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A central issuein aformal approach to design and analysis of reactive systemsistheno-
tion of refinement. Therelation” Ay refines Ag” isintuitively meant to say that “system
Ag hasmore behaviora optionsthan system A;,” or equivaently, “ every behaviora op-
tion realized by implementation A isallowed by specification Ag.” Broadly speaking,
there are two kinds of interpretationsfor “behavioral options’: global interpretationsas
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sequences of observables, and local interpretations as successor observables at individ-
ual states. The former leads to refinement as trace containment, or one of its relatives;
the latter leads to refinement as simulation [Mil 71], or one of its relatives.

Consider now a composite implementation A;||B and specification As||B. Sup-
pose we want to check that the A-component A; of the implementation refines the
A-component Ag of the specification. The traditional refinement preorders are inap-
propriate in this setting, because they allow A; to achieve refinement by constraining
its environment B, for example, by refusing certain inputs from B. This problem is
well-known, and has led to more complicated versions of refinements such as ready
simulation and failures containment. These variants have been defined on the labeled
transition graphs of components in such a way that they are congruent with respect to
paralel composition; then, it suffices to provethat Ay refines Ag in order to conclude
that As||B refines As||B. However, now the burden is on Ag to alow al possible
behaviors of B, such as permitting at any time any input from B. If more complicated
assumptions are required about B, they also need to be folded into A 5. We suggest a
different, potentially more general route, of modeling the environment B explicitly. In
thisway, we can keep all assumptions about the environment separate from the models
of A. The main problem then is to specify, and verify, the relation “ A refines Ag
without constraining the environment B.” For this purpose, we propose definitions of
simulation and trace containment that are parameterized by names of components. The
resulting alternating refinement preorders allow usto check refinement with respect to
any subset of the system components.

Composite systems can be viewed as multi-agent systems [Sha53, HF89]. While
in labeled transition systems, each transition corresponds to a possible step of the
system (which may involve some or all components), in multi-agent systems each
transition correspondsto a possible move in agame between the components (which are
called agents). We model multi-agents systems by alternating transition systems (ATS),
proposed in [AHK97]. In each move of the game between the agents of an ATS, the
choice of an agent at a state is a set of states, and the successor state is determined by
considering theintersection of the choices made by all agents. Unlikelabeled transition
systems, ATS can distingui sh between collaborativeand adversaria rel ationshi psamong
components. For example, the environment is typically viewed adversarially, meaning
that acomponent may berequired to meet itsspecification no matter how theenvironment
behaves. Then, a refinement of the component must not constrain the environment. By
contrast, if two components collaborateto meet a specification, then arefinement of one
component may constrain the other component.

Before we explain aternating refinement relations, let us consider the simulation
refinement that is defined via games played on the graphs of |abeled transition systems.
To determinewhether theinitia state s of system A issimulated by theinitial statet of
system Ag, consider thefollowing two-player gamebetween protagonist and antagonist.
With each move of the game, the antagonist updates the state of Ay applying any
transitionof Ay, and then, the protagonist must updatethe state of A s using atransition
of As so that the observables of the updated states match. If the protagonist fails to
produce a match, the antagonist wins; if the game continues forever, the protagonist
wins. The state s issimulated by ¢ if the protagoni st has awinning strategy in thisgame.



For asubset A of agents, theaternating A-simulationrelationisdefined viaasimilar
two-player game, except that the game is played on the graph of an ATS and a move
now consists of four parts. Consider the game scenario with antagonist at state s and
protagonist at state ¢. First, the antagonist makes choices for the the agents in A at
state s. Second, the protagonist makes choices for the agentsin A at state¢. Third, the
antagonist updates the state ¢ in away that is consistent with the choices made in the
second part. Fourth, the protagoni st updates the state s consistent with the choices made
in the first part so that the observables of the updated states match. Thus, compared
to the smulation game for labeled transition systems, protagonist and antagonist play
the same roles for the choices of the agentsin A, while their roles are reversed for the
choices of the agentsnot in A.

We present several results that support the claim that our definition of aternating
simulationisanatural, and useful, generalization of Milner’ssimulation. First, when re-
stricted to ATS with asingle agent—i.e., to label ed transition systems—the two notions
coincide. Second, we show that for finite ATS, deciding A-simulation, for agiven set A
of agents, is solvable in polynomia time. Third, we present a logical characterization
of aternating simulation. In [AHK97], we proposed alternating temporal logic as a
language for specifying properties of system components. In particular, ATL and ATL*
are the aternating versions of the branching temporal logics CTL and CTL*. Besides
universal (do all computations satisfy a property?) and existential (does some compu-
tation satisfy a property?) requirements of CTL, in ATL one can specify alternating
requirements: can a component resolve its choices so that the satisfaction of a property
is guaranteed no matter how the environment resolves its choices? We show that an
ATS S is A-smulated by an ATS Z precisely when every ATL (or ATL*) formulawith
path quantifiers parameterized by A that holdsin S, aso holdsinZ. Thisresult, which
generalizes the relationship between ordinary simulation and the universal fragment of
CTL (or CTL*), dlows us to carry over dternating temporal logic properties from the
specification to the implementation.

