 95% | 3% | 45% | 12% | 9% | T% | 10% | 2% | 2%
MIT-U 93% | 82% | 53% | 44% | T% | 6% | 4% | 2% | 2%
SUNY.-U 94% | 7% | 58% | 44% | 27% | 4% | 2% | 2% | 1%
PENT.-U 97% | 94% | TT% | 31% | 19% | 18% | 20% | 3% | 2%
FOURTH-U 94% | 64% | 47% | 32% | 24% | 10% | 10% | 3% | 1%

Table 1.15: Percentage of entropy reduction actions taken for the bM-QMDP

heuristic.

414

Threshold
Domain 01| 02| 03] 04] 05| 06| 0.7]08]0.9
4x3 45% 28% 24% | 21% 1% 1% 0% | 0% | 0%
4x4 50% | 50% | 50% | 49% | 0% | 0% | 0% | 0% | 0%
CHEESE 10% | 10% | 10% | 10% | 5% | 1% | 1% | 1% | 1%
PAINT 85% | 80% | 2% | 2% | 50% | 0% | 0% | 0% | 0%
SHUTTLE 0% 0% 0% | 0% | 0% | 0% | 0% | 0% | 0%
TIGER 81% | 3% | 3% | 37% | 37% | 37% | 0% | 0% | 0%
NETWORK 50% | 50% | 34% | 26% | 21% | 14% | 11% | 1% | 1%
NONLIN 21% | 27% | 27% | 27% | 27% | 27% | 0% | 0% | 0%
SACI 62% | 41% | 32% | 0% | 0% | 0% | 0% | 0% | 0%
HALLWAY 81% | 78% | T1% | 56% | 4% | 2% | 1% | 1% | 0%
HALL.-2 100% | 100% | 100% | 98% | 16% 5% 2% | 1% | 0%
CIT 15% | 10% 9% | 11% | 4% | 2% | 1% | 0% | 0%
MIT 34% | 1T% | 16% | 12% | 4% | 1% | 0% | 0% | 0%
SUNY. 80% | T9% | 42% | 22% | 14% | 3% | 2% | 0% | 0%
PENT. 50% | 39% | 24% | 18% | 6% | 2% | 1% | 0% | 0%
FOURTH 2% | 26% | 12% | % | 3% | 1% | 0% | 0% | 0%
IFF 47% | 34% | 29% | 17% | 10% | 0% | 0% | 0% | 0%
BB 15% 1% 1% 0% | 0% | 0% | 0% | 0% | 0%
MACHINE 14% 8% 6% | 5% | 5% | 1% | 0% | 0% | 0%
ALOHA10 61% | 52% | 41% | 25% | 18% | 12% | 8% | 5% | 1%
ALOHA30 70% 62% 47% | 40% | 36% | 30% | 22% | 4% | 0%
CIT-U 94% 94% 94% | 90% | 71% | 42% | 40% | 2% | 0%
MIT-U 99% 98% 98% | 97% | 65% | 43% | 31% | 2% | 0%
SUNY.-U 83% 82% T7% | 6% | 59% | 41% | 29% | 2% | 0%
PENT.-U 99% 98% 98% | 96% | 71% | 46% | 45% | 2% | 0%
FOURTH-U 94% | 92% | 89% | 89% | 62% | 45% | 40% | 0% | 0%

Table 1.16: Percentage of entropy reduction actions taken for the ADM-QMDP

heuristic.

Bibliography

[1]

M. Aoki. Optimization of Stochastic Systems. Academic Press, New
York, NY, 1967.

K. J. Astrom. Optimal control of Markov decision processes with
incomplete state estimation. Journal of Mathematical Analysis and

Applications, 10:174-205, 1965.

K. J. Astrom. Optimal control of Markov decision processes with
incomplete state estimation II. Journal of Mathematical Analysis and

Applications, 26:403-406, 1969.

K. J. Astrom. Theory and applications of adaptive control — A survey.
Automatica, 19:471-486, 1983.

Leemon Baird. Residual algorithms: Reinforcement learning with
function approximation. In Machine Learning: Proceedings of the
Twelfth International Conference, pages 30-37, San Francisco, CA,
1995. Morgan Kaufmann.

Andrew G. Barto, Richard S. Sutton, and Christopher J. C. H.

Watkins. Learning and sequential decision making. In M. Gabriel

415

416

and J.W. Moore, editors, Learning and Computational Neuroscience:
Foundations of Adaptive Networks, pages 539-602. MIT Press, Cam-
bridge, Massachusetts, 1990.

Richard Bellman. Dynamic Programmaing. Princeton University Press,

Princeton, New Jersey, 1957.

Dimitri P. Bertsekas. Distributed dynamic programming. IEEE Trans-

actions on Automatic Control, AC-27:610-616, 1982.

Dimitri P. Bertsekas. Dynamic Programming and Optimal Control,

Vols. 1 and 2. Athena Scientific., Belmont, Massachusetts, 1995.

Dimitri P. Bertsekas and R. G. Gallagher. Data Networks. Prentice

Hall., Englewood Cliffs, N.J., 1992.

Dimitri P. Bertsekas and John N. Tsitsiklis. Neuro-Dynamic Program-

ming. Athena Scientific., Belmont, Massachusetts, 1996.

David Blackwell. Discrete dynamic programming. Annals of Mathe-
matical Statistics, 33(2):719-726, June 1962.

