SALSA: Sequence ALignment
via Steiner Ancestors

Giuseppe Lancia*! and R. Ravi®

! Dipartimento Elettronica ed Informatica, University of Padova, lancia@dei.unipd.it
2 G.S.1.A., Carnegie Mellon University, ravi@cmu.edu

Abstract. We describe SALSA (Sequence ALignment via Steiner An-
cestors), a public-domain suite of programs for generating multiple align-
ments of a set of genomic sequences. We allow the use of either of the two
popular objectives, Tree Alignment or Sum-of-Pairs. The main distin-
guishing feature of our method is that the alignment is obtained via a tree
in which the internal nodes (ancestors) are labeled by Steiner sequences
for triples of the input sequences. Given lists of candidate labels for the
ancestral sequences, we use dynamic programming to choose an optimal
labeling under either objective functions. Finally, the fully labeled tree of
sequences is turned into into a multiple alignment. Enhancements in our
implementation include the traditional space-saving ideas of Hirschberg
as well as new data-packing techniques. The running-time bottleneck of
computing exact Steiner sequences is handled by a highly effective but
much faster heuristic alternative. Finally, other modules in the suite al-
low automatic generation of linear-program input files that can be used
to compute novel lower bounds on the optimal values. We also report on
some preliminary computational experiments with SALSA.

1 Introduction

Comparing genomic sequences drawn from individuals of the same or dif-
ferent species is one of the fundamental problems in computational molec-
ular biology. These comparisons can (i) lead to the identification of highly
conserved (and therefore presumably functionally relevant) genomic re-
gions, (ii) spot fatal mutations, (iii) suggest evolutionary relationships,
(iv) help in correcting sequencing errors etc. Therefore, the mathematical
formulation and solution of the Multiple Sequence Alignment problem has
been and remains a fundamental challenge for computational molecular
biologists.

Aligning a set of sequences consists in arranging them in a matrix
having each sequence in a row. This is obtained by possibly inserting

* Most of this work was done when this author was visiting CMU during Summer ’98,
under a grant from the CMU Faculty Development Fund.

spaces (gaps) in each sequence so that they all have the same length. The
following is a simple example of an alignment of the sequences ATTCGAC,

TTCCGTC and ATCGTC.
ATT-CGA-C

-TTCCG-TC
A-T-CG-TC

There are many popular formulations of the alignment problem. The
choice of the objective function for multiple alignments depends mainly
on the presence or absence of extra input information in the form of a phy-
logenetic tree relating the sequences to their unknown ancestors. In fact,
when such tree is given, knowledge of the ancestral sequences would imply
the possibility of aligning the given sequences by progressively aligning
each sequence to its ancestor in the tree all the way to the root and
chaining these pairwise alignments together [6]. Hence when a phylogeny
is given, the tree alignment (TA) objective consists in finding the best
ancestral sequences to label this tree and the induced alignment. Guided
by parsimony, the best labeling is taken to be one minimizing the total
evolutionary change represented in the tree, namely, the total distance
of all the edges in the tree. When the phylogenetic tree is not available,
a popular multiple alignment objective is the Sum—of-pairs (SP) objec-
tive, which attempts to minimize the average distance between a pair of
sequences in the multiple alignment. This objective results naturally by
extending the alignment objective for pairs of sequences, namely, that
of minimizing the edit-distance between the pair, to more than two se-
quences. The SP objective has been popular in the literature and several
heuristic implementations addressing it proceed by first finding a heuristic
tree spanning the sequences and aligning them progressively as mentioned
earlier to obtain the final alignment.

Historically, the SP objective is the one to which more attention has
been devoted by computational biologists, and correspondingly a set of
programs have been developed which are now widely in use. Among them,
the only program that computes optimal SP alignments is MSA by Lip-
man, Altschul, Kececioglu, Gupta and Schaeffer [2,8]. A variety of other
multiple sequence alignment programs implicitly use the SP objective
in guiding heuristic construction of the multi-alignments: An example
is CLUSTAL V [11] (see also the various methods described in the sur-
veys [16, 5] for other examples). As for tree alignment, the only implemen-
tation that addresses this problem directly that we are aware of is the re-
cent TAAR by Jiang and Liu [13]. This program implements some of the
ideas from the approximation algorithms of Jiang, Lawler and Wang [27]

to heuristically compute tree alignments, phylogenies and generalized tree
alignments.