The second refinement rel ation studied in thispaper i strace containment. For labeled
transition systems, the specification S trace-contains the implementation Z if for every
global computation of Z chosen by the antagonist, the protagonist can produce a com-
putation of S with the same sequence of observables. The corresponding generalization
to ATS is alternating trace containment. For ATS § and Z and a set A of agents, the
relation Z A-trace-contains S is determined as follows: the antagonist first chooses a
strategy in S for the agents in A, the protagonist then chooses a strategy in Z for the
agentsin A, the antagonist then determines a computation of Z by resolving in Z the
choicesfor the agentsnot in A, and finally, the protagoni st must produce a computation
of S with the same sequence of observables by resolvingin S the choices for the agents
notin A.

Asisthe casefor the corresponding rel ationson label ed transition systems, alternat-
ing simulationimpliesaternating trace containment, but not vice versa. Checking alter-
nating trace contai nment correspondsto checking inclus on between sets of w-languages
(i.e., between sets of sets of traces). Our solution is based on anovel application of tree
automata in which w-languages are represented as trees. We show that the problem of
deciding alternating trace containment is EXPTIME-complete, and we give a logical



characterization of aternating trace containment using a fragment of ATL* .

2 Alternating Transition Systems

In ordinary transition systems, each transition corresponds to a possible step of the
system. In alternating transition systems (ATS, for short), introduced in [AHK97],
each transition corresponds to a possible move in the game between the underlying
components of the system. We refer to the components as agents. In each move of the
game, every agent chooses a set of successor states. The game then proceeds to the
dtate in the intersection of the sets chosen by al agents. Equivalently, each agent puts
a constraint on the choice of the successor state, and the game proceeds to a state that
satisfies the constraints imposed by all the agents.

Formally, an aternating transition systemisa6-tupleS = (17, £2, Q, ¢;n, 7, §) with
the following components:

IT isafinite set of propositions.

2 isafinite set of agents.

@ isafinite set of states.

— ¢;n iSaninitia state.

— 7 : Q — 27 maps each state to the set of propositionsthat are true in the state.
-6 Qx22 — 22% s a transition function that maps a state and an agent to a
nonempty set of moves, where each move isa set of possiblenext states. Whenever
the system is in state ¢, each agent a chooses a set @, € é(q,a). Inthisway, an
agent a ensures that the next state of the system will bein its move @ ,. However,
which state in @, will be next depends on the moves made by the other agents,
because the successor of ¢ must lieintheintersection(), ., @. of themoves made
by al the agents. We require that the transition functionis nonblocking and that the
agents together choose a unique next state: assuming 2 = {as, ..., a,}, for every
state ¢ € @ and every set 1, ...,Q, of moves Q; € é(q, a;), the intersection
Q1N...NQ, isasingleton.

The number of transitionsof S isdefinedtobe " o ,c o 16(g, a)|. For twostates g and
q' and an agent a, we say that ¢’ isan a-successor of q if thereexistsaset Q' € é(q, a)
such that ¢’ € @'. For two states ¢ and ¢, we say that ¢’ is a successor of ¢ if for dll
agentsa € {2, thestate ¢’ isan a-successor of ¢. Thus, ¢’ isasuccessor of q iff whenever
the system S isin state ¢, the agentsin {2 can cooperate so that ¢’ will be the next state.
A computation of S isan infinite sequence n = qo, q1, g2, . - . Of states such that for al
positions: > O, the state ¢; 1 is a successor of the state ¢;. We refer to a computation
dtarting at state ¢ as a g-computation. For acomputation  and apositioni > 0, we use
nli], n[0, i], and n[i, oo] to denote the i-th state in 5, the finite prefix ¢o, 1, . . ., ¢; Of 7,
and theinfinitesuffix ¢;, ¢;+1, . . . of n, respectively. Each computationn = qo, g1, 92, . . .
induces atrace 7(n) = m(qo0) - 7(q1) - 7(q2) - - - in (27)~.

Example 1. Consider asystem withtwo processes a and b. The process a assignsvalues
to the boolean variable z. When z = false, then a can leave the value of = unchanged



or change it to true. When z = true, then a leaves the value of z unchanged. In a
similar way, the process b assigns values to the boolean variable y. When y = false,
then b can leave the value of y unchanged or change it to true. When y = true, then b
leaves the value of y unchanged. The initial value of both = and y is false. We model
the composition of the two processes by the following ATS S = (17, 2, Q, q, 7, 8):

-1 = {;L‘, y}'

— 2 =/{a,b}.

- Q = {4,9y, 90, qzy }. The state ¢ corresponds to x = y = false, the state ¢,
correspondsto x = true and y = false, and similarly for ¢, and g, .

— Thelabeling function 7 : Q — 2™ istherefore as follows:

o w(q) = 0. o 7(q;) = {z}.
o m(qy) = {y}. o 7(qay) = {4}

— Thetransitionfunctioné : @ x 2 — 227 isasfollows:
L4 6(Q1 a) = {{Q7Qy}7 {qan Qxy}} hd 6((]7 b) = {{(L Qx}1 {an Q:cy}}
* 6(qma) = {{Qx, Qxy}} * 6((]171 b) = {{Qa Qx}a {(Jy: qry}}
o 8(qy,a) = {0, 0y} {92, 9oy } }- ® 8(qy,0) = {{ay, quy } }-
® 8(qoy,a) = {{¢z, 9zy }}- ® 8(qzy,b) = {4y, auy }}-

Consider, for example, the transition 6(q, ). As the process a controls only the
value of z, and can change its value from false to irue, the agent a can determine
whether the next state of the system will be some ¢’ with ¢ € #(q’) or some ¢’
with z ¢ =(q"). It cannot, however, determine the value of y. Therefore, 6(q,a) =
49,9y}, {42, gy } }, 1€tting a choose between {q, ¢, } and {¢, =y}, yet leaving
the choice between ¢ and ¢, , inthefirst case, and between ¢, and ¢, in the second
case, to process b.

