
SALSA: Sequence ALignmentvia Steiner AncestorsGiuseppe Lancia?1 and R. Ravi21 Dipartimento Elettronica ed Informatica, University of Padova, lancia@dei.unipd.it2 G.S.I.A., Carnegie Mellon University, ravi@cmu.eduAbstract. We describe SALSA (Sequence ALignment via Steiner An-cestors), a public{domain suite of programs for generating multiple align-ments of a set of genomic sequences. We allow the use of either of the twopopular objectives, Tree Alignment or Sum-of-Pairs. The main distin-guishing feature of our method is that the alignment is obtained via a treein which the internal nodes (ancestors) are labeled by Steiner sequencesfor triples of the input sequences. Given lists of candidate labels for theancestral sequences, we use dynamic programming to choose an optimallabeling under either objective functions. Finally, the fully labeled tree ofsequences is turned into into a multiple alignment. Enhancements in ourimplementation include the traditional space-saving ideas of Hirschbergas well as new data-packing techniques. The running-time bottleneck ofcomputing exact Steiner sequences is handled by a highly e�ective butmuch faster heuristic alternative. Finally, other modules in the suite al-low automatic generation of linear-program input �les that can be usedto compute novel lower bounds on the optimal values. We also report onsome preliminary computational experiments with SALSA.1 IntroductionComparing genomic sequences drawn from individuals of the same or dif-ferent species is one of the fundamental problems in computational molec-ular biology. These comparisons can (i) lead to the identi�cation of highlyconserved (and therefore presumably functionally relevant) genomic re-gions, (ii) spot fatal mutations, (iii) suggest evolutionary relationships,(iv) help in correcting sequencing errors etc. Therefore, the mathematicalformulation and solution of the Multiple Sequence Alignment problem hasbeen and remains a fundamental challenge for computational molecularbiologists.Aligning a set of sequences consists in arranging them in a matrixhaving each sequence in a row. This is obtained by possibly inserting? Most of this work was done when this author was visiting CMU during Summer '98,under a grant from the CMU Faculty Development Fund.

spaces (gaps) in each sequence so that they all have the same length. Thefollowing is a simple example of an alignment of the sequences ATTCGAC,TTCCGTC and ATCGTC. A T T - C G A - C- T T C C G - T CA - T - C G - T CThere are many popular formulations of the alignment problem. Thechoice of the objective function for multiple alignments depends mainlyon the presence or absence of extra input information in the form of a phy-logenetic tree relating the sequences to their unknown ancestors. In fact,when such tree is given, knowledge of the ancestral sequences would implythe possibility of aligning the given sequences by progressively aligningeach sequence to its ancestor in the tree all the way to the root andchaining these pairwise alignments together [6]. Hence when a phylogenyis given, the tree alignment (TA) objective consists in �nding the bestancestral sequences to label this tree and the induced alignment. Guidedby parsimony, the best labeling is taken to be one minimizing the totalevolutionary change represented in the tree, namely, the total distanceof all the edges in the tree. When the phylogenetic tree is not available,a popular multiple alignment objective is the Sum{of{pairs (SP) objec-tive, which attempts to minimize the average distance between a pair ofsequences in the multiple alignment. This objective results naturally byextending the alignment objective for pairs of sequences, namely, thatof minimizing the edit-distance between the pair, to more than two se-quences. The SP objective has been popular in the literature and severalheuristic implementations addressing it proceed by �rst �nding a heuristictree spanning the sequences and aligning them progressively as mentionedearlier to obtain the �nal alignment.Historically, the SP objective is the one to which more attention hasbeen devoted by computational biologists, and correspondingly a set ofprograms have been developed which are now widely in use. Among them,the only program that computes optimal SP alignments is MSA by Lip-man, Altschul, Kececioglu, Gupta and Schae�er [2, 8]. A variety of othermultiple sequence alignment programs implicitly use the SP objectivein guiding heuristic construction of the multi-alignments: An exampleis CLUSTAL V [11] (see also the various methods described in the sur-veys [16, 5] for other examples). As for tree alignment, the only implemen-tation that addresses this problem directly that we are aware of is the re-cent TAAR by Jiang and Liu [13]. This program implements some of theideas from the approximation algorithms of Jiang, Lawler and Wang [27]