In this paper we introduce and describe a new public—-domain suite of
programs for multiple sequence alignment that produce heuristic align-
ments under both the TA and SP alignment objectives. Like TAAR, Our
methods are based on ideas used in an approximation algorithm for tree
alignment due to Ravi and Kececioglu [17]. However, unlike the methods
of Jiang, Lawler and Wang [27] on which TAAR is based, whose refined
heuristics require very high running times, the ideas of Ravi and Kece-
cioglu are based on mainly computing and using Steiner sequences as
candidates for the unlabeled ancestral sequences in the tree. Intuitively,
a Steiner sequence for a given set of sequences is a “central” sequence to
them, one whose sum of distances to all these sequences is minimized.
Once these Steiner sequences for appropriate subsets of the input se-
quences have been computed, dynamic programming can be used to effi-
ciently pick one such sequence for each ancestral node so as to minimize
the total resulting distance in the tree, as in [27]. Thus, this method is
adaptable for efficient implementation giving us the freedom to specify
the subsets of sequences for which the Steiner sequences must be com-
puted. Further, we can effectively adapt this general idea by modifying
the dynamic program to provide an efficient heuristic even for the SP
objective using the postulated Steiner ancestors.

Further refinements in our implementation include incorporating the
traditional space-saving ideas of Hirschberg [12] as well as some new
data-packing techniques to reduce the space overhead; The running-time
bottleneck in our method of computing exact Steiner sequences is effec-
tively handled by a much faster heuristic alternative that has never shown
more than two percent degradation in quality in our extensive preliminary
testing. Finally, other programs in the suite allow automatic generation
of linear-programming models as files that can be input to the popular
commercial CPLEX package. The solution of these programs give lower
bounds on the minimum TA and SP alignment values for the given set
of sequences, thus providing the deviations from optimality on a case-by-
case basis.

We formally describe the various objectives and methods in the re-
mainder of this section. In Sect. 2 we give a high level description of the
algorithms in SALSA, together with an analysis of the individual steps.
In Sect. 3 we report on some experimental results on real data.

1.1 Edit Distance

At the heart of any alignment algorithm lies the procedure for optimally
comparing two given sequences. This problem is called pairwise align-
ment, and is formulated as follows. Given symmetric costs ¢(a,b) for re-
placing a symbol a with a symbol b and costs ¢(a, —) for deleting (insert-
ing) symbol a, find a minimum cost set of symbol operations that turn
a sequence S’ into a sequence S”. It is well known that this problem can
be solved by dynamic programming in time and space O(I?), where [is
the length of the sequences. The value of an optimal solution is called the
edit distance of S" and S and denoted by d(S’, S").

An alignment A of two (or more) sequences is a way of inserting “—”
characters (gaps) In the sequences so that they become of the same length.
For two sequences S" and S”, the value d 4(S’, S”) of their alignment is ob-
tained by adding up the costs for the pairs of characters in corresponding
positions. It is immediate that d(S’, S”) = min g d4(S’, S").

1.2 The Sum—of-Pairs Alignment Problem

The SP score is the generalization to many sequences of the pairwise align-
ment objective, in which the cost of the alignment is obtained by adding
the costs of the symbols matched up at the same positions. Analogously,
in a multiple alignment the cost is obtained by adding up the matching
characters, over all the positions and for all the pairs of sequences.

Minimizing SP is NP-hard [26]. In [9] Gusfield showed that a tree-
based progressive alignment method due to Feng and Doolittle (described
below) using the minimum cost star gives a 2 approximation. In the pro-
gram described in this paper we push this idea further, by considering
also trees that are not only stars and also employing alignments with
sequences which are not in the original set, but are derived from it as
Steiner sequences of some of the original ones.

1.3 The Tree Alignment Problem

In the tree alignment problem, we are given n sequences related by an
evolutionary tree T'. The sequences label the leaves of the tree, while the
internal nodes correspond to the unknown ancestral sequences from which
the others have evolved. The problem consists in finding the sequences
at the internal nodes which minimize the cost of the tree, defined as
Z(Si,sj)eT d(S;,S;). When T is a star, the problem is called a Steiner
problem, and the optimal sequence for the center is called the Steiner
sequence for the leaves.