David Blackwell. Discounted dynamic programming. Annals of Math-

ematical Statistics, 36:226-235, 1965.

Craig Boutilier, Richard Dearden, and Moises Goldszmidt. Exploiting
structure in policy construction. In Proceedings of the International

Joint Conference on Artificial Intelligence, Montreal, Canada, 1995.

Craig Boutilier and David Poole. Computing optimal policies for par-

tially observable decision processes using compact representations. In

417

Proceedings of the Thirteenth National Conference on Artificial Intel-

ligence, pages 1168-1175, Portland, Oregon, 1996.

[16] Ronen I. Brafman. A heuristic variable grid solution method for
POMDPs. In Proceedings of the Fourteenth National Conference on

Artificial Intelligence, pages 727-733, Providence, Rhode Island, 1997.

[17] William L. Briggs. A multigrid tutorial. Society for Industrial and

Applied Mathematics, Philadelphia, Pennsylvania, 1987.

[18] J. Buhmann, W. Burgard, Cremers A., D. Fox, T. Hofmann, F. Schei-
der, J. Strikos, and S. Thrun. The mobile robot RHINO. AI Magazine,

16(2):31-37, Summer 1995.

[19] Bruce Bukiet, Elliotte Rusty Harold, and Jose Luis Palacios. A Markov

chain approach to baseball. Operations Research, 45(1):14-23, 1997.

[20] Dima Burago, Michel de Rougemont, and Anatol Slissenko. On the
complexity of partially observed Markov decision processes. Theoret-

ical Computer Science, 157(2):161-183, 1996.

[21] Anthony Cassandra, Leslie Kaelbling, and James Kurien. Acting un-
der uncertainty: Discrete bayesian models for mobile-robot navigation.
In IEEE/RSJ International Conference on Intelligent Robots and Sys-

tems, 1996.

[22] Anthony R. Cassandra. Algorithms for partially observable Markov
decision processes. Technical Report CS-94-14, Brown University,

Providence, Rhode Island, 1994.

[23]

[25]

[26]

418

Anthony R. Cassandra, Leslie Pack Kaelbling, and Michael L.
Littman. Acting optimally in partially observable stochastic domains.
In Proceedings of the Twelfth National Conference on Artificial Intel-

ligence, pages 1023-1028, Seattle, Washington, 1994.

Anthony R. Cassandra, Michael L. Littman, and Nevin L. Zhang.
Incremental pruning: A simple, fast, exact method for partially ob-
servable Markov decision processes. In Proceedings of the Thirteenth

Annual Conference on Uncertainty in Artificial Intelligence (UAI-97),
Providence, Rhode Island, 1997.

David A. Castanon. Approximate dynamic programming for sensor
management. In Proceedings of the Conference on Decision and Con-

trol To appear, San Diego, CA, 1997.

Hsien-Te Cheng. Algorithms for Partially Observable Markov Deci-
ston Processes. PhD thesis, University of British Columbia, British
Columbia, Canada, 1988.

Hsien-Te Cheng. Personal communication, 1994.

Lonnie Chrisman. Reinforcement learning with perceptual aliasing:
The perceptual distinctions approach. In Proceedings of the Tenth Na-
tional Conference on Artificial Intelligence, pages 183-188, San Jose,
California, 1992. AAAT Press.

Gregg Collins and Louise Pryor. Achieving the functionality of fil-
ter conditions in a partial order planner. In Proceedings of the 10th

National Conference on Artificial Intelligence, pages 375-380, 1992.

[30]

[33]

[35]

419

Anne Condon, Joan Feigenbaum, Carsten Lund, and Peter Shor.
Probabilistic checkable debate systems and nonapproximability of
PSPACE-hard functions. Chicago Journal of Theoretical Computer

Science, (4), 1995.

Thomas H. Cormen, Charles E. Leiserson, and Ronald L. Rivest. In-
troduction to Algorithms. The MIT Press, Cambridge, Massachusetts,

1990.

Robert Harry Crites. Large-scale Dynamic Optimization Using Teams
of Reinforcement Learning Agents. PhD thesis, University of Mas-

sachusetts, September 1996.

Bruce D’Ambrosio and Robert Fung. Far sighted approaches to sensor
management experiments in reinforcement learning. Technical report,

Prevision, 1996.

Thomas Dean, Leslie Pack Kaelbling, Jak Kirman, and Ann Nicholson.
Planning with deadlines in stochastic domains. In Proceedings of the
Eleventh National Conference on Artificial Intelligence, Washington,

DC, 1993.

Thomas L. Dean, Robert Givan, and Sonia M. Leach. Model reduction
techniques for computing aproximately optimal solutions for Markov
decision processes. In Proceedings of the Thirteenth Annual Confer-

ence on Uncertainty in Artificial Intelligence (UAI-97), pages 124
131, Providence, Rhode Island, 1997.

[36]

[37]

[40]

[41]

420

M. DeGroot. Optimal Statistical Decisions. McGraw-Hill, New York,

N.Y., 1970.

Denise Draper, Steve Hanks, and Daniel Weld. Probabilistic plan-
ning with information gathering and contingent execution. Technical

Report 93-12-04, University of Washington, December 1993.

E. B. Dynkin. Controlled random sequences. Theory of Probability

and its Applications, X:1-14, 1965.

James N. Eagle. The optimal search for a moving target when the
search path is constrained. Operations Research, 32(5):1107-1115,

1984.