to heuristically compute tree alignments, phylogenies and generalized treealignments.In this paper we introduce and describe a new public{domain suite ofprograms for multiple sequence alignment that produce heuristic align-ments under both the TA and SP alignment objectives. Like TAAR, Ourmethods are based on ideas used in an approximation algorithm for treealignment due to Ravi and Kececioglu [17]. However, unlike the methodsof Jiang, Lawler and Wang [27] on which TAAR is based, whose re�nedheuristics require very high running times, the ideas of Ravi and Kece-cioglu are based on mainly computing and using Steiner sequences ascandidates for the unlabeled ancestral sequences in the tree. Intuitively,a Steiner sequence for a given set of sequences is a \central" sequence tothem, one whose sum of distances to all these sequences is minimized.Once these Steiner sequences for appropriate subsets of the input se-quences have been computed, dynamic programming can be used to e�-ciently pick one such sequence for each ancestral node so as to minimizethe total resulting distance in the tree, as in [27]. Thus, this method isadaptable for e�cient implementation giving us the freedom to specifythe subsets of sequences for which the Steiner sequences must be com-puted. Further, we can e�ectively adapt this general idea by modifyingthe dynamic program to provide an e�cient heuristic even for the SPobjective using the postulated Steiner ancestors.Further re�nements in our implementation include incorporating thetraditional space-saving ideas of Hirschberg [12] as well as some newdata-packing techniques to reduce the space overhead; The running-timebottleneck in our method of computing exact Steiner sequences is e�ec-tively handled by a much faster heuristic alternative that has never shownmore than two percent degradation in quality in our extensive preliminarytesting. Finally, other programs in the suite allow automatic generationof linear-programming models as �les that can be input to the popularcommercial CPLEX package. The solution of these programs give lowerbounds on the minimum TA and SP alignment values for the given setof sequences, thus providing the deviations from optimality on a case-by-case basis.We formally describe the various objectives and methods in the re-mainder of this section. In Sect. 2 we give a high{level description of thealgorithms in SALSA, together with an analysis of the individual steps.In Sect. 3 we report on some experimental results on real data.

1.1 Edit DistanceAt the heart of any alignment algorithm lies the procedure for optimallycomparing two given sequences. This problem is called pairwise align-ment, and is formulated as follows. Given symmetric costs c(a; b) for re-placing a symbol a with a symbol b and costs c(a;�) for deleting (insert-ing) symbol a, �nd a minimum{cost set of symbol operations that turna sequence S0 into a sequence S00. It is well known that this problem canbe solved by dynamic programming in time and space O(l2), where l isthe length of the sequences. The value of an optimal solution is called theedit distance of S0 and S00 and denoted by d(S0; S00).An alignment A of two (or more) sequences is a way of inserting \�"characters (gaps) In the sequences so that they become of the same length.For two sequences S0 and S00, the value dA(S0; S00) of their alignment is ob-tained by adding up the costs for the pairs of characters in correspondingpositions. It is immediate that d(S0; S00) = minA dA(S0; S00).1.2 The Sum{of{Pairs Alignment ProblemThe SP score is the generalization to many sequences of the pairwise align-ment objective, in which the cost of the alignment is obtained by addingthe costs of the symbols matched up at the same positions. Analogously,in a multiple alignment the cost is obtained by adding up the matchingcharacters, over all the positions and for all the pairs of sequences.Minimizing SP is NP-hard [26]. In [9] Gus�eld showed that a tree-based progressive alignment method due to Feng and Doolittle (describedbelow) using the minimum cost star gives a 2{approximation. In the pro-gram described in this paper we push this idea further, by consideringalso trees that are not only stars and also employing alignments withsequences which are not in the original set, but are derived from it asSteiner sequences of some of the original ones.1.3 The Tree Alignment ProblemIn the tree alignment problem, we are given n sequences related by anevolutionary tree T . The sequences label the leaves of the tree, while theinternal nodes correspond to the unknown ancestral sequences from whichthe others have evolved. The problem consists in �nding the sequencesat the internal nodes which minimize the cost of the tree, de�ned asP(Si;Sj)2T d(Si; Sj). When T is a star, the problem is called a Steinerproblem, and the optimal sequence for the center is called the Steinersequence for the leaves.