The first exact algorithm for tree alignment was proposed by Sankoff
in [18], and is based on dynamic programming. Later Altschul and Lip-
man [1] introduced some bounding rules to reduce the size of the dynamic
programming lattice. Due to the prohibitive worst case complexity of ex-
act methods, approximation algorithms for this problem were devised,
by Jiang, Lawler and Wang [27] first, and improved by Wang and Gus-
field [25] later. In [27] a 2 approximation method is described, based on
what are called lifted alignments. In lifted alignments, the internal nodes
can only be labeled by sequences occurring at the leaves. The running
time of their algorithm is O(n?l? + n3) for a tree of n leaves of length
l. For trees of bounded degree d, they also provided the first PTAS for
the problem. For any ¢, their approximation scheme guarantees a solution
within a factor 1 + 2 of optimal, in time O(n2+d =1 d' = =1/d-1y,

For regular d ary trees on n sequences, Ravi and Kececioglu gave
in[17] a Zf]l —approximation algorithm with running time roughly (O(2kn)?)

the main ideas of their algorithm are briefly described in Sect. 2. The
program SALSA described in this paper is the first implementation of the
ideas in [17].

1.4 A Tree-based Progressive Alignment Method

A reasonable requirement on the cost function is that ¢(a,a) = 0 Va, and
it obeys triangle inequality. In this case, the edit distance induces a met-
ric over the space of all sequences and, given n sequences, we can talk of
graphs having the sequences as vertices and for which an edge is weighted
by the edit distance between the endpoints. In this setting, graph theoret-
ical concepts such as spanning trees, stars and Steiner points, have been
widely used in the design and analysis of effective alignment algorithms.
In particular, a folklore approach to multiple alignments is due to Feng
and Doolittle [6] and shows how we can use any tree to align a set of n
sequences. The appeal of the approach is that for n —1 out of n(n—1)/2
pairs, the pairwise alignment induced is in fact optimal.

Proposition 1. For any tree T over a set of sequences, there exists
a multiple alignment A(T) of the sequences such that da)(S',S") =
d(S',S") for all the pairs of sequences (S',S") connected by an edge of
the tree.

Feng and Doolittle’s method can be used to turn the solution of the
tree alignment problem, namely a labeling of the internal nodes of the
given tree, into a multiple alignment of the leaves. Moreover, it is straight-
forward to upper bound the distance in this alignment of pairs that are

not endpoints of a tree edge. In fact, denote by d(S’, S”,T) the length
of the path in T between two sequences S’ and S”. Then, by triangular
inequality we have that d 4 (S’,8") < d(S', 8", T). This inequality sug-
gests that, given a tree with sequences at the leaves for which we want to
minimize average pairwise distance in the resulting multiple alignment,
a good labeling for the internal nodes is one which minimizes the total
inter-leaf distance in the tree. This strategy is adopted in this work to
obtain alignments of small SP value, as described in 2.3.

1.5 SALSA Program Suite

In this paper we describe the program SALSA (Sequence ALignment via
Steiner Ancestors), which can be used for both TA and SP multiple align-
ments. SALSA is in fact a program suite, including modules for computing
LP-based lower bounds for TA and SP, and optimal alignments of two or
three sequences.

The main program takes as input a set £ = {S1,...,S,} of n se-
quences and possibly a tree T' of which £ are the leaves. If the phyloge-
netic tree is not available, the algorithm internally computes one, which
is then used to find an alignment of small SP value. If the tree is given,
then the TA objective is optimized!. The output of the algorithm consists
of a multiple alignment of the input sequences, plus some extra informa-
tion, such as the Steiner sequences computed at the internal nodes of the
phylogenetic tree.

SALSA is based on the ideas introduced by Ravi and Kececioglu in [17]
of using Steiner sequences of the leaves to label the internal nodes of the
tree. While in their paper Ravi and Kececioglu show that if the tree is
d ary the method gives a % approximation for TA, in our work we do
not restrict the degree of each node to a constant. Therefore we do not
have the same approximation guarantee. However, among all the labelings
considered is included the best lifted labeling of [27] and therefore we still
have a performance guarantee of 2 for the TA objective. As is typically the
case, this bound turns out to be largely pessimistic and our computational
results show that the algorithm performs much better in practice.

The 2—approximation guarantee holds also for the SP alignments. Re-
call that we include, among all the labelings considered, one in which
the internal nodes of the tree are all labeled with any leaf S. For this
particular labeling, the resulting tree is equivalent to a star centered at

! The choice of the objective in the presence or absence of the tree can also be user-
specified

S, and as remarked before [9], the best star centered at a leaf gives a
2—-approximation.