James E. Eckles. Optimum maintenance with incomplete information.

Operations Research, 16:1058-1067, 1968.

Hugh Ellis, Mingxiang Jiang, and Ross B. Corotis. Inspection, mainte-
nance, and repair with partial observability. Journal of Infrastructure

Systems, 1(2):92-99, 1995.

Adriane V. Gheorghe. Decision Processes in Dynamic Probabilistic

Systems. Kluwer Academic Publishers., Norwell, MA., 1990.
Robert Givan. Personal communication, 1996.

Judy Goldsmith, Chris Lusena, and Martin Mundhenk. The com-
plexity of deterministically observable finite-horizon Markov decision
processes. Technical Report 268-96, University of Kentucky, Lexing-

ton, Kentucky, December 1996.

[45]

[46]

[49]

[50]

[51]

[52]

421

Eric A. Hansen. An improved policy iteration algorithm for partially

observable MDPs. NIPS, 1997.

Milos Hauskrecht. Incremental methods for computing bounds in par-
tially observable Markov decision processes. In Proceedings of the
Fourteenth National Conference on Artificial Intelligence, pages 734—
739, Providence, Rhode Island, 1997.

John E. Hopcroft and Jeffrey D. Ullman. Introduction to Automata
Theory, Languages, and Computation. Addison-Wesley Publishing

Company, Reading, Massachusetts, 1979.

Howard and Matheson. Risk sensitive Markov decision processes.

Management Science, 18(7):356-370, 1972.

Ronald A. Howard. Dynamic Programming and Markov Processes.

The MIT Press, Cambridge, Massachusetts, 1960.

J. Hughes. Optimal internal audit timing. Accounting Review, L11:56—
58, 1977.

Tommi Jaakkola, Satinder P. Singh, and Michael I. Jordan. Monte-
carlo reinforcement learning in non-Markovian decision problems. In

Advances in Neural Information Processing Systems 7, 1995.

Leslie Pack Kaelbling, Michael L. Littman, and Anthony Cassandra.
Planning and acting in partially observable stochastic domains. Arti-

ficial Intelligence To appear, 1998.

422

[63] Leslie Pack Kaelbling, Michael L. Littman, and Andrew W. Moore.
Reinforcement learning: A survey. Journal of Artificial Intelligence

Research (JAIR), 4, 1996.

[64] J. S. Kakalik. Optimal policies for partially observable Markov sys-
tems. Technical Report TR-18, Massachusetts Institute of Technology,
Cambridge, MA., October 1965.

[655] R. E. Kalman. A new apporach to linear filtering and prediction

problems. Journal of Basic Engineering, pages 3545, March 1960.

[66] R. Kaplan. Optimal investigation strategies with imperfect informa-

tion. Journal of Accounting Research, 7:32-43, 1969.

[657] W. Karush and R. Dear. Optimal strategy for item presentation in

learning models. Management Science, 13:773-785, 1967.

[58] Sven Koenig. Optimal probabilistic and decision-theoretic planning
using Markovian decision theory. Technical Report UCB/CSD 92/685,
Berkeley, May 1992.

[59] Sven Koenig and Reid Simmons. Unsupervised learning of probabilis-
tic models for robot navigation. In Proceedings of the IEEE Interna-

tional Conference on Robotics and Automation, 1996.

[60] P. R. Kumar. A survey of some results in stochastic adaptive control.

SIAM Journal on Control and Optimization, 23:329-380, 1985.

423

[61] Nicholas Kushmeric, Steve Hanks, and Daniel Weld. An algorithm
for probabilistic planning. Technical Report 93-06-03, Department of

Computer Science, University of Washington, 1993.

[62] Nicholas Kushmerick, Steve Hanks, and Daniel S. Weld. An algo-
rithm for probabilistic planning. Artificial Intelligence, 76(1-2):239—

286, September 1995.

[63] Harold J. Kushner and A. J. Kleinman. Mathematical programming
and the control of Markov chains. International Journal of Control,

13(5):801-820, 1971.

[64] Daniel E. Lane. A partially observable model of decision making by

fishermen. Operations Research, 37:240, 1989.

[65] J.J. Leonard and Hugh Durrant-Whyte. Localization by tracking ge-
ometric beacons. IEFE Transactions on Robotics and Automation,

7(6), 1991.

[66] Harry R. Lewis and Christos H. Papadimitriou. Elements of the The-
ory of Computation. Prentice-Hall, Inc., Englewood Cliffs, New Jersey,
1981.

[67] Long-Ji Lin and Tom M. Mitchell. Memory approaches to reinforce-
ment learning in non-Markovian domains. Technical Report CMU-CS-
92-138, Carnegie Mellon University, Pittsburgh, Pennsylvania, May
1992.

424

[68] Michael Littman, Anthony Cassandra, and Leslie Kaelbling. Learning
policies for partially observable environments: Scaling up. In Machine
Learning: Proceedings of the Twelfth International Conference, pages

362-370, San Francisco, CA, 1995. Morgan Kaufmann.

[69] Michael L. Littman. Memoryless policies: Theoretical limitations and

practical results. In From Animals to Animats 3, Brighton, UK, 1994.

[70] Michael L. Littman. The witness algorithm for solving partially
observable Markov decision processes. Technical Report CS-94-40,

Brown University, Providence, Rhode Island, 1994.
[71] Michael L. Littman. Personal communication, 1996.