Consider the state ¢.. While the state ¢, is a b-successor of ¢, the state ¢, is not an
a-successor of ¢,.. Therefore, the stete ¢, is not a successor of ¢,: when the system
isin state ¢,, the processes a and b cannot cooperate so that the system will move
to ¢,. On the other hand, the agents can cooperate so that the system will stay in state
¢- Or move to ¢,,. By similar considerations, it follows that the infinite sequences
1,4, 9z, 9zs 9z> Ooy AN q, 4y, 4y, 45, AN q, ¢5, are three possible ¢-computations of the
ATS S. |

An ordinary labeled transition system, or Kripke structure, is the specia case of an
ATSwheretheset 2 = {sys} of agentsisasingleton set. In this specia case, the sole
agent sys can always determine the successor state: for al states ¢ € @, the transition
8(g, sys) must contain a nonempty set of moves, each of which isasingleton set.

Often, we are interested in the cooperation of asubset A C {2 of the agents. Given
A, we define

8(q, A) = {T : foreacha; € AthereexistsQ; € 6(q,a;) and T = ﬂ Q:}.
a;€EA

Intuitively, whenever thesystemisin state ¢, theagentsin A canchooseaset 7' € 6(q, A)
such that, no matter what the other agents do, the next state of the system isin T



Correspondingly, we define §(q, 0) to contain the single set of all successors of . When
all agents cooperate, they can decide the next state; that is, 6(q, £2) isaset of singletons.

A drategy for an agent a € £2 isamapping f, : QT — 29 such that for p € Q*
and ¢ € Q, wehave f,(p - q) € 6(q,a). Thus, the strategy f, maps a finite nonempty
prefix p - ¢ of acomputation to a set in 6(q, ). This set contains possible extensions
of the computation as suggested to agent a by the strategy. Each strategy f, induces
a set of computations that agent a can enforce. For aset A of agents, and aset F'y =
{fa : a € A} of strategiesfor the agentsin A, we sometimes refer to F'4 as a strategy
Fa: Q% — 29 where Fa(p) = (N,e4 fa(p). Notethat Fa(p - q) € 6(q, A). Given
a dtate ¢, and a strategy F'4, we define the outcomesin S of F'4 from ¢ to be the set
outs(q, Fa) of al g-computationsthat theagentsin A can enforce when they cooperate
and follow the strategiesin F'4; that is, aq-computationn isin outs(q, Fa) iff n dways
proceeds according to the strategiesin F'4. Formally, n = qo, q1, . . . iSin outs(gq, Fa)
iff g0 = ¢, and for al positionsi > O, the state ;41 IS a successor of ¢; satisfying
giv1 € Fa(n0,1]).

3 Alternating Simulation

We generalize ssimulation between labeled transition systems to alternating simulation
between ATS. Consider fixed sets 1T of propositions and {2 of agents, and two ATS
S={II,2,Q,qn, 76 andS = (II,2,Q,q¢.,,7,8). Forasubset A C 2 of the
agents, arelation H C @ x @’ isan A-simulationfrom S to S’ if for al states ¢ and ¢
with H (g, ¢") the following conditionshold:

(1) 7(q) =7'(¢).
(2) Forevery set T € 6(q, A), thereexistsaset 7" € §'(q', A) such that for every set
R €8 (¢, 2\A), thereexistsaset R € 6(q, 2\ A) sothat (TNR)x(T'NR') C H.

Note that since 6(q, £2) isaset of singletons, the product (7' N R) x (7' N R') contains
asinglepair. If there exists an A-simulation H from S to S’ with H (¢;», ¢.,,), we say
that S A-simulates S, and wewriteS <4 &' (when A = {a} isasingleton, wecal H
an a-smulationand write S <, §’). Itiseasy to check that <, isapreorder on ATS.

Intuitively, H(q, ¢') means that for every move 7" of the agentsin A from ¢, there
existsamatching move 7" of the agentsin A from ¢’ such that for every move R’ of the
agentsin 2\ A from¢’, thereexistsamove R of theagentsin 2\ A from ¢ so that the
successor of ¢’ that followsfrom the moves 77 and R’ isin asimulation relation with
the successor of ¢ that follows from the moves 7" and R. This intuitionis captured in
the following game-theoretic interpretation of alternating simulation. Consider a two-
player game whose positionsare pairs (¢, ¢’} € @ x @' of states. Theinitial positionis
(¢in, ¢’,,). The game is played between an antagonist and a protagonist and it proceeds
in a sequence of rounds. Each round consists of four steps as follows. Assume that the
current positionis {q, ¢').

1. The antagonist choosesaset 7" € §(q, A).
2. The protagonist chooseaset 77 € 6(¢’, A).



3. Theantagonist chooses astate u’ € T’ such that «’ isa successor of ¢'.
4. The protagonist chooses a state u € 7' such that u is a successor of ¢ and 7(u) =
' (u').

If the game proceeds ad infinitum, then the antagoni st | oses. Otherwisethe game reaches
a position from which the protagonist cannot chose « as required, and the antagonist
wins. It can be shown that S’ A-simulates S iff the protagonist has a winning strategy.