2 Procedure Overview

Our program is largely based on a heuristic procedure by Ravi and Ke-
cecioglu ([17]) for solving the tree alignment problem. Their algorithm
relies on labeling the internal nodes with Steiner sequences for subsets of
p leaves, where p is a parameter. The procedure is divided in two phases.
In the first phase a Steiner sequence is computed for every subset of
q < p leaves, obtaining a set F of all such Steiner sequences. In the sec-
ond phase, dynamic programming is used to compute the best labeling of
the internal nodes among those in which only labels from F are allowed.

In this work, we have decided to solve the TA problem by employing
Ravi and Kececioglu’s algorithm, with the following variants: (i) Because
computing exact Steiner sequences is expensive, we have limited the size of
the subsets for which a Steiner problem is solved to p = 3. (i7) In addition
to Sankoff’s exact algorithm for Steiner sequences, with complexity O(I3),
we also use a heuristic algorithm, with average (empirical) complexity
O(1?). (i7i) We do not necessarily compute the Steiner sequences for all
the (%) possible triples of leaves, but provide alternate, heuristic methods
of sampling significant triples. (iv) We also perform a final re-optimization
step, as introduced by Sankoff et al ([20]).

Our program can be used also to optimize SP. In this case, we first
compute a tree having the given sequences for leaves and then assign
tentative labels to the internal nodes by using Steiner sequences, as for
the TA objective. In choosing the best label at each node, however, we use
dynamic programming to minimize the total leaf to leaf distance in the
tree, which is an upper bound on the final SP score. A final reoptimization
phase can be run to improve the alignment.

The outline of our multiple alignment heuristic procedure is given
below.

1. Tree computation.
— TA: none (the tree is given).
— SP: We compute a phylogenetic tree having the given sequences
as leaves - this is derived from a MST on the sequence graph.
2. Solution of Steiner problems. We tentatively assign to each of the
internal nodes of the phylogenetic tree a set of labels, given by the
Steiner sequences of some subsets of the leaves.

3. Optimal labeling by Dynamic Programming. We find for each internal
node the best sequence among those in its set of possible labels.

— TA: The objective is to minimize the total tree-length.

— SP: The objective is to minimize the total leaf to-leaf distance in
the tree.

4. Local re-optimization.

— TA: At each node of degree three we replace the current sequence
by the Steiner sequence of its neighbors. We iterate as long as
there are improvements.

— SP: (after step 5.) We iteratively break up the alignment into two
subalignments that are then realigned optimally. The subalign-
ments chosen have a large average difference in the current value
versus the edit distance.

5. Final alignment by Feng and Doolittle. We compute a multiple align-
ment of all the resulting sequences (both leaves and internal nodes)
by the progressive alignment method of Feng and Doolittle.

We elaborate on some of these steps next.

2.1 Tree Computation.

In order to derive a phylogenetic tree T' relating a set of sequences when
one is not input, we use a simple greedy approach. We start with 7" being
a minimum cost spanning tree of the edit distance graph. Let (u,v) be
the largest cost edge of T. Break up T by deleting edge (u,v) into two
trees Ty containing u and 7T, containing v. Recursively, apply the same
procedure to T, and T,, obtaining two new trees, T,y and T, rooted at
new nodes 1’ and v’ respectively. Finally, join these two subtrees by means
of edges (u', w) and (v', w) to a new root node w, thus obtaining the final
phylogenetic tree.

2.2 Solution of Steiner Problems.

Choice of Steiner Sequences Given a set of possible sequences (labels)
for each internal node of the tree, choosing the best label is done by
dynamic programming (described in 2.3) and is very fast in practice. On
the other hand, computing the labels is very expensive. Therefore once
some labels have been computed, it is convenient to store them at every
internal node, i.e. all the nodes will have the same set G of labels. As
previously noted, the labels allowed at the internal nodes will only be
Steiner sequences for some subsets of ¢ < 3 leaves. When ¢ = 1 or 2, a

Steiner sequence is simply a leaf, so that it will always be G = L U G,
where G’ is a set of Steiner sequences for some triples of leaves. Let us
denote by Y(S;, S}, S) a Steiner sequences for the triple (S;, S, Si). We
allow three possibilities for G':

— G'" = (. In this case the internal nodes are labeled with leaves se-
quences only. This option results in the fastest running time, but may
produce poor final alignments, especially when the given sequences
are very dissimilar. Note that among the alignments based on these
labels are included all lifted alignments [27] for TA. Similarly, these
labels contain also all star alignments for SP.

- G ={Y(5;,5,Sk) : i < j < k}. This is computationally the most
expensive option, since it requires the solution of (}) Steiner problems.
On the other hand, the larger set of possible labels at the internal
nodes guarantees a better value of the final alignment.