The �rst exact algorithm for tree alignment was proposed by Sanko�in [18], and is based on dynamic programming. Later Altschul and Lip-man [1] introduced some bounding rules to reduce the size of the dynamicprogramming lattice. Due to the prohibitive worst case complexity of ex-act methods, approximation algorithms for this problem were devised,by Jiang, Lawler and Wang [27] �rst, and improved by Wang and Gus-�eld [25] later. In [27] a 2{approximation method is described, based onwhat are called lifted alignments. In lifted alignments, the internal nodescan only be labeled by sequences occurring at the leaves. The runningtime of their algorithm is O(n2l2 + n3) for a tree of n leaves of lengthl. For trees of bounded degree d, they also provided the �rst PTAS forthe problem. For any t, their approximation scheme guarantees a solutionwithin a factor 1 + 3t of optimal, in time O(n2+dt�1 ldt�1�1=d�1).For regular d{ary trees on n sequences, Ravi and Kececioglu gavein [17] a d+1d�1{approximation algorithm with running time roughly (O(2kn)d){ the main ideas of their algorithm are brie
y described in Sect. 2. Theprogram SALSA described in this paper is the �rst implementation of theideas in [17].1.4 A Tree-based Progressive Alignment MethodA reasonable requirement on the cost function is that c(a; a) = 0 8a, andit obeys triangle inequality. In this case, the edit distance induces a met-ric over the space of all sequences and, given n sequences, we can talk ofgraphs having the sequences as vertices and for which an edge is weightedby the edit distance between the endpoints. In this setting, graph theoret-ical concepts such as spanning trees, stars and Steiner points, have beenwidely used in the design and analysis of e�ective alignment algorithms.In particular, a folklore approach to multiple alignments is due to Fengand Doolittle [6] and shows how we can use any tree to align a set of nsequences. The appeal of the approach is that for n� 1 out of n(n� 1)=2pairs, the pairwise alignment induced is in fact optimal.Proposition 1. For any tree T over a set of sequences, there existsa multiple alignment A(T) of the sequences such that dA(T)(S0; S00) =d(S0; S00) for all the pairs of sequences (S0; S00) connected by an edge ofthe tree.Feng and Doolittle's method can be used to turn the solution of thetree alignment problem, namely a labeling of the internal nodes of thegiven tree, into a multiple alignment of the leaves. Moreover, it is straight-forward to upper bound the distance in this alignment of pairs that are

not endpoints of a tree edge. In fact, denote by d(S0; S00; T) the lengthof the path in T between two sequences S0 and S00. Then, by triangularinequality we have that dA(T)(S0; S00) � d(S0; S00; T). This inequality sug-gests that, given a tree with sequences at the leaves for which we want tominimize average pairwise distance in the resulting multiple alignment,a good labeling for the internal nodes is one which minimizes the totalinter-leaf distance in the tree. This strategy is adopted in this work toobtain alignments of small SP value, as described in 2.3.1.5 SALSA Program SuiteIn this paper we describe the program SALSA (Sequence ALignment viaSteiner Ancestors), which can be used for both TA and SP multiple align-ments. SALSA is in fact a program suite, includingmodules for computingLP-based lower bounds for TA and SP, and optimal alignments of two orthree sequences.The main program takes as input a set L = fS1; : : : ; Sng of n se-quences and possibly a tree T of which L are the leaves. If the phyloge-netic tree is not available, the algorithm internally computes one, whichis then used to �nd an alignment of small SP value. If the tree is given,then the TA objective is optimized1. The output of the algorithm consistsof a multiple alignment of the input sequences, plus some extra informa-tion, such as the Steiner sequences computed at the internal nodes of thephylogenetic tree.SALSA is based on the ideas introduced by Ravi and Kececioglu in [17]of using Steiner sequences of the leaves to label the internal nodes of thetree. While in their paper Ravi and Kececioglu show that if the tree isd{ary the method gives a d+1d�1 approximation for TA, in our work we donot restrict the degree of each node to a constant. Therefore we do nothave the same approximation guarantee. However, among all the labelingsconsidered is included the best lifted labeling of [27] and therefore we stillhave a performance guarantee of 2 for the TA objective. As is typically thecase, this bound turns out to be largely pessimistic and our computationalresults show that the algorithm performs much better in practice.The 2{approximation guarantee holds also for the SP alignments. Re-call that we include, among all the labelings considered, one in whichthe internal nodes of the tree are all labeled with any leaf S. For thisparticular labeling, the resulting tree is equivalent to a star centered at1 The choice of the objective in the presence or absence of the tree can also be user-speci�ed