Another way to understand alternating simulationisto observe that S’ A-simulates
S iff each behavior that the agentsin A can inducein S, they can aso inducein §’. In
Lemma 1 below, we make this observation formal. For two computations (or prefixes
of computations) n = qo, q1, ... of S and ' = ¢{, ¢}, ... of S, we write H(n,7’) to
abbreviate H (q;, q;) for dl positionsi > 0.

Lemmal. Consider two ATSS and &', and a set A of agents. If H isan A-simulation
from S to &', then for every two states ¢ and ¢ with H(q, ¢') and for every set F4 of
strategiesin S for theagentsin A, thereexistsa set F', of strategiesin S’ for the agents
in A such that for every computation p’ € outs:(¢', F'}), there exists a computation
p € oUts(q, Fa)sothat H(p, p').

Recall that a labeled transition system corresponds to an ATS with the single agent
sys. Our definition of alternating simulation then coincides with Milner’s definition
of simulation between labeled transition systems [Mil71]. Thisis because S <sys S’
iff there exists arelation H where H(q,q') impliesthat #(¢) = #'(¢’) and for every
{t} € 6(q, sys) thereexists {t'} € &'(¢’, sys) suchthat H(¢,¢'). Notealsothat S <y &’
iff there exists arelation H where H(q,q’) impliesthat #(¢) = #'(¢’) and for every
{r'} € (¢, sys) there exists {r} € &é(q,sys) such that H(r,r’). Thus, S <y &' iff
S" <sys S. It follows that alternating simulation can be used on labeled transition
systems to specify both directions of Milner’ssimulation.

Example2. In Example 1, we described an ATS S for a system with two processes «
and b, which assign vaues to the boolean variables » and y. Consider a variant of the
system in which whenever the value of both = and y is false, process b assigns values
to both = and y. We can model the composition of the two processes by the following
ATSS' = (I1,2,Q', ¢, 7', §'):

- Q' =199, % 2y }-
— Thelabeling function 7’ : Q' — 2 isasin Example 1.
— Thetransitionfunction ¢’ : Q' x 2 — 227 isasfollows:

o 8(¢a) = {{¢, 0y, 45, doy } - o8'(¢',b) = {{¢'} {az} {ay ) a2y 1 -
o 8'(qz,a) = {4z, a2y - o8 (g, 0) = {d' a2} gy, 4y} -

o &gy, a) = {H{d ay} a0 any 3 - *8'(qy,b) = {{ay, azy }H}-

o 8(qpy,a) = ({45, aoy - ® 8'(q5y, 0) = {{ay, 42y} }-

Intuitively, while the joint behavior of a and b is the same in S and S’, process b is
more powerful in system &’ than in system S. Every behavior that b can inducein S, it
canasoinducein S’ (formaly, S <; S§’). On the other hand, there are behaviorsthat b



can inducein 8’ but cannot inducein S (formaly, S’ £; S). Dualy, process a ismore
powerful inS thaninS’: wehave §' <, Sand S £, §'.

Consider therelation H = {(q,q'), (92, 43), {2y, 9)> 3wy, 2zy) }- 1t iS €BSY tO SEE
that H is an A-simulation from S to S’ for A € {{a,b},{b},0}. It follows that
S <{ap} S8 < Shand S <y S We now prove that S £, S'. Assume, by way
of contradiction, that an a-simulation relation H’ from S to &’ exists, and let H be as
above. By the definition of a-simulation, it must be that 7' C H and {(q,q¢') € H'.
Since §'(q',a) = {{¢', 45, 4y, 4z, } }, Py condition (2) for an a-simulation, for every set
T € é(q,a) and for every set R’ € &'(¢,b), there existsa set R € é(q, b) such that
(TNR)x R' C H'.Consider thesets{q, ¢, } € 6(¢,a) and {¢,,} € é'(¢’,b). Sincefor
every R € 6(q,b) wehaveq, ¢ RN {q,q,}, itfollowsthat (TN R) x R’ ¢ H', and
we reach a contradiction. O

Proposition 2. Consider two ATS S and §’, and two sets A and B of agents from 2.
Then:

1. 8§ <4 8 doesnotimply S’ <g\a S.
2. § <4 8 doesnotimply S <40 8 for A C A.
3. 8<,48andS <p & doesnotimply S <aup S'.

The properties studied in Proposition 2 describe the power of cooperation between
agentsin S and S’. Intuitively, the properties can be understood as follows.

1. It may be that every behavior that the agentsin A can inducein S, they can also
induce in &', yet till there are behaviors that the agentsin A can avoid in S but
cannot avoid in 8’. Technicaly, it follows that in the definition of A-simulation,
theorder inwhichthesets 7', 7', R, and R’ are selected isimportant, as R and R’
may depend on 7" and T". We note that in the special cases A = 2 and A = (), the
property doeshold. Thus, § <, S’ iff &' <4 S.

2. It may be that every behavior that the agentsin A can inducein S, they can also
inducein &', but the cooperation of all agentsin A isrequired.

3. It may be that every behavior that the agentsin A can inducein S, they can also
induce in 8’, every behavior that the agents in B can induce in S, they can aso
induceinS’, and still the cooperation of the agentsin A and B isstronger in S than
their cooperationin §’. The specia case of A U B = {2 does not hold either.

Checking alternating simulation

Given two ATS § and S’ and aset A of agents, the alternating-simulation problemis
to determine whether S <4 &’. Thelocal definition of ordinary smulation for labeled
transition systems makes its decidability easy. Specifically, given two labeled transition
systems S and &', it ispossibleto determine whether S < &’ intimethat isquadraticin
thesizesof S and §’ [HHK95], and awitnessingrelationfor simul ation can be computed
using a symbolic fixpoint procedure [Mil90]. We show that alternating simulation can
also be computed in polynomial time, as well as symbolically.