[72] Michael L. Littman. Algorithms for Sequential Decision Making. PhD
thesis, Department of Computer Science, Brown University, February

1996. Also Technical Report CS-96-09.

[73] Michael L. Littman. Probabilistic propositional planning: Representa-
tions and complexity. In Proceedings of the Fourteenth National Con-
ference on Artificial Intelligence, pages 748-754, Providence, Rhode
Island, 1997.

[74] Michael L. Littman, Anthony R. Cassandra, and Leslie Pack Kael-
bling. Efficient dynamic-programming updates in partially observable
Markov decision processes. Technical Report CS-95-19, Brown Uni-

versity, Providence, Rhode Island, 1995.

[75]

[76]

[80]

[81]

425

William S. Lovejoy. Computationally feasible bounds for partially
observed Markov decision processes. Operations Research, 39(1):162—

175, 1991.

William S. Lovejoy. A survey of algorithmic methods for partially
observed Markov decision processes. Annals of Operations Research,

28(1):47-65, 1991.

Marc Mangel and Colin W. Clark. Dynamic Modeling in Behavioral

Ecology. Princeton University Press, Princeton, New Jersey, 1988.

A. Manne. Linear programming and sequential decisions. Management

Science, 6:259-267, 1960.

T. M. Mansell. A method for planning given uncertain and incomplete
information. In Proceedings of the 9th Conference on Uncertainty in
Artificial Intelligence, pages 350-358. Morgan Kaufmann Publishers,
July 1993.

T. H. Mattheis. An algorithm for determining irrelevant constraints
and all verticies in systems of linear inequalities. Operations Research,

21:247-260, 1973.

T. H. Mattheis and David S. Rubin. A survey and comparison of
methods for finding all vertices of convex polyhedral sets. Mathematics

of Operations Research, 5(2):167-185, 1980.

[82]

[84]

[85]

[86]

426

David McAllester and David Rosenblitt. Systematic nonlinear plan-
ning. In Proceedings of the 9th National Conference on Artificial In-

telligence, 1991.

Andrew Kachites McCallum. Efficient exploration in reinforcement
learning with hidden state. Technical report, University of Rochester,

Rochester, New York, 1996.

Andrew Kachites McCallum. Reinforcement Learning with Selective
Perception and Hidden State. PhD thesis, University of Rochester,

1996.

R. Andrew McCallum. Overcoming incomplete perception with utile
distinction memory. In Proceedings of the Tenth International Con-
ference on Machine Learning, Amherst, Massachusetts, 1993. Morgan

Kaufmann.

R. Andrew McCallum. Instance-based utile distinctions for reinforce-
ment learning with hidden state. In Proceedings of the Twelfth Inter-
national Conference Machine Learning, pages 387-395, San Francisco,

CA, 1995. Morgan Kaufmann.

George E. Monahan. A survey of partially observable Markov deci-
sion processes: Theory, models, and algorithms. Management Science,

28(1):1-16, 1982.

Leora Morgenstern. Knowledge preconditions for actions and plans.
In Proceedings of the 10th International Joint Conference on Artificial

Intelligence, pages 867-874, 1987.

[89]

[90]

[92]

[93]

[94]

427

Sraban Mukherjee and Kiran Seth. A corrected and improved com-
putational scheme for partially observable Markov processes. INFOR,
29(3):206-212, 1991.

Martin Mundhenk, Judy Goldsmith, and Eric Allender. The complex-
ity of unobservable finite-horizon Markov decision processes. Technical

Report 269-96, University of Kentucky, Lexington, Kentucky, Decem-
ber 1996.

Martin Mundhenk, Judy Goldsmith, and Eric Allender. The complex-
ity of policy evaluation for finite-horizon partially-observable markov
decision processes. In Proceedings of the 25th Mathematical Founda-
tions of Computer Sciences, pages 129-138. Lecture Notes in Com-

puter Science #1295, Springer-Verlag, 1997.

Martin Mundhenk, Judy Goldsmith, Chris Lusena, and Eric Allen-
der. Encyclopaedia of complexity results for finite-horizon Markov
decision process problems. Technical Report TR 273-97, University of

Kentucky, Lexington, Kentucky, September 1997.

Remi Munos. A convergent reinforcement learning algorithm in the
continuous case: the finite-element reinforcement learning. In Proceed-
ings of the Thirteenth International Conference on Machine Learning,

1996.

lah Nourbakhsh, Rob Powers, and Stan Birchfield. Dervish: An

office-navigating robot. AI Magazine, pages 53-60, Summer 1995.

[95]

[96]

[98]

[99]

[100]

[101]

428

Christos H. Papadimitriou and John N. Tsitsiklis. The complexity
of Markov decision processes. Mathematics of Operations Research,

12(3):441-450, 1987.

Ronald Parr and Stuart Russell. Approximating optimal policies for
partially observable stochastic domains. In Proceedings of the Inter-
national Joint Conference on Artificial Intelligence, pages 1088-1094.

Morgan Kaufmann, 1995.

J. S. Penberthy and D. Weld. UCPOP: A sound, complete, partial
order planner for ADL. In Proceedings of the third international con-
ference on principles of knowledge representation and reasoning, pages

103-114, 1992.

Mark A. Peot and David E. Smith. Conditional nonlinear planning.
In Proceedings of the First International Conference on Artificial In-

telligence Planning Systems, pages 189-197, 1992.