S, and as remarked before [9], the best star centered at a leaf gives a2{approximation.2 Procedure OverviewOur program is largely based on a heuristic procedure by Ravi and Ke-cecioglu ([17]) for solving the tree alignment problem. Their algorithmrelies on labeling the internal nodes with Steiner sequences for subsets ofp leaves, where p is a parameter. The procedure is divided in two phases.In the �rst phase a Steiner sequence is computed for every subset ofq � p leaves, obtaining a set F of all such Steiner sequences. In the sec-ond phase, dynamic programming is used to compute the best labeling ofthe internal nodes among those in which only labels from F are allowed.In this work, we have decided to solve the TA problem by employingRavi and Kececioglu's algorithm, with the following variants: (i) Becausecomputing exact Steiner sequences is expensive, we have limited the size ofthe subsets for which a Steiner problem is solved to p = 3. (ii) In additionto Sanko�'s exact algorithm for Steiner sequences, with complexity O(l3),we also use a heuristic algorithm, with average (empirical) complexityO(l2). (iii) We do not necessarily compute the Steiner sequences for allthe �n3� possible triples of leaves, but provide alternate, heuristic methodsof sampling signi�cant triples. (iv) We also perform a �nal re-optimizationstep, as introduced by Sanko� et al ([20]).Our program can be used also to optimize SP. In this case, we �rstcompute a tree having the given sequences for leaves and then assigntentative labels to the internal nodes by using Steiner sequences, as forthe TA objective. In choosing the best label at each node, however, we usedynamic programming to minimize the total leaf{to{leaf distance in thetree, which is an upper bound on the �nal SP score. A �nal reoptimizationphase can be run to improve the alignment.The outline of our multiple alignment heuristic procedure is givenbelow.1. Tree computation.{ TA: none (the tree is given).{ SP: We compute a phylogenetic tree having the given sequencesas leaves - this is derived from a MST on the sequence graph.2. Solution of Steiner problems. We tentatively assign to each of theinternal nodes of the phylogenetic tree a set of labels, given by theSteiner sequences of some subsets of the leaves.

3. Optimal labeling by Dynamic Programming. We �nd for each internalnode the best sequence among those in its set of possible labels.{ TA: The objective is to minimize the total tree-length.{ SP: The objective is to minimize the total leaf{to-leaf distance inthe tree.4. Local re-optimization.{ TA: At each node of degree three we replace the current sequenceby the Steiner sequence of its neighbors. We iterate as long asthere are improvements.{ SP: (after step 5.) We iteratively break up the alignment into twosubalignments that are then realigned optimally. The subalign-ments chosen have a large average di�erence in the current valueversus the edit distance.5. Final alignment by Feng and Doolittle. We compute a multiple align-ment of all the resulting sequences (both leaves and internal nodes)by the progressive alignment method of Feng and Doolittle.We elaborate on some of these steps next.2.1 Tree Computation.In order to derive a phylogenetic tree T relating a set of sequences whenone is not input, we use a simple greedy approach. We start with T beinga minimum cost spanning tree of the edit distance graph. Let (u; v) bethe largest cost edge of T . Break up T by deleting edge (u; v) into twotrees Tu containing u and Tv containing v. Recursively, apply the sameprocedure to Tu and Tv, obtaining two new trees, Tu0 and Tv0 rooted atnew nodes u0 and v0 respectively. Finally, join these two subtrees by meansof edges (u0; w) and (v0; w) to a new root node w, thus obtaining the �nalphylogenetic tree.2.2 Solution of Steiner Problems.Choice of Steiner Sequences Given a set of possible sequences (labels)for each internal node of the tree, choosing the best label is done bydynamic programming (described in 2.3) and is very fast in practice. Onthe other hand, computing the labels is very expensive. Therefore oncesome labels have been computed, it is convenient to store them at everyinternal node, i.e. all the nodes will have the same set G of labels. Aspreviously noted, the labels allowed at the internal nodes will only beSteiner sequences for some subsets of q � 3 leaves. When q = 1 or 2, a