Theorem 3. The alternating-simulation problemis PTIME-compl ete.



Proof. Consider two ATS S = (I7,£2,Q, qin, 7, 6) and S' = (I1,2,Q’, ¢},,, 7, ¢').
For aset A of agents, ardlation H# C @ x @', and apar (¢,¢') € @ x Q', we say
that (¢, ¢') is A-good in H iff conditions(1) and (2) from the definition of A-simulation
hold for (g, ¢'). Following [Mil90], we characterize aternating simulation as a greatest
fixpoint. Let

Ho={{g,4') 10 €Q ¢ €Q, andn(q) =(q")}.

Thus, Hy is the maximal relation whose pairs satisfy condition (1) of A-simulation.
Consider the monotonic function f : 2@*@" — 2@%Q" \where

fH) =Hn{(q,q') : {¢,¢') isA-goodin H }.

Thus, f(H) containsall pairsin H that are A-goodin H . Let H* bethegreatest fixpoint
of f when restricted to pairsin Ho; that is, H* = (vz)(HoN f(z)). Then, § <4 &’
iff H*(qin, ¢},). Since Q x Q' isfinite, we can calculate H* by iterative application
of f, starting with Ho until we reach afixpoint. There can be a most |@Q x @'| many
iterations. Checking whether a pair (¢, ¢} is A-good in H; can be performed in time
polynomial iné(q, A) and é'(¢’, A). Sincethe number of checksfor each H; isbounded
by |@ x @Q'|, the overal effortispolynomia in S and S’.

Hardness in PTIME follows from the PTIME-hardness of ordinary simulation on
labeled transition systems [BGS92, KV 9g]. O

Recall that aternating simulation can be used on labeled transition systems to specify
both directionsof simulation. Sincethe complexity of thesimulation problem S <gys S’
for labeled transitionsystems S and S’ ishard for PTIME aready for afixed S’ [KV 98],
it followsthat the alternating simulation problem is PTIME-compl ete even when either
SorS’ isfixed.

4 Alternating Trace Containment

We now study the refinement relation on ATS that corresponds to trace containment on
labeled transition systems. Consider an ATS S = (17, £2, @, ¢;n, 7, 6). For aset A of
agents and a set F4 of strategies for the agentsin A, let traces(Fa) C £2¢ be the set
of traces that the agentsin A can enforce when they follow the strategiesin F'4; that is,

traces(Fa) = {w : thereexistsn € outg(q;n, Fa) suchthat =(n) = w}.

Using different strategies, the agentsin A can enforce different trace sets. Let Ls(A)
denote the trace sets that the agentsin A can enforce; that is,

Ls(A) ={L : thereexistsaset F'4 of strategiesfor A with L = traces(Fa)}.

For two ATS S and 8’ over the same set 2 of agents, and asubset A C {2 of the agents,
wesay that S’ A-tracecontainsS, denoted S C4 &', iff for every traceset L € Ls(A),
there exists atrace set L' € Ls/(A) such that L/ C L. The relation <4 is again a
preorder on ATS.



Example 3. Consider the ATS S and S’ from Examples 1 and 2. The trace setsthat the
agentsa and b can enforcein § and S’ are as follows:

= Ls(a) = {0¥ +0% - {y}*} U
{0+ {yl - {a, g} + 0"+ {z} {2y} 1it j=n >0}
= Lsi(a) = {0°+0% {y}* + 07 {z}*+07 {y}* {z, p}* +0F {z}* - {z,y}*}.
= Ls({a,b}) = Ls({a,b}) = {0* U {0* - {z}* i > LU {0 {y}* 11> 1} U
{00 {al e, p} 10> 15> 000{0" - {y} - {z,y}* i > 15> 0}

It followsthat S Cy, 33 S and S Z, S’. On the other hand, it is not hard to see that
SC S a

Recall that a labeled transition system corresponds to an ATS with the single agent
sys. Our definition of alternating trace containment then coincides with ordinary trace
containment between labeled transition systems. This is because when sys is the only
agent, then for every strategy fsys for sys, theset traces(fsys) containsasingletrace.
Hence, S Csys S’ iff for every computation ; of S, there exists acomputation n’ of S’
such that =(n) = 7' (7).

Remark. Inthedefinition of alternating trace containment, the strategy of an agent may
depend on an unbounded amount of information, namely, the full history of the game
up to the current state. If we consider instead memoryless strategies—that is, strategies
fa 1 Q@ — 2%, which depend only on the current state of the game— then the alternating
trace-containment relation we obtain is different. On the other hand, as the definition of
alternating simulationislocal, Lemma 1 holds a so for memoryless strategies. a

As in the nonaternating case, while aternating ssmulation implies alternating trace
containment, the converse direction does not hold.

Proposition 4. Alternating simulationis stronger than alternating trace containment:

(1) For all ATSS and §’, and every set A of agents, S <4 &’ impliesS C4 &'.
(2) Thereexist ATSS and S’ and a set A of agentssuchthat S C4 S’ andS €4 §'.