— Let S1,59,...,5, be the sequence of leaves as encountered by per-
forming a depth-first visit of the tree. Then, G' = {Y (S}, Sk, Sh) :
h=k+1=j+2o0r h=Fk+A=j+2A} where A = [%]. The inten-
tion is to heuristically obtain a uniform sampling by selecting triples
of leaves from different positions in an Euler tour of the tree. This
option is quick —there are only O(n) such triples— but ensures that
each sequence is included in some triples, and that all the sequences
are given the same representation in the sampling.

Exact Steiner Sequences Assume we are interested in finding a Steiner
sequence for three sequences Uy, Uy and Us. The dynamic programming
procedure computes the optimal alignment of the variable Steiner se-
quence and Uy, Us and Us. This is done backwards from the final column
of the alignment, which will be of the form (z1,z9,z3,y)’, where each z;
is either the last letter of the sequence U; or a blank (but at least one x;
must be nonblank), and y is any nonblank letter of the alphabet Y. For
any letter 2, define 1 -2 =z and 0.2 = —. Let BT = {0,1}3\ (0,0,0) be
the set of nonnull binary 3—vectors and let V (I1,[3,l3) be the cost of an
optimal Steiner sequence for the the first [1, ls and I3 characters respec-
tively of Uy, Uy and Us. The recursive dynamic programming relation is
then

beB+ yex i

3
V(ll,lg,lg) = min {V(Il — bl,lg — bg,lg — b’;) + min C(b, . U7[]7],1/)}

The Steiner sequence is given, as customary in dynamic programming,
by backtracking through the values V(ly,ls,13) along the path for an
optimal solution and listing the letters § = arg min 3%, c(b; - Si[li], v)
which achieve the minimum in the above expression. Note that the above
recurrence requires time and space complexity of O(713), provided that
for all (21,29, 23) € X°, the values C(z1, 29, z3) := minyex 3 ez, y)
have been computed in a preliminary step and stored in a look-up table.
In our implementation we have reduced the space complexity to O(I?) for
the matrix V (7, j, k) using ideas from [12].

Heuristic Steiner Sequences Computing exact Steiner sequences is
very time consuming. For instance, the solution of a problem on sequences
of about 200 letters each takes roughly half minute on a Pentium PC. Con-
sidering that for aligning 10 sequences we may have to solve (130) =120
such problems, we see that speeding up the computation of Steiner se-
quences would be greatly beneficial. Therefore, we have devised an alter-
native, heuristic way of computing Steiner sequences which is extremely
faster and turns out to be almost optimal after extensive testing (see
Sect. 3).

The idea is to first find all optimal alignments of two of the three
sequences, say S and So. They correspond to all the shortest paths from
(0,0) to (|S1],]S2|) in the |Si| x |S2| dynamic programming lattice used
for the pairwise alignment, and can be represented in a compact form
as the subgraph of the lattice of all the edges on some optimal path.
Note that this subgraph is typically much smaller than the whole lattice
(empirically, O(l) versus O(I?)). Then, we perform a graph-to-sequence
alignment, i.e. we find the best completion of an optimal alignment of Sy
and Sy with Ss. In this case, “best” is taken with respect to the Steiner
objective.

The value of the final solution may depend on the ordering of the
sequences, since S3 is clearly used differently than S; and Ss. We have
observed in our experiments that choosing S; and S5 to be the two closest
sequences results in the best Steiner sequences over the three possible
choices. However, since the algorithm is very fast, we compute all three
possibilities of first aligning together two sequences and then versus the
third, and return the best solution found. We conclude this section by
remarking that the computation of heuristic Steiner sequences takes on
the average one second for sequences of length 200, while returning a
solution whose value was never more than 2% larger than the optimum
in our extensive testing.