Steiner sequence is simply a leaf, so that it will always be G = L [G0,where G0 is a set of Steiner sequences for some triples of leaves. Let usdenote by Y (Si; Sj; Sk) a Steiner sequences for the triple (Si; Sj ; Sk). Weallow three possibilities for G0:{ G0 = ;. In this case the internal nodes are labeled with leaves se-quences only. This option results in the fastest running time, but mayproduce poor �nal alignments, especially when the given sequencesare very dissimilar. Note that among the alignments based on theselabels are included all lifted alignments [27] for TA. Similarly, theselabels contain also all star alignments for SP.{ G0 = fY (Si; Sj ; Sk) : i < j < kg. This is computationally the mostexpensive option, since it requires the solution of �n3� Steiner problems.On the other hand, the larger set of possible labels at the internalnodes guarantees a better value of the �nal alignment.{ Let S1; S2; : : : ; Sn be the sequence of leaves as encountered by per-forming a depth{�rst visit of the tree. Then, G0 = fY (Sj ; Sk; Sh) :h = k+1 = j+2 or h = k+� = j+2�g where � = �n3 �. The inten-tion is to heuristically obtain a uniform sampling by selecting triplesof leaves from di�erent positions in an Euler tour of the tree. Thisoption is quick {there are only O(n) such triples{ but ensures thateach sequence is included in some triples, and that all the sequencesare given the same representation in the sampling.Exact Steiner Sequences Assume we are interested in �nding a Steinersequence for three sequences U1, U2 and U3. The dynamic programmingprocedure computes the optimal alignment of the variable Steiner se-quence and U1, U2 and U3. This is done backwards from the �nal columnof the alignment, which will be of the form (x1; x2; x3; y)0, where each xiis either the last letter of the sequence Ui or a blank (but at least one ximust be nonblank), and y is any nonblank letter of the alphabet �. Forany letter x, de�ne 1 � x = x and 0 � x = �. Let B+ = f0; 1g3 n (0; 0; 0) bethe set of nonnull binary 3{vectors and let V (l1; l2; l3) be the cost of anoptimal Steiner sequence for the the �rst l1, l2 and l3 characters respec-tively of U1, U2 and U3. The recursive dynamic programming relation isthenV (l1; l2; l3) = minb2B+(V (l1 � b1; l2 � b2; l3 � b3) + miny2� 3Xi=1 c(bi � Ui[li]; y))

The Steiner sequence is given, as customary in dynamic programming,by backtracking through the values V (l1; l2; l3) along the path for anoptimal solution and listing the letters by = arg minP3i=1 c(bi � Si[li]; y)which achieve the minimum in the above expression. Note that the aboverecurrence requires time and space complexity of O(7l3), provided thatfor all (x1; x2; x3) 2 �3, the values C(x1; x2; x3) := miny2�P3i=1 c(xi; y)have been computed in a preliminary step and stored in a look-up table.In our implementation we have reduced the space complexity to O(l2) forthe matrix V (i; j; k) using ideas from [12].Heuristic Steiner Sequences Computing exact Steiner sequences isvery time consuming. For instance, the solution of a problem on sequencesof about 200 letters each takes roughly half minute on a Pentium PC. Con-sidering that for aligning 10 sequences we may have to solve �103 � = 120such problems, we see that speeding up the computation of Steiner se-quences would be greatly bene�cial. Therefore, we have devised an alter-native, heuristic way of computing Steiner sequences which is extremelyfaster and turns out to be almost{optimal after extensive testing (seeSect. 3).The idea is to �rst �nd all optimal alignments of two of the threesequences, say S1 and S2. They correspond to all the shortest paths from(0; 0) to (jS1j; jS2j) in the jS1j � jS2j dynamic programming lattice usedfor the pairwise alignment, and can be represented in a compact formas the subgraph of the lattice of all the edges on some optimal path.Note that this subgraph is typically much smaller than the whole lattice(empirically, O(l) versus O(l2)). Then, we perform a graph{to{sequencealignment, i.e. we �nd the best completion of an optimal alignment of S1and S2 with S3. In this case, \best" is taken with respect to the Steinerobjective.The value of the �nal solution may depend on the ordering of thesequences, since S3 is clearly used di�erently than S1 and S2. We haveobserved in our experiments that choosing S1 and S2 to be the two closestsequences results in the best Steiner sequences over the three possiblechoices. However, since the algorithm is very fast, we compute all threepossibilities of �rst aligning together two sequences and then versus thethird, and return the best solution found. We conclude this section byremarking that the computation of heuristic Steiner sequences takes onthe average one second for sequences of length 200, while returning asolution whose value was never more than 2% larger than the optimumin our extensive testing.