For deterministic labeled transition systems, simulation and trace containment coin-
cide. This motivates the following definition. An ATS S = (I1,£2,Q, ¢, 7, é) is A-
deterministic, for asubset A C 2 of the agents, iff for al statesq € Q and sets¥ C IT
of propositions, there exists at most onemove 7' € §(q, A) such that TN =~ 1(7) # 0.
Intuitively, S is A-deterministic iff fixing the propositionsthat are true in the next state
uniquely determinesthe move of theagentsin A. For al A-deterministicATS S and S’
the relations A-simulation and A-trace containment coincide: S <4 S’ iIff S C4 §'.

Checking alternating trace containment

Given two ATS S and 8’ and a set A of agents, the alternating trace-contai nment
problem is to determine whether S C4 &’. Checking dternating trace containment
requires us to consider sets of trace sets —i.e., sets of w-languages. We first show that



for every set F4 of strategies, thew-language traces(F4) can be represented as atree,
and consequently, the desired set £s(A) of w-languages can be represented by a tree
automaton. Thisleadsto areduction of the alternating trace-containment problemto the
language-containment problem for tree automata.

Given afiniteset 7", an T-treeisaset + C 7* suchthatif (z - v) € 7, wherez € 1*
andv € T, thenadso z € . The elements of 7 are called nodes, and the empty word e
istheroot of 7. Each node z of = has adirection in Y. The direction of theroot is vy,
for some designated element vg € 7. Thedirection of each node z - v isv. A path 5 of
thetree risaset n C 7 such that ¢ € n and for every z € 1, there exists a unique node
v € T with (z - v) € 5. Given two finite sets 7" and X, a X-labeled T'-tree is a pair
(7, A), where r isan 7-tree and the labeling function A : 7 — X maps each node of ~
toaletterin X.

A languagetreeisa{T, L}-labeled T-tree (r, A). The labeled tree (7, A) encodes
an w-language L({r, A)) C Y. Aninfiniteword w isin L({r, A)) iff for every finite
prefix z of w, thefiniteword x isanode of thetree r labeled with T that is, z € 7 and
A(z) = T. Notethat the w-language L({r, A)) is limit-closed (i.e., an infinite word w
belongsto thelanguageiff every finiteprefix of w can be extended to someinfiniteword
in thelanguage). Conversaly, every limit-closed w-language over the alphabet 7" can be
represented as alanguage tree. It follows that we can encode the trace set traces(Fa)
that is consistent with aset F'4 of strategies as alanguagetree.

An alternating Buichi tree automaton [MS87] A = (X, d, S, s;n, M, ) runs on
Y-labeled T-trees with |T| = d, say, T = {1,...,d}. The automaton A consists of a
finiteset S of states, aninitial state s;,, € .S, atransitionfunction M, and an acceptance
conditiona C S. Let BY (T x S) be the set of positive boolean formulas over 7" x S;
that is, formulas built from elementsin 7 x S using A and Vv, where we aso alow the
formulas ¢rue and false. Thetransitionfunction M : S x £ — B* (T x S) mapsastate
and an input | etter to aformulathat suggestsanew configuration for the automaton. For
example, when d = 2,

M(so,0) = ((1,s1) A(1,52)) V ((1,82) A (2,82) A (2, 83))

means that when the automaton isin state sq and readsthel etter o, it can either send two
copies, instates s1 and s», todirection 1 of thetree, or send acopy in state s, to direction
1 and two copies, in states s, and s3, to direction 2. Thus, the transition function may
require the automaton to send several copies to the same direction, or alow it not to
send any copy to some directions.

A run of the aternating automaton .4 on the input Z-labeled T-tree (7, A) is a
labeled tree (7., ) (without fixed branching degree) in which the root is labeled by s;,
and every other nodeislabeled by an element of T* x S. Each node of .. corresponds
to a node of 7. A node in 7., labeled by (z, s), describes a copy of the automaton
that reads the node = of = and visits the state s. Note that many nodes of 7, can
correspond to the same node of . Thelabels of anodeand itschildren have to satisfy the
transitionfunction. For example, if (r, A) isa{1, 2}-treewith A(¢) = aand M (s;p,, a) =
((1,s1) vV (1,52)) A((1,s3) V (2, s2)), then the nodes of (7, r) &t level 1 includethe
label (1,s1) or (1, s2), and include the label (1, s3) or (2, s2). Each (infinite) path 7 of



(rr,r) is labeled by aword r(n) in S“. Let inf(n) denote the set of states in .S that
appear in r(n) infinitely often. The path » satisfies the Blichi acceptance condition «
iff iff inf(r(n)) N # 0. Therun (7., r) isaccepting iff al paths of (7., r) satisfy the
acceptance condition. The automaton .4 accepts the labeled tree (7, A) iff there exists
an accepting run (7, r) on (r, A). We denote by £(.A) the language of the automaton
A —i.e, the set of labeled trees that are accepted by .A.

Theorem 5. The alternating trace-containment problemis EXPTIME-complete.

Proof. We start with the upper bound. Consider an ATS S = (17, 2, Q, ¢in, 7, §). For
every observation ¢ € 27 let Q° C @ bethe set of states ¢ with 7(q) = ¢; that is,
Q" = 771(¢). Given S and aset A C 2 of agents, we define an aternating Biichi tree
automaton A2 = (£,d, S, sin, M, o), where

¥ ={T, L)

— d=2" andweassume Y = 27; that is, the directions are observations of S.
- S=a=@Q.

— Sin = Qin-

— Thetransitionfunction M isdefined only for theinput letter T, and for every state

q € Q@ wehave:
M@=\ A N «d).
Peé(q,A) LEY ¢'ePNQ*
That is, from the state ¢, the automaton chooses aset P € é(q, A) and then sends
to every direction £ the statesin P that are labeled by ¢. Note that the automaton
may send severa statesto the same direction and may aso send no states to some
directions.