W. Pierskalla and J. Voelker. A survey of maintenance models: The
control and surveillance of deteriorating systems. Naval Research Lo-

gistics Quarterly, 23:353-388, 1976.

Loren K. Platzman. Optimal infinite-horizon undiscounted control of
finite probabilistc systems. SIAM Journal of Control and Optimiza-
tion, 18:362-380, 1980.

Pollock. A simple model of search for a moving target. Operations

Research, 18:883-903, 1970.

[102]

[103]

[104]

[105]

[106]

[107]

[108]

[109]

429

Martin L. Puterman. Markov Decision Processes — Discrete Stochas-
tic Dynamic Programming. John Wiley & Sons, Inc., New York, New
York, 1994.

Martin L. Puterman and Moon Chirl Shin. Modified policy iteration
algorithms for discounted Markov decision problems. Management

Science, 24:1127-1137, 1978.

Mark B. Ring. Continual Learning in Reinforcement Environments.

PhD thesis, University of Texas, Austin, 1994.

Donald Rosenfeld. Markovian deterioration with uncertain informa-

tion. Operations Research, 24(1):141-155, 1976.

Sheldon M. Ross. Quality control under Markovian deterioration.

Management Science, 17(9):587596, 1971.

Ulrich Riide. Mathematical and computational techniques for multi-
level adaptive methods. Society for Industrial and Applied Mathemat-

ics, Philadelphia, Pennsylvania, 1993.

Katsushige Sawaki and Akira Ichikawa. Optimal control for partially
observable Markov decision processes over an infinite horizon. Journal

of the Operations Research Society of Japan, 21(1):1-14, March 1978.

Y. Sawaragi and T. Yoshikawa. Discrete time Markov decision pro-
cesses with incomplete state information. Annals of Mathematics and

Statistics, 41:78-86, 1970.

[110]

[111]

[112]

[113]

[114]

[115]

[116]

430

Jurgen Schmidhuber. Reinforcement learning in Markovian and non-
Markovian environments. In Advances in Neural Information Process-

ing Systems 3, pages 500-506, 1991.

A. Segall. Dynamic file assignment in a computer network. IEEE

Transactions on Automatic Control, AC-21:161-173, 1976.

Hagit Shatkay and Leslie Pack Kaelbling. Learning topological maps
with weak local odometric information. In Proceedings of the Fifteenth
International Joint Conference on Artificial Intelligence, Nagoya,

Japan, August 1997.

Reid Simmons and Sven Koenig. Probabilistic navigation in partially
observable environments. In Fourteenth International Joint Confer-
ence on Artificial Intelligence, pages 1080-1087, Montreal, Canada,
1995. Morgan Kaufmann.

Richard Smallwood. The analysis of economic teaching strategies for

a simple learning model. Journal of Math Psych, 8:285-301, 1971.

Richard Smallwood, Edward Sondik, and F. Offensend. Toward and
integrated methodology for the analysis of health-care systems. Oper-
ations Research, 19:1300-1322, 1971.

Richard D. Smallwood and Edward J. Sondik. The optimal control of
partially observable Markov processes over a finite horizon. Operations

Research, 21:1071-1088, 1973.

431

[117] Edward J. Sondik. The Optimal Control of Partially Observable
Markov Processes. PhD thesis, Stanford University, Stanford, Cali-

fornia, 1971.

[118] Edward J. Sondik. The optimal control of partially observable Markov
processes over the infinite horizon: Discounted costs. Operations Re-

search, 26(2):282-304, 1978.
[119] Edward J. Sondik. Personal communication, 1994.

[120] C. T. Striebel. Sufficient statistics in the optimal control of stochastic
systems. Journal of Mathematical Analysis and Applications, 12:576—

592, 1965.

[121] Richard S. Sutton. Learning to predict by the methods of temporal

differences. Machine Learning, 3:9-44, 1988.

[122] G. J. Tesauro. TD-Gammon, a self-teaching backgammon program,

achieves master-level play. Neural Computation, 6:215-219, 1994.

[123] Sylvie Thiebeaux, Marie-Odile Cordier, Olivier Jehl, and Jean-Paul
Krivine. Supply restoration in power distribution systems — a case
study in integrating model-based diagnosis and repair planning. In
Proceedings of the Twelfth Annual Conference on Uncertainty in Ar-

tificial Intelligence (UAI-96), pages 525-532, Portland, Oregon, 1996.

[124] J. van Leeuwen, editor. Algorithms and Complexity. Elsevier Science

Publishers, 1990.

[125]

[126]

[127]

[128]

[129]

[130]

[131]

[132]

432

Rich Washington. Uncertainty and real-time therapy planning: in-
cremental Markov-model approaches. AAAI Spring Symposium on

Artificial Intelligence in Medicine, 1996.

C. J. C. H. Watkins and P. Dayan. Q-learning. Machine Learning,
8(3):279-292, 1992.

Chelsea C. White, III. Cost equality and inequality results for a
partially observed stochastic optimization problem. IEEE Transac-
tions on Systems, Man, and Cybernetics, SMC-5(6):576-582, Novem-
ber 1975.

Chelsea C. White, III. Optimal diagnostic questionaires which allow

less than truthful responses. Information and Control, 32:61-74, 1976.

Chelsea C. White, III. Procedures for the solution of a finite-horizon
partially observed, semi-Markov optimization problem. Operations

Research, 24(2):348-358, 1976.