2.3 Optimal Labeling by Dynamic Programming.

In this section we consider the problem of optimally assigning a sequence
from a given set G to each internal node of the tree. Denote by wy, ..., w;
the nodes which are immediate descendants of a node i. Let V (i, S) be
the optimal value for the subtree rooted at ¢ when node 7 is labeled with a
sequence S € G. We have the following dynamic programming recurrence:

0if 7 is a leaf

V('L, S) - { minL1 oo Lt €G Z,I;:l (>‘(7a U)j)d(S, LJ) + V(U)j, LJ)) otherwise

The coefficients A(7,w;) allow us to distinguish between the two ob-
jective functions - TA and SP. For the TA objective, V (i, S) represents
the minimum total length of the subtree, among the labelings that as-
signs S to ¢. This is obtained by setting all the A equal to 1. For the
SP objective, we want to find the labels which minimize the total leaf
to—leaf distance. For any edge (u,v) of T', we set A(u,v) to be the num-
ber of pairs of leaves whose connecting path in the tree goes through
(u,v). This value, called the load of the edge, is equal to k(n — k), where
k is the number of leaves on one shore of the cut identified by (u,v).
By using the loads, the total leaf-to-leaf distance can be rewritten as
25,5, 485, S5, T) = X uwyer Mu,v)d(L(u), L(v)), where L(u) and L(v)
are the sequences labeling nodes u and v.

Using the above relation, first the value of each label at each node is
computed bottom up, and later, proceeding top down from the root, it
is determined which label to pick at each node for obtaining an optimal
solution. The overall complexity is O(n|G|?), i.e. a very fast procedure.

2.4 Reoptimization

The reoptimization for TA objective is the same as in Sankoff et al [20].
For SP, however, we use a novel approach. As in other works (e.g. [7])
we repeatedly break up the alignment into two pieces that are then re-
aligned optimally via the basic dynamic program for edit distance. The
new idea relies in how these alignments are chosen. Since for each pair
of sequences in the same subalignment the distance remains the same,
the only improvement can be for sequences that are in different subalign-
ments. Let §(5,S5") = d4(S,S") —d(S,S"). If A; and Ay are the subalign-
ments, 6(A1, A2) = Y gca,.57¢4, 0(5,5") is the 0 value of the cut (A;, As)
in the graph of all sequences, and §(.A;1,.42)/]A1]|.A2| is a per—sequence
measure of how bad the alignment currently is versus the lower bound

given by the edit distance. Hence we want to reoptimize some cuts of high
(per—sequence) value, which we find through standard greedy heuristics.
We have different settings on how far the reoptimization phase can be
pushed. In the most expensive setting, for each pair (S, S’) of sequences
we find a large value cut separating them and relign it. We iterate as long
as there are improvements.

3 Computational Experiences

For our preliminary tests, we used two popular data sets. First, we ob-
tained the sets of protein sequences of Mc Clure [16], used extensively to
benchmark programs guides by the SP objective. For the Tree Alignment
problem, we have used a famous instance by Sankoff et al [20], used as a
benchmark in [10, 13].

As for the cost matrix, in our experiments we have used a distance
matrix due to Taylor ([23]) for amino acid sequences, and the matrix in
Sankoff ([20]) for DNA sequences. Our program also works with all the
common score matrices (e.g. PAM, BLOSUM, etc).

1. Lower Bounds. A unique feature of the SALSA suite is a pro-
cedure to generate LP lower bounds on the TA and SP objective values
of the given instance by using the Steiner sequences for triples computed
so far. We describe the LP for the TA problem. We use a variable for
the length of every edge of the tree, and the objective is to minimize the
sum of lengths of all tree edges. A distance of d between a pair of leaves
S; and S allows us to add the constraint that the sum of the values of
the edge lengths on the path between S; and S; in the tree must be at
least D. Similarly, given a value of T'A(i, j, k) for the minimum sum of
the distances from an optimal Steiner sequence for the triple (S;, S;, Sk)
to the three sequences S;, S; and Sy, we add the constraint that the sum
of the lengths of all the edges in the tree induced by the three leaves
S;, S; and Sj must be at least T'A(i, j, k). The set of constraints for dis-
tances between pairs of leaves was experimented with in [10], while the
strengthening to triples gives better bounds as reported below.

A similar argument to use the Steiner triples in a lower bound for
the SP objective yields a simple lower bound of 3, ; , SP(i, 5, k) /(n — 2)
for n sequences, where SP(i, 7, k) denotes the optimal sum-of-pair value
for the triple S;, S; and Si. This may be further extended to a LP lower
bound with one variable for the distance between every pair of sequences
in the multiple alignment.