2.3 Optimal Labeling by Dynamic Programming.In this section we consider the problem of optimally assigning a sequencefrom a given set G to each internal node of the tree. Denote by w1; : : : ; wtthe nodes which are immediate descendants of a node i. Let V (i; S) bethe optimal value for the subtree rooted at i when node i is labeled with asequence S 2 G. We have the following dynamic programming recurrence:V (i; S) = (0 if i is a leafminL1;:::;Lt2GPtj=1 (�(i; wj)d(S;Lj) + V (wj ; Lj)) otherwiseThe coe�cients �(i; wj) allow us to distinguish between the two ob-jective functions - TA and SP. For the TA objective, V (i; S) representsthe minimum total length of the subtree, among the labelings that as-signs S to i. This is obtained by setting all the � equal to 1. For theSP objective, we want to �nd the labels which minimize the total leaf{to{leaf distance. For any edge (u; v) of T , we set �(u; v) to be the num-ber of pairs of leaves whose connecting path in the tree goes through(u; v). This value, called the load of the edge, is equal to k(n� k), wherek is the number of leaves on one shore of the cut identi�ed by (u; v).By using the loads, the total leaf{to{leaf distance can be rewritten asPSi;Sj d(Si; Sj ; T) = P(u;v)2T �(u; v)d(L(u); L(v)), where L(u) and L(v)are the sequences labeling nodes u and v.Using the above relation, �rst the value of each label at each node iscomputed bottom{up, and later, proceeding top{down from the root, itis determined which label to pick at each node for obtaining an optimalsolution. The overall complexity is O(njGj2), i.e. a very fast procedure.2.4 ReoptimizationThe reoptimization for TA objective is the same as in Sanko� et al [20].For SP, however, we use a novel approach. As in other works (e.g. [7])we repeatedly break up the alignment into two pieces that are then re-aligned optimally via the basic dynamic program for edit distance. Thenew idea relies in how these alignments are chosen. Since for each pairof sequences in the same subalignment the distance remains the same,the only improvement can be for sequences that are in di�erent subalign-ments. Let �(S; S0) = dA(S; S0)� d(S; S0). If A1 and A2 are the subalign-ments, �(A1;A2) =PS2A1;S02A2 �(S; S0) is the �{value of the cut (A1;A2)in the graph of all sequences, and �(A1;A2)=jA1jjA2j is a per{sequencemeasure of how bad the alignment currently is versus the lower bound

given by the edit distance. Hence we want to reoptimize some cuts of high(per{sequence) value, which we �nd through standard greedy heuristics.We have di�erent settings on how far the reoptimization phase can bepushed. In the most expensive setting, for each pair (S; S0) of sequenceswe �nd a large{value cut separating them and relign it. We iterate as longas there are improvements.3 Computational ExperiencesFor our preliminary tests, we used two popular data sets. First, we ob-tained the sets of protein sequences of Mc Clure [16], used extensively tobenchmark programs guides by the SP objective. For the Tree Alignmentproblem, we have used a famous instance by Sanko� et al [20], used as abenchmark in [10, 13].As for the cost matrix, in our experiments we have used a distancematrix due to Taylor ([23]) for amino acid sequences, and the matrix inSanko� ([20]) for DNA sequences. Our program also works with all thecommon score matrices (e.g. PAM, BLOSUM, etc).1. Lower Bounds. A unique feature of the SALSA suite is a pro-cedure to generate LP lower bounds on the TA and SP objective valuesof the given instance by using the Steiner sequences for triples computedso far. We describe the LP for the TA problem. We use a variable forthe length of every edge of the tree, and the objective is to minimize thesum of lengths of all tree edges. A distance of d between a pair of leavesSi and Sj allows us to add the constraint that the sum of the values ofthe edge lengths on the path between Si and Sj in the tree must be atleast D. Similarly, given a value of TA(i; j; k) for the minimum sum ofthe distances from an optimal Steiner sequence for the triple (Si; Sj ; Sk)to the three sequences Si; Sj and Sk, we add the constraint that the sumof the lengths of all the edges in the tree induced by the three leavesSi; Sj and Sk must be at least TA(i; j; k). The set of constraints for dis-tances between pairs of leaves was experimented with in [10], while thestrengthening to triples gives better bounds as reported below.A similar argument to use the Steiner triples in a lower bound forthe SP objective yields a simple lower bound of Pi;j;k SP (i; j; k)=(n � 2)for n sequences, where SP (i; j; k) denotes the optimal sum-of-pair valuefor the triple Si; Sj and Sk. This may be further extended to a LP lowerbound with one variable for the distance between every pair of sequencesin the multiple alignment.