Consider an accepting run (.., r) of A4. Recall that theroot of 7. islabeled by ¢;, and
every other node is labeled by an element of T x Q. For every set F'y of strategies
for the agentsin A, and every sequence p € 7 of observations, we can define a set
force(Fa, p) C @ of states such that the strategiesin F'4 force S to one of the statesin
force(Fa, p) after traversing a prefix of acomputation that islabeled p. Intuitively, the
run (T3, r) of A4 correspondsto a set F's of strategiesin which for every sequence of
observations p € T, force(Fa, p) isexactly the set of statesthat r visitsasit reads the
node p. Formally,

force(Fa,p) = {q € Q : thereexistsy € 7. withr(y) = {(p, ¢)}.

This relation between strategies for the agentsin A and accepting runs of A% enables
us to reduce the aternating trace-containment problem to the language containment
problem £(A2) C L(AZ)). Formaly, weclaimthat £(.AZ) C L£(.AZ,) iff for every set
F, of srategiesthereexistsaset F; of strategiessuch that traces/ (Fy) C traces(Fa).
Since the size of the automata.43 and .43, islinear in S and &', respectively, and the
language containment problem for alternating Biichi tree automata can be solved in
exponentia time [VW86, MS95], the EXPTIME upper bound follows.

For the lower bound, we use a reduction from {sys}-LTL model checking (for the
formal definition of {sys}-LTL see Section 5). A closed system can be viewed as an



ATST withthetwo agentssys and env in which the agent env is powerless; that is, for
al statesq of 7, we have 6(q, env) = {Q} (in Section 2, we noted that a closed system
corresponds to an ATS with the single agent sys; here we add the agent env in order to
compare 7 with a system in which the environment is not powerless). Given an LTL
formulas), one can construct, following [VW94], a two-agent ATS 7, as above, such
that 7, has exactly the traces that satisfy + (for this purpose, the ATS 7., isaugmented
with Biichi fairness constraints; the proof generalizes to ATS without fairness asin the
nonalternating case). The size of 7, is exponential in . Then, the model-checking
problem S |= ((env))%) can be reduced to the aternating trace-containment problem
7y Cenv S. Since the model-checking problem for A-LTL is 2EXPTIME-complete
[AHK97], the EXPTIME lower bound follows. O

5 Logical Characterizations

Simulation and trace containment between labeled transition systems can be logicaly
characterized by temporal logics. We give logical characterizations of aternating sim-
ulation and aternating trace containment.

Alternating temporal logic

Alternating-time temporal logics are introduced in [AHK97] as a formalism for speci-
fying properties of individual system components. The alternating-timetemporal logic
ATL* is defined with respect to a finite set /7 of propositions and a finite set {2 of
agents. Its syntax is very similar to the syntax of CTL*, only that each occurrence of a
path quantifier is parameterized by a set of agents. There are two types of formulasin
ATL*: stateformulas, whose satisfactionisrelated to a specific state, and path formulas,
whose satisfactionisrel ated to a specific computation. We present here asubset of ATL*
formulasin positive normal form. The subset, which subsumes CTL* but isnot closed
under negation, is called ATL%,. An ATL% state formulais one of the following:

(S1) p or —p, for propositionsp € I1.
(S2) 1V @2 0r 1 A @2, Where o1 and ¢, are ATLY, state formulas.
(S3) (A)y where A C 2 isaset of agentsand ¢ isan ATL% path formula

The operator {( )) isa path quantifier. For asingleton set A = {a} of agents, we write
{(a)) instead of (({a})). An ATL% path formulais one of the following:

(P1) AnATL% state formula
(P2) 11V 42 0r 91 A 92, where ¢ and 1, are ATL% path formulas.
(P3) Oy, Oypn, O 1 U, where 1 and 1, are ATLY% path formulas.

Thelogic ATL% consists of the set of state formulas generated by the above rules. The
logic ATL p, which is an aternating-time extension of CTL, isthe fragment of ATL%
that consists of all formulas in which every tempora operator isimmediately preceded
by a path quantifier.



Weinterpret the ATL} formulas over ATS (with the same sets of propositionsand
agents). Consider afixed ATSS = (I7, 2, Q, ¢in, 7, §). Wewriteq |= ¢ toindicatethat
the stateformula holdsat state ¢, and  |= ¢ toindicate that the path formulas holds
in computation 7. The satisfaction relation |= isdefined as for the branching-timelogic
CTL*, with the path quantifier {( )) interpreted as follows:

q | (A)y iff thereexistsaset F'4 of strategies, onefor each agent in A, such
that for al computations? € outs(q, Fa), wehaven |= .

For example, the ATL% formula{{a))((<CDOreq) vV (O<$grant)) asserts that agent a hasa
strategy to enforce acomputation in which either only finitely many requestsare sent, or
infinitely many grants are given. The ATS S satisfiesthe ATL% formulay iff ¢, = .

Recall that alabeled transition system is an ATS with the single agent sys. In this
case, thereare only two path quantifiers: (0)) and ((sys)), which are equal, respectively,
to the universal and existential path quantifiers 3 and V of branching-time logics. In
other words, over labeled transition systems, ATL% isidentical to CTL*, and ATLp is
identical to CTL.