Table 1. Heuristic vs exact Steiner sequences. Times in seconds, Pentium 133Mhz

tot | tot relative time time
instance|seqs|triples error exact |heuristic
avg | min | max |min|max|min|max
sank | 9 84 (0.003| 0 |0.02|15.8{41.0{0.6| 1.9
mc582x6| 6 20 10.004| 0 |0.011(52.3|75.6/0.5|3.0
mc586x6| 6 20 |0.007| 0 (0.017|17.8|42.5(0.6 | 2.1
mc587x6| 6 20 |0.01{0.003|0.019{29.2|71.9/0.8| 2.7

2. Steiner Sequences. First, we have determined the quality of
heuristic vs exact Steiner sequences. The results, are reported in Table 1.
For these tests, we have used four data sets, i.e. the sequences from Sankoff
and three sets of sequences from McClure. These sequences have between
one hundred and two hundred letters each. For each set, we have com-
puted for each triple the exact and heuristic Steiner sequences, and com-
pared the relative errors. It should be noted that on these sequences, the
heuristic is roughly thirty times faster than the exact procedure, while
the average error is less than one percent. A striking result was that in 41
out of 84 triples for the sank instance, the heuristic solution was in fact
optimal.

3. Tree Alignment. A second experiment was performed to access
the quality of the solution to the Tree Alignment problem, and the relative
performance with different settings of the program. We have run SALSA
on Sankoff’s problem with all possible combinations of user choices. The
results are reported in Table 2. Again, it should be noted that using
heuristic Steiner sequences is greatly beneficial to the computing time,
and, since the whole procedure is heuristic in nature, can even lead to
better solutions than the exact option. This is indeed the case here.

In order to evaluate the quality of the results, we have computed the
lower bound on the problem by using our LP module. The LP lower
bound based on all the Steiner sequences of triples for the TA objective is
266.375 improving over the best bound of 253.5 previously known ([10]).
The optimal lifted alignment finds a value of 364, as also reported in [10].
Using heuristic Steiner sequences, we find a solution of value about 302
in about 7 minutes. Contrast this with the best upper bound of 295.5
by Sankoff et al. [20]. Our improved lower bound shows that Sankoff’s
solution is within 11% of optimal.

4. Sum of Pairs. For the SP objective, we report some results for
the McClure data sets (Table 3). For each problem, we have computed

the trivial lower bound given by the sum of edit distances, and two lower
bounds based on the optimal SP alignment of triples of sequences. We
have run SALSA with heuristic Steiner sequences, sampling all triples.
Our solutions are in an interval of 2 to 9 percent from the lower bound.
The table shows also the effectiveness of local reoptimization. For com-
parison, we also report the SP value of the star alignment (Gusfield, [9]).

Table 2. TA results on the instance sank. Times in seconds, Pentium PC

Triples|Steiner|Reopt|Value |Time
ALL HEUR |EXACT|302 592
ALL HEUR | HEUR |302.25| 424
ALL | EXACT |EXACT|303.25| 2802
SOME | EXACT |EXACT|304 493
ALL | EXACT | HEUR |304.25| 2599
SOME | EXACT | HEUR |304.5 267
SOME | HEUR |EXACT|314 201
SOME | HEUR | HEUR [315.75 23
NONE - EXACT|320 152
NONE - HEUR |320.5 6
ALL HEUR | NONE |322.25| 298
ALL | EXACT | NONE |322.5 | 2387
SOME | EXACT | NONE (333.5 | 258
SOME | HEUR | NONE [333.75 15
NONE - NONE |364 1

Table 3. SP lower and upper bounds for McClure data sets

Instance |LB pairs|LB triples| LB lp [Star align.|SALSA Err %|SALSA+reop Err %
mc582x6 | 25411 26056 | 26100 | 28444 | 27647 0.06 26963 0.03
mc586x6 | 25191 25979 | 26029 | 29307 | 28605 0.10 27498 0.05
mc587x6 | 29914 30802 |30864 | 34085 | 34152 0.11 32664 0.05
mc582x10(70718 72274 | 72757 | 82011 77676 0.07 75131 0.03
mc586x10| 81745 84211 | 84662 | 99140 | 97725 0.15 91754 0.08
mc587x10(95002 97889 | 98349 | 115918 |110463 0.12 105806 0.07
mcb82x12| 98810 | 100720 |101464| 113328 |[105674 0.04 103803 0.02
mc586x12| 116889 | 120409 [121130| 143792 |139398 0.15 131980 0.08
mcb87x12| 140679 | 145043 |145804| 174270 |[164883 0.13 160256 0.09

References

1.

2.