Table 1. Heuristic vs exact Steiner sequences. Times in seconds, Pentium 133Mhztot tot relative time timeinstance seqs triples error exact heuristicavg min max min max min maxsank 9 84 0.003 0 0.02 15.8 41.0 0.6 1.9mc582x6 6 20 0.004 0 0.01 52.3 75.6 0.5 3.0mc586x6 6 20 0.007 0 0.017 17.8 42.5 0.6 2.1mc587x6 6 20 0.01 0.003 0.019 29.2 71.9 0.8 2.72. Steiner Sequences. First, we have determined the quality ofheuristic vs exact Steiner sequences. The results, are reported in Table 1.For these tests, we have used four data sets, i.e. the sequences from Sanko�and three sets of sequences from McClure. These sequences have betweenone hundred and two hundred letters each. For each set, we have com-puted for each triple the exact and heuristic Steiner sequences, and com-pared the relative errors. It should be noted that on these sequences, theheuristic is roughly thirty times faster than the exact procedure, whilethe average error is less than one percent. A striking result was that in 41out of 84 triples for the sank instance, the heuristic solution was in factoptimal.3. Tree Alignment. A second experiment was performed to accessthe quality of the solution to the Tree Alignment problem, and the relativeperformance with di�erent settings of the program. We have run SALSAon Sanko�'s problem with all possible combinations of user choices. Theresults are reported in Table 2. Again, it should be noted that usingheuristic Steiner sequences is greatly bene�cial to the computing time,and, since the whole procedure is heuristic in nature, can even lead tobetter solutions than the exact option. This is indeed the case here.In order to evaluate the quality of the results, we have computed thelower bound on the problem by using our LP module. The LP lowerbound based on all the Steiner sequences of triples for the TA objective is266.375 improving over the best bound of 253.5 previously known ([10]).The optimal lifted alignment �nds a value of 364, as also reported in [10].Using heuristic Steiner sequences, we �nd a solution of value about 302in about 7 minutes. Contrast this with the best upper bound of 295.5by Sanko� et al. [20]. Our improved lower bound shows that Sanko�'ssolution is within 11% of optimal.4. Sum of Pairs. For the SP objective, we report some results forthe McClure data sets (Table 3). For each problem, we have computed

the trivial lower bound given by the sum of edit distances, and two lowerbounds based on the optimal SP alignment of triples of sequences. Wehave run SALSA with heuristic Steiner sequences, sampling all triples.Our solutions are in an interval of 2 to 9 percent from the lower bound.The table shows also the e�ectiveness of local reoptimization. For com-parison, we also report the SP value of the star alignment (Gus�eld, [9]).Table 2. TA results on the instance sank. Times in seconds, Pentium PCTriples Steiner Reopt Value TimeALL HEUR EXACT 302 592ALL HEUR HEUR 302.25 424ALL EXACT EXACT 303.25 2802SOME EXACT EXACT 304 493ALL EXACT HEUR 304.25 2599SOME EXACT HEUR 304.5 267SOME HEUR EXACT 314 201SOME HEUR HEUR 315.75 23NONE - EXACT 320 152NONE - HEUR 320.5 6ALL HEUR NONE 322.25 298ALL EXACT NONE 322.5 2387SOME EXACT NONE 333.5 258SOME HEUR NONE 333.75 15NONE - NONE 364 1
Table 3. SP lower and upper bounds for McClure data setsInstance LB pairs LB triples LB lp Star align. SALSA Err % SALSA+reop Err %mc582x6 25411 26056 26100 28444 27647 0.06 26963 0.03mc586x6 25191 25979 26029 29307 28605 0.10 27498 0.05mc587x6 29914 30802 30864 34085 34152 0.11 32664 0.05mc582x10 70718 72274 72757 82011 77676 0.07 75131 0.03mc586x10 81745 84211 84662 99140 97725 0.15 91754 0.08mc587x10 95002 97889 98349 115918 110463 0.12 105806 0.07mc582x12 98810 100720 101464 113328 105674 0.04 103803 0.02mc586x12 116889 120409 121130 143792 139398 0.15 131980 0.08mc587x12 140679 145043 145804 174270 164883 0.13 160256 0.09