L ogical characterization of alternating ssimulation

Simulationinlabel ed transition systems guarantees correct i mplementati on with respect
to properties specified in the universal fragment of a branching-timelogic. For aset A
of agents, we define the fragment A-ATL* of ATL%} asthe set of formulasin which all
path quantifiers are parameterized by A. In particular, over labeled transition systems,
(-ATL* and {sys }-ATL* coincidewith the universal and existential fragmentsof CTL*.
Over ATS, the A-ATL* formul as describe behaviorsthat the agentsin A can enforce no
matter what the agentsin 2\ A do.

Theorem 6. Let S and S’ be two ATS. Then, for every set A of agents, S <, &' iff
every A-ATL* formulathat is satisfied in S isalso satisfiedin S”.

Proof. Wefirst provethatif S <4 &', then every A-ATL* formulathat issatisfiedin S
isalso satisfied in §’. For that, we prove a stronger claim. We prove that for al ATS S
and &', if H isan A-smulation from S to 8’, then the following conditions hold:

— For dl states ¢ and ¢’ with H(q, ¢'), every A-ATL* state formulathat holds at ¢
holdsalso at ¢'.

— For all computationsy and n’ with H(n, '), every A-ATL* path formulathat holds
iny holdsasoiny'.

The proof proceeds by induction on the structure of formulas. The interesting case is
that of formulas of the form {(A))y. Assume that H(q,q') and ¢ = . Then, there
exists a set F4 of strategies in S for the agentsin A such that for al computations
n € outs(q, Fa), wehaven |= +. Consider aset F', of strategiesin S’ for the agents
in A such that for every computation ' € outs(q’, F}), there exists a computation
n € outs(q, Fla) sothat H(n,n'). By Lemma 1, such aset F'} exists. Since+ holdsin
al computationsn € outs(q, Fa), by theinduction hypothesis, we are done.



Second, assume that S £ 4 S’. Consider the A-simulation game between the antag-
onist and the protagonist. Since § £ 4 &', the antagonist has a winning strategy in the
game. Thus, there exists a finite number i such that every strategy of the protagonist
fails to match the antagonist’s choice in the i-th round of the game or before, when
the antagonist follows the winning strategy. Similar to the case of Milner’s smulation
[Mil90], it isthen possibleto construct aformulawith 7 nested {A)) O operatorsthat is
satisfied in S but notin §'. O

L ogical characterization of alternating trace containment

Trace containment inlabel ed transition systems guarantees correct implementation with
respect to properties specified in linear-time logics. For a set A of agents, we define
the fragment A-LTL of ATL% asthe set of formulas of the form {(A))+, where ¢ isan
ATL% path formulawithout path quantifiers; thet is, 1 isan LTL formula In particular,
over labeled transition systems, (-LTL coincides with LTL.

Theorem 7. Let S and S’ be two ATS. Then, for every set A of agents, S C4 &’ iff
every A-LTL formulathatissatisfiedin S isalso satisfied in S’.

Proof. Assumefirstthat S C4 S'. Let ((A) bean A-LTL formulathat is satisfied
in 8. Thus, there exists a set F'a of strategies in S for the agents in A such that
for al computations € outs(qin, Fa), Wwe have n |= 4. Since § C4 &', there
exists a set F', such thet traces:(F’) C traces(Fa). Hence, for al computations
n' € outs/(q},, Fy), wehaven = 1. Assumenow that S Z 4 S'. Then, asin the case
of labeled transition systems, it is possible to construct, using O operators, an A-LTL
formulathat is satisfied in S but notin §”. O

Alternating bisimilarity

In analogy to the nonalternating case, we say that a symmetric alternating simulation
is an alternating bismulation. Consider two ATS S = (17, £2,Q, qin, 7, 6) and S’ =
(I, 02,Q', 4}, @, 6. Foraset A of agents, arelation H C @ x Q' isan A-bisimulation
iff for all states¢ and ¢’ with H(q, ¢") the following conditions hold:

(1) 7(q) =7'(¢).

(2) For every set T' € 6(q, A), thereexistsa set 77 € §'(q’, A) such that for every
R € é&'(¢', 2\ A), thereexistsR € 6(q, 2\ A)sothat (TN R)x (I"NR') C H.

(3) For every st 7" € 68'(¢’, A), there existsa set T' € §(q, A) such that for every
Reé(q, 2\ A), thereexists R’ € 6(¢', 2\ A)sothat (TN R) x (T"NR') C H.

If there existsan A-bisimulation H from S to S’ with H(¢;», ¢},,), we say that the ATS
Sand S’ are A-bismilar,denoted S =4 &'. Intuitively, S =4 S’ meansthat the agents
in A can induce the same behaviorsinboth S and S’.

Itiseasy tocheck that A-bisimilarityisan equivalencerelationon ATS. Furthermore,
as in the nondternating case, S =4 &’ impliesboth § <4 & and &' <, S, yet



the converse is does not hold. Thus, aternating bisimulation is stronger than mutual
alternating simulation.

Giventwo ATS S and S’ and aset A of agents, the alternating-bisimilarity problem
is to determine whether S =4 &’. For two sets A1 and A, of agents, we define the
fragment (A1, A2)-ATL* of ATL% asthe set of formulasin which al path quantifiers
are parameterized by either A1 or A,. Usingtechniquessimilar to alternatingsimulation,
we establish the following two theorems.

Theorem 8. The alternating-bisimilarity problemis PTIME-complete.

Theorem 9. Let S and S’ be two ATS. Then, for every set A of agents, S =4 S’ iff S
and S’ agreeonall (4, 2\ A)-ATL* formulas.
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