Chelsea C. White, III. Monotone control laws for noisy, countable-
state Markov chains. European Journal of Operations Research, 5:124—

132, 1980.

Chelsea C. White, III. Partially observed Markov decision processes:

A survey. Annals of Operations Research, 32, 1991.

Chelsea C. White, III and William T. Scherer. Solution procedures
for partially observed Markov decision processes. Operations Research,

37(5):791-797, 1989.

[133]

[134]

[135]

[136]

[137]

[138]

[139]

[140]

433

Chelsea C. White, III and William T. Scherer. Finite memory subop-
timal design for partially observed Markov decision processes. Opera-

tions Research, 42(3):439, 455.

Steven D. Whitehead and Dana H. Ballard. Learning to perceive and

act by trial and error. Machine Learning, 7(1):45-83, 1991.

Marco Wiering and Jurgen Schmidhuber. HQ-learning: discovering
Markovian subgoals for non-Markovian reinforcement learning. Tech-

nical Report IDSIA-95-96, IDSIA, Switzerland, October 1996.

David Wilkins, Karen Myers, John Lowrance, and Leonard Wesley.
Planning and reacting in uncertain and dynamic environments. J.

Expt. Theor. Artificial Intelligence, 7:121-152, 1995.

Wayne L. Winston. Introduction to Mathematical Programming: Ap-

plications and Algorithms. PWS-KENT, Boston, Massachusetts, 1991.

Nevin L. Zhang. Efficient planning in stochastic domains through
exploiting problem characteristics. Technical Report HKUST-CS95-
40, Department of Computer Science, Hong Kong University of Science

and Technology, August 1995.
Nevin L. Zhang. Personal communication, 1997.

Nevin L. Zhang and Wenju Liu. Planning in stochastic domains: Prob-
lem characteristics and approximation. Technical Report HKUST-
(CS96-31, Department of Computer Science, Hong Kong University of

Science and Technology, 1996.

434

[141] Nevin L. Zhang and Wenju Liu. Region-based approximations for
planning in stochastic domains. In Proceedings of the Thirteenth An-
nual Conference on Uncertainty in Artificial Intelligence (UAI-97),
pages 472-480, Providence, Rhode Island, 1997.

Notation

Symbols

A
At
a, a

AH
B

The set of actions or decision choices in a process.

The action chosen at time t.

A particular action in the set A

Expected action entropy. (Equation 6.7)

Space of information states, or space of probabilities distribu-
tions over S.

A finite set of information states, such that each leads to a
seperate linear segment in the parsimonious representation of
a value function.

The set of succesor information states of the state b under
action a.

An information or belief state, which is a probability distribu-
tion over §.

The belief transformation function, or the next belief state,
given the currentinformation state b, action @ and observation
zZ.

A decision rule mapping each state to an action when there
are n steps to go.

An optimal decision rule mapping each state to an action when
there are n steps to go.

A stationary policy employing the same decsion rule at every
time step.

435

=~ momm
2

~

QOO =

436

Entropy of a probability distribution. (Equation 6.5)
Normalized Entropy of a probability distribution (Equa-
tion 6.8)

Scaled version of the normalized entropy of a probability dis-
tribution. (Equation 6.9)

The Kronecker delta or indicator function. (Equation 2.15)
The set of all “neighbors” of a vector.

Index for iterations of dynamic programming.

Asymptotic big-oh notation.

The observation seen at time t.

The observation function mapping action-state pairs into dis-
tributions over Z.

The observation probability of seeing observation z, when the
action a resulted in a transition to state s.

A matrix of probabilities capturing the state transition and ob-
seravtion probabilities for action @ and observation z. (Equa-
tion 3.3)

The probability of event X.

The real numbers.

The immediate reward function.

The expected immediate reward for performing action a in
state s.

A subset of B where the vector v dominates all other vectors
in I — {v}. (Equation 3.1)

The set of states of a process.

The state of the system at time t.

Expected state entropy. (Equation 6.6)

A particular state in the set S.

The horizon length in a finite horizon problem.

The state transition function mapping state-action pairs into
distributions over S.

A time step or decision point.

The n steps-to-go value of executing policy 7 starting in state
s.

The infinite horizon value of executing policy 7 starting in
state s.

The optimal n steps to go value of executing an optimal policy
starting in state s.

=

ﬁfﬁm[l]tm@
=

TCO
o(b,a,z)

(s, a,s")

(b, a,b)

w(b,a)

437

The optimal infinite horizon value of executing an optimal
policy starting in state s.

An approximation to the optimal value function.

A function coverting a distribution over states into a distribu-
tion over actions. (Equation 6.4)

The set of observations in a process.

A particular observation in the set Z

A set of |S|-vectors representing a set of hyperplanes of di-

mension |S].

An |§|-vector of real numbers representing a linear hyperplane

of a value function.

The step-size or learning rate for incremental parameter ad-

justment methods.
Asymptotic big-theta notation.

Entropy threshold in dual-mode control heuristics. (Page 265)

A “neighbor” of a vector. (Definition 3.2.1)

A decision process model.