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

S. Altschul and D. Lipman, Trees, Stars and Multiple Sequence Alignment,
SIAM J. Appl. Math. 49 (1989) 197 209

S. Altschul, D. Lipman and J. D. Kececioglu, A tool for multiple sequence
alignment. Proc. Natl. Acad. Sci. USA 86 (1989) 4412 4415

V. Bafna, E. L. Lawler and P. Pevzner. Approximation Algorithms for Mul-
tiple Sequence Alignment. Proceedings of the 5th Combinatorial Pattern
Matching conference LNCS 807 (1994) 43 53

H. Carrillo and D. Lipman. The multiple sequence alignment problem in
biology. SIAM J. Appl. Math. 49:1 (1989) 197 209

S. C. Chan, A. K. C. Wong and D. K. Y. Chiu, “A survey of multiple sequence
comparison methods,” Bull. Math. Biol. 54 (1992) 563-598

. D. Feng and R. Doolittle. Progressive sequence alignment as a prerequisite

to correct phylogenetic trees. J. Molec. Evol. 25 (1987) 351 360

0. Gotoh, Optimal alignment between groups of sequences and its application
to multiple sequence alignment, CABIOS 9:3 (1993) 361-370

S. K. Gupta, J. Kececioglu, and A. A. Schaffer, Making the Shortest-Paths
Approach to Sum-of-Pairs Multiple Sequence Alignment More Space Efficient
in Practice, (extended abstract) Proceedings of the 6th Combinatorial Pattern
Matching conference (1995)

D. Gustield, Efficient methods for multiple sequence alignment with guaran-
teed error bounds, Bulletin of Mathematical Biology 55 (1993) 141 154

D. Gusfield and L. Wang, New Uses for Uniform Lifted Alignments, Submit-
ted for publication (1996)

D. G. Higgins, A. J. Bleasby and R. Fuchs, Clustal V: Improved software for
multiple sequence alignment, CABIOS 8 (1992) 189-191

D. Hirschberg, A linear space algorithm for computing maximal common
subsequences, Communications of the ACM 18 (1975) 341 343

T. Jiang and F. Liu, Tree Alignment And Reconstruction ap-
plication software, Version 1.0, February 1998. Available from
http://www.dcss.mcmaster.ca/~fliu.

D. Lipman, S. Altschul and J. D. Kececioglu, A tool for multiple sequence
alignment. Proc. Natl. Acad. Sci. USA 86 (1989) 4412 4415

S. B. Needleman and C. D. Wunsch. A general method applicable to search
the similarities in the amino acid sequences of two proteins. J. Mol. Biol., 48
(1970) 444

M. A. McClure, T. K. Vasi and W. M. Fitch. Comparative analysis of multiple
protein sequence alignment methods, Mol. Biol. Evol. 11 (1994) 571 592
R. Ravi and J. Kececioglu. Approximation algorithms for multiple sequence
alignment under a fixed evolutionary tree, Proceedings of the 6th Combina-
torial Pattern Matching conference (1995) 330-339

D. Sankoff, Minimal mutation trees of sequences, SIAM J. Applied Math.
28(1) (1975) 35-42

D. Sankoff and R. Cedergren, Simultaneous comparison of three or more se-
quences related by a tree, in D. Sankoff and J. Kruskal editors, Time warps,
string edits and macromolecules: the theory and practice of sequence compar-
ison, Addison Wesley (1983) 253 264

D. Sankoff, R. Cedergren and G. Laplame, Frequency of insertion-deletion,
transversion, and transition in the evolution of the 5s ribosomal rna, J. Mol.
Evol. 7 (1976) 133-149

21.

22.

23.

24.

25.

26.

27.

D. Sankoff, Analytical approaches to genomic evolution, Biochimie 75 (1993)
409-413

T. F. Smith and M. S. Waterman. Comparison of Biosequences. Adv. Appl.
Math. (1981) 482 489

W. R. Taylor and D. T. Jones. Deriving an Amino Acid Distance Matrix, J.
Theor. Biol. 164 (1993) 65-83

M. Vingron and P. Argos. A fast and sensitive multiple sequence alignment
algorithm. Comput. Appl. Biosci. 5 (1989) 115-121

L. Wang and D. Gusfield. Improved Approximation Algorithms for Tree
Alignment, Proceedings of the 7th Combinatorial Pattern Matching confer-
ence (1996) 220-233

L. Wang and T. Jiang. On the complexity of multiple sequence alignment, J.
Comp. Biol. 1 (1994) 337 348

L. Wang, T. Jiang and E. L. Lawler. Aligning sequences via an evolutionary
tree: complexity and approximation, Algorithmica, to appear. Also presented
at the 26th ACM Symp. on Theory of Computing (1994)