References1. S. Altschul and D. Lipman, Trees, Stars and Multiple Sequence Alignment,SIAM J. Appl. Math. 49 (1989) 197{2092. S. Altschul, D. Lipman and J. D. Kececioglu, A tool for multiple sequencealignment. Proc. Natl. Acad. Sci. USA 86 (1989) 4412{44153. V. Bafna, E. L. Lawler and P. Pevzner. Approximation Algorithms for Mul-tiple Sequence Alignment. Proceedings of the 5th Combinatorial PatternMatching conference LNCS 807 (1994) 43{534. H. Carrillo and D. Lipman. The multiple sequence alignment problem inbiology. SIAM J. Appl. Math. 49:1 (1989) 197{2095. S. C. Chan, A. K. C. Wong and D. K. Y. Chiu, \A survey of multiple sequencecomparison methods," Bull. Math. Biol. 54 (1992) 563-5986. D. Feng and R. Doolittle. Progressive sequence alignment as a prerequisiteto correct phylogenetic trees. J. Molec. Evol. 25 (1987) 351{3607. O. Gotoh, Optimal alignment between groups of sequences and its applicationto multiple sequence alignment, CABIOS 9:3 (1993) 361{3708. S. K. Gupta, J. Kececioglu, and A. A. Scha�er, Making the Shortest-PathsApproach to Sum-of-Pairs Multiple Sequence Alignment More Space E�cientin Practice, (extended abstract) Proceedings of the 6th Combinatorial PatternMatching conference (1995)9. D. Gus�eld, E�cient methods for multiple sequence alignment with guaran-teed error bounds, Bulletin of Mathematical Biology 55 (1993) 141{15410. D. Gus�eld and L. Wang, New Uses for Uniform Lifted Alignments, Submit-ted for publication (1996)11. D. G. Higgins, A. J. Bleasby and R. Fuchs, Clustal V: Improved software formultiple sequence alignment, CABIOS 8 (1992) 189-19112. D. Hirschberg, A linear space algorithm for computing maximal commonsubsequences, Communications of the ACM 18 (1975) 341{34313. T. Jiang and F. Liu, Tree Alignment And Reconstruction ap-plication software, Version 1.0, February 1998. Available fromhttp://www.dcss.mcmaster.ca/�fliu.14. D. Lipman, S. Altschul and J. D. Kececioglu, A tool for multiple sequencealignment. Proc. Natl. Acad. Sci. USA 86 (1989) 4412{441515. S. B. Needleman and C. D. Wunsch. A general method applicable to searchthe similarities in the amino acid sequences of two proteins. J. Mol. Biol., 48(1970) 44416. M. A. McClure, T. K. Vasi andW. M. Fitch. Comparative analysis of multipleprotein{sequence alignment methods, Mol. Biol. Evol. 11 (1994) 571{59217. R. Ravi and J. Kececioglu. Approximation algorithms for multiple sequencealignment under a �xed evolutionary tree, Proceedings of the 6th Combina-torial Pattern Matching conference (1995) 330{33918. D. Sanko�, Minimal mutation trees of sequences, SIAM J. Applied Math.28(1) (1975) 35{4219. D. Sanko� and R. Cedergren, Simultaneous comparison of three or more se-quences related by a tree, in D. Sanko� and J. Kruskal editors, Time warps,string edits and macromolecules: the theory and practice of sequence compar-ison, Addison Wesley (1983) 253{26420. D. Sanko�, R. Cedergren and G. Laplame, Frequency of insertion-deletion,transversion, and transition in the evolution of the 5s ribosomal rna, J. Mol.Evol. 7 (1976) 133-149

21. D. Sanko�, Analytical approaches to genomic evolution, Biochimie 75 (1993)409{41322. T. F. Smith and M. S. Waterman. Comparison of Biosequences. Adv. Appl.Math. (1981) 482{48923. W. R. Taylor and D. T. Jones. Deriving an Amino Acid Distance Matrix, J.Theor. Biol. 164 (1993) 65{8324. M. Vingron and P. Argos. A fast and sensitive multiple sequence alignmentalgorithm. Comput. Appl. Biosci. 5 (1989) 115{12125. L. Wang and D. Gus�eld. Improved Approximation Algorithms for TreeAlignment, Proceedings of the 7th Combinatorial Pattern Matching confer-ence (1996) 220{23326. L. Wang and T. Jiang. On the complexity of multiple sequence alignment, J.Comp. Biol. 1 (1994) 337{34827. L. Wang, T. Jiang and E. L. Lawler. Aligning sequences via an evolutionarytree: complexity and approximation, Algorithmica, to appear. Also presentedat the 26th ACM Symp. on Theory of Computing (1994)