A probability distribution over the action set.
A probability distribution over the state set.
A probability distribution over the observation set.
A policy or sequence of decision rules for an MDP..
The optimal policy for an MDP.
A decision rule for a coMDP derived from a PoMDP. (Page 259)
The discount factor.
The probability of getting observation z, given that the current
belief state is b and action a is taken. (Equation 2.12)
The transition probability of ending in state s’, given the start-
ing state s and action @ was chosen.
A mapping from observations to a set of vectors representing
a particular choice of vectors from the set. (Equation 2.24)
The transition function on information states. The probability
that the resulting information state is &', given the current
state is b and action a is taken. (Equation 2.14)
The expected immediate reward accrued when the information
state is b and the action a is taken. (Equation 2.16)

438

Operators
a-b The vector dot product of vectors a and b.
A$ B The cross-sum of two sets of vectors, which is all ways of

adding vectors from A to vectors in B.

L L
>, < Lexicographic comparison of two vectors as defined in Defini-
tion 3.1.2.

439

Acronyms

Al Artificial Intelligence. (Page 2)

AV Action voting POMDP control heuristic. (Page 260)

CEC Certainty equivalent controller. (Page 257)

COMDP Completely observable Markov decision process. (Page 15)

CUMDP Completely unobservable Markov decision process. (Page 267)

DM Dual mode POMDP control heuristic. (Page 266)

DP Dynamic programming. (Page 20)

ef.t. Extended finitely transient property of a stationary policy.
(Definition D.0.3)

f.t. Finitely transient property of a stationary policy. (Page 45)

GCS Generalized cross-sum, used in GIp. (Page 88)

GIP Generalized incremental pruning. (page 84)

1P Incremental pruning. (Page 81)

IP-LL Incremental pruning where the two largest sets are always cho-
sen. (Page 128)

IP-NCS Incrmental pruning using NCs cross-sums. (Page 131)

IP-RR Restricted region incrmental pruning. (Page 132)

IP-SL Incremental pruning where the smallest and largest sets are
always chosen. (Page 128)

IP-SS Incremental pruning where the two smallest sets are always
chosen. (Page 128)

LIN-Q Linear Q-functions; a reinforcement learning algorithm for
partially observable Markov decision processes. (Page 225)

LpP Linear programming. (Page 55)

MDP Markov decision process. (Page 15)

MLS Most likely state POMDP control heuristic. (Page 259)

NCS Normal cross-sum, used in 1p. (Page 119)

NDP Neuro-dynamic programming. (Page 190)

OR Operations research. (Page 1)

PI Policy Iteration. (Page 26)

POMDP Partially observable Markov decision process. (Page 29)

p.w.lL

Piecewise linear.

PWLC
Q-MDP

RL

RR
SPOVA
VI

440

Piecewise linear and convex. (Page 41)

Control heuristic for a POMDP using the optimal Q-functions
for the underlying completely observable MDP. (Page 261)
Reinforcement learning. (Page 190)

Restricted region cross-sum. (Page 120)

Smooth partially observable value approximation. (Page 227)
Value Iteration. (Page 23)

Weighted entropy POMDP control heuristic. (Page 268)

Index

absorbing state, 210

action entropy, see entropy, action

actor-critic, 198

ADM, see DM

agenda, 68

Al see artificial intelligence

Allender, Eric, 113

APPROX-VI, see value iteration, ap-
proximate

artificial intelligence, 2

AV, 258-259

Baird, Leemon, 219
Ballard, Dana H., 252
baseball, 316-319
sample domain, 369-376
batch enumeration, 79-81
complexity, 114
batter, 316

belief state, see information state

441

Bellman residual, 217

Bertsekas, Dimitri P., 190, 192, 208
bestVector, 62

Boutilier, Craig, 306

Brafman, Ronen, 304

bull-pen, 318

CEC, see controller, certainty equiv-
alent
Cheng, Hsien-Te, 94, 102, 103, 183,
187, 304
Chrisman, Lonnie, 224, 253
COMDP, see Markov decision pro-
cess, completely observable
complexity theory, 109-110
approximations, 112-113
Condon, Ann, 113
controller
certainty equivalent, 256

closed-loop, 257

omniscient, 240, 271
open-loop, 257
Crites, Robert H., 254
cross-sum, 80, 321
analysis, 119-126
comparisons, 146-149
generalized, 88, 120
analysis, 125-126, 132-133
normal, 119
restricted region, 120
analysis, 120-125
set ordering, 124-125

curse of dimensionality, 190

D’Ambrosio, Bruce, 254, 383

Dean, Thomas L., 306

decision rule, 18

DERVISH, 278

discount factor, 16

DM, 261-265

dominated vector, 51

domination check, 53-55, 59, 76,
145-146

dominationCheck, see domination

check

442

DP, see dynamic programming
dual control, 262
dual mode control, see DM
dynamic programming, 21, 23
asynchronous, 193, 195-198
POMDPS
complexity, 111-112

simulation-based, 194, 209-216

Eagle, James N., 81
e.f.t., see finite transience, extended
entropy, 263
action, 264
expected action, 264
expected state, 263
normalized, 264
entropy reduction, 263
expected action entropy, see en-
tropy, expected action
expected state entropy, see entropy,

expected state

Feigenbaum, Joan, 113
fielder, 316
findRegionPoint, 57

finite horizon, 20

finite transience, 45, 326—340, 361,
364
extended, 331
f.t., see finite transience
function approximator, 190, 193—
194, 199-202
for poMDPs, 221-232

Fung, Robert, 254, 383

GCS, see cross-sum, generalized
genCrossSum, 87
generalized cross-sum, see cross-
sum, generalized
GIpP, see incremental pruning, gen-
eralized
Givan, Robert, 77
Goldsmith, Judy, 113
gradient descent, 190, 200-202
as a stochastic approximation,
208
batch, 200-201
incremental, 201-202

residual, 217-220

Hansen, Eric A., 47, 105
Hauskrecht, Milos, 304

443

history, 18, 33
hit, 317
horizon
finite, 16, 20
infinite, 16, 22
Howard, Ronald A., 369
Hughes, John, 324

immediate reward, 14, 15, 31
discounted, 15

imposter vectors, 60

incremental enumeration, 81-83

incremental pruning, 79-93
analysis, 126-133
comparison to witness, 149-150
example, 344-349
generalized, 84-93
set ordering, 126-129

incrementalPrune, 82, 83

infinite horizon, 22

information state, 35-37
transition function, 37

inning, 317

IP, see incremental pruning

iterative stochastic algorithm, see

stochastic approximation

Kaelbling, Leslie Pack, 68, 224, 253,
256, 278, 307, 309-311

Koenig, Sven, 277, 278, 307

Kurien, James A., 256, 278, 288,
311

Lark, James, 81, 183

learning rate, see stochastic approx-
imation, step-size

lexicographic maximum, 62

lexicographic order, 62-64

lexicographicMax, 62

Lin, Long-Ji, 252

linear support algorithm, 103-104

complexity, 114

linear-Q, 224

LIN-Q, see linear-Q

Littman, Michael L., 34, 40, 68,
84,112,224, 241, 253, 308—
310

Liu, Wenju, 79, 304, 305

Ly norm, 226

Lovejoy, William S., 303

Lusena, Chris, 113

444

manager, 317
Markov decision process, 11-17
completely observable, 15, 18-
27
complexity, 110
partially observable, 15, 29-47
complexity, 111
random, 153-154
McCallum, Andrew Kachites, 253,
254, 305
MDP, see Markov decision process
Mitchell, Tom M., 252
MLS, 257-258
modified policy iteration, see pol-
icy iteration, modified
Monahan, George E., 79, 81, 183
Mundhenk, Martin, 113

NCS, see cross-sum, normal
NDP, see neuro-dynamic program-
ming
neighbor, 68-71
definition of, 69
properties, 341

redundant, 76

theorem, 69

neuro-dynamic programming, 190

normalized entropy, see entropy, nor-

malized

Nourbakhsh, Illah, 277

observation probabilities, 30
OMNI, see controller, omniscient
one-pass algorithm, 98-102
operations research, 1

optimal control, 2

optimality criteria, 15

OR, see operations research

out, 317

Papadimitriou, Christos H., 110,
111

Parr, Ronald, 226

parsimonious, 51-52
representation, 53
set, 52

Pl, see policy iteration

piecewise linear, 41

piecewise linear and convex, 41, 43
properties, 320-322
random, 154-155

445

pitcher, 316
plan, 307
planning, 2
classical, 306-308
policy, 18, 33
deterministic, 19
Markov, 18, 19, 33
non-stationary, 19
POMDP, 33
probabilistic, 19
stationary, 19
policy graph
construction, 361-366
policy iteration, 26, 46
asynchronous, 196-198
modified, 197
POMDP, see Markov decision pro-
cess, partially observable
principle of optimality, 21
probability distribution
random, 323-324
PRUNE, see vector pruning
PWL, see piecewise linear
PWLC, see piecewise linear and con-

vex

Q-function, 67, 221-223
Q-learning, 203

Q-MDP, 259-261

Ramona, 288
region, 52-53, 77
reinforcement learning, 189
direct method, 189
indirect method, 189
relaxed region algorithm, 102-103
residual gradient, see gradient de-

scent, residual

restricted region cross-sum, see cross-

sum, restricted region
restricting set, 90, 120
Ring, Mark B., 253
RL, see reinforcement learning
RL/NDP, 190
RR, see cross-sum, restricted re-
gion

Russell, Stuart, 226, 227

Schmidhuber, Jurgen, 253
Shatkay, Hagit, 122, 278
Simmons, Reid, 277, 278
slotted aloha, 377

446

Smallwood, Richard D., 77, 100
Sondik, Edward J., 41, 43, 4547,
77,79, 94, 100, 105, 114,
183, 187, 312, 326, 333,
336-338
SPOVA, 226
stochastic approximation, 194, 203—
209
convergence, 208-209
step-size, 205-206
stochastic shortest path, 210
successive approximation, 22

sufficient statistic, 35

TD(A), 203

trajectory, 190

transition probability, 13

Tsitsiklis, John N., 110, 111, 190,
192, 208

two-pass algorithm, 94-98, 151

analysis, 136-137
useless vector, 51

value function, 20
fixed action, see Q-function

POMDP, 37

value iteration, 23, 25, 46
approximate, 268-269
asynchronous, 195-196
Gauss-Seidel, 197

vector pruning, 5560
analysis, 115-118

vertex enumeration, 103

VI, see value iteration

WE, 265-267
weighted entropy control, see Wk
Weiring, Marco, 253
White, Chelsea C., III, 183, 305,
312
Whitehead, Steven D., 252
witness, 68-78
algorithm, 71
analysis, 133-136
comparison to 1P, 149-150
example, 349-359
optimizations, 75-78

theorem, 73
XAVIER, 277

Zhang, Nevin L., 78, 79, 84, 304,
305

447

