
Discovering Relations between Named Entities from a
Large Raw Corpus Using Tree Similarity-based

Clustering

Min ZHANG1 Jian SU1 Danmei WANG12 Guodong ZHOU1 Chew Lim TAN2

1Institute for Infocomm Research
21 Heng Mui Keng Terrace, Singapore 119613

{mzhang, sujian, stuwang,
zhougd}@i2r.a-star.edu.sg

2Department of Computer Science
National University of Singapore,

Singapore, 117543
tancl@comp.nus.edu.sg

Abstract. We propose a tree-similarity-based unsupervised learning method to
extract relations between Named Entities from a large raw corpus. Our method
regards relation extraction as a clustering problem on shallow parse trees. First,
we modify previous tree kernels on relation extraction to estimate the similarity
between parse trees more efficiently. Then, the similarity between parse trees is
used in a hierarchical clustering algorithm to group entity pairs into different
clusters. Finally, each cluster is labeled by an indicative word and unreliable
clusters are pruned out. Evaluation on the New York Times (1995) corpus
shows that our method outperforms the only previous work by 5 in F-measure.
It also shows that our method performs well on both high-frequent and less-
frequent entity pairs. To the best of our knowledge, this is the first work to use
a tree similarity metric in relation clustering.

1 Introduction

The relation extraction task identifies various semantic relations such as location,
affiliation, revival and so on between entities from text. For example, the sentence
“George Bush is the president of the United States.” conveys the semantic relation
“President”, between the entities “George Bush” (PERSON) and “the United States”
(GPE1). The task of relation extraction was first introduced as part of the Template
Element task in MUC6 and formulated as the Template Relation task in MUC7 [1].
Most work at MUC [1] was rule-based, which tried to use syntactic and semantic
patterns to capture the corresponding relations by means of manually written linguis-
tic rules. The major drawback of this method is the poor adaptability and the poor
robustness in handling large-scale or new domain data due to two reasons. First, rules
have to be rewritten for different tasks or when porting to different domains. Second,
generating rules manually is quite labor- and time-consuming.

1 GPE is an acronym introduced by the ACE (2004) program to represent a Geo-Political En-

tity --- an entity with land and a government.

Since then, various supervised learning approaches [2,3,4,5] have been explored
extensively in relation extraction. These approaches automatically learn relation pat-
terns or models from a large annotated corpus. To decrease the corpus annotation
requirement, some researchers turned to weakly supervised learning approaches [6,7],
which rely on a small set of initial seeds instead of a large annotated corpus. How-
ever, there is no systematic way in selecting initial seeds and deciding an “optimal”
number of them.

Alternatively, Hasegawa et al. [8] proposed a cosine similarity-based unsupervised
learning approach for extracting relations from a large raw corpus. The context words
in between the same entity pairs in different sentences are used to form word vectors,
which are then clustered according to the cosine similarity. This approach does not
rely on any annotated corpus and works effectively on high-frequent entity pairs [8].
However, there are two problems in this approach:

• The assumption that the same entity pairs in different sentences have the
same relation.

• The cosine similarity measure between the flat feature vectors, which only
consider the words between entities.

In this paper, we propose a tree similarity-based unsupervised learning approach
for relation extraction. In order to resolve the above two problems in Hasegawa et al.
[8], we assume that the same entity pairs in different sentences can have different
relation types. Moreover, rather than the cosine similarity measure, a similarity func-
tion over parse trees is proposed to capture much larger feature spaces instead of the
simple word features.

The rest of the paper is organized as follows. In Section 2, we discuss the proposed
tree-similarity-based clustering algorithm. Section 3 shows the experimental result.
Section 4 compares our work with the previous work. We conclude our work with a
summary and an outline of the future direction in Section 5.

2 Tree Similarity-based Unsupervised Learning

We use the shallow parse tree as the representation of relation instances, and regard
relation extraction as a clustering problem on shallow parse trees. Our method con-
sists of three steps:

1) Calculating the similarity between two parse trees using a tree similarity
function;

2) Clustering relation instances based on the similarities using a hierarchical
clustering algorithm;

3) Labeling each cluster using indicative words as its relation type, and prun-
ing out unreliable clusters.

In this section, we introduce the parse tree representation for a relation instance,
define the tree similarity function, and describe the clustering algorithm.

2.1 Parse Tree Representation for Relation Instance

A parse treeT is a set of node
1

}{ ... np p , which are connected hierarchically. Here, a

node ip includes a set of features
1 4

{ , ..., }f f as follows:

• Head Word (1f): for a leaf (or terminal) node, it is the word itself of the
leaf node; for a non-terminal node, it is a “Head Word” propagated from a
leaf node. This feature defines the main meaning of the phrase or the sub-
tree rooted by the current node.

• Node Tag (2f): for a leaf node, it is the part-of-speech of this node; for a
non-terminal node, it is a phrase name, such as Noun Phrase (NP), Verb
Phrase (VP). This feature defines the linguistic category of this node.

• Entity Type (3f)2: it indicates the entity type which can be PER, COM or
GPE if the current node refers to a Named Entity.

• Relation Order (4f): it is used to differentiate asymmetric relations, e.g.,
“A belongs to B” or “B belongs to A”.

These features are widely-adopted in Relation Extraction task. In the parse tree rep-
resentation, we denote by .

i j
fp the jth feature of node ip , by []ip j the jth child of

node ip , and by []ip C the set of all children of node ip , i.e., [] []i ip j p∈ C .

2.2 Tree Similarity Function

Inspired by the special property of kernel-based methods3, we extend the tree kernels
in Zelenko et al. [3] to a novel tree similarity measure function, and apply the above
tree similarity function to unsupervised learning for relation extraction. Mostly, in
previous work, kernels are used in supervised learning algorithms such as SVM,
Perceptron and PCA (Collins and Duffy, 2001). In our approach, the hierarchical
clustering algorithm is adopted, this allows us to explore more robust and powerful
similarity functions, other than a proper kernel function4.

2 For the features of “Entity Type”, please refer to the literature ACE [22] for details.
3 As an alternative to the feature-based method [5], the advantage of kernels [9] is that they can

replace any dot product between input points in a high dimensional feature space. Compared
with the feature-based method, the kernel method displays several unique characteristics,
such as implicitly mapping the feature space from low-dimension to high-dimension, and ef-
fectively modeling structure data. A few kernels over structured data have been proposed in
NLP study [10-16]. Zelenko et al. [3] and Culotta et al. [4] explored tree kernels with SVM
[9] for relation extraction. We study the tree kernels from similarity measure viewpoints.

4 A function is a kernel function if and only if the function is symmetric and positive semi-
definite [3, 9].

A similarity function returns a normalized, symmetric similarity score in the range
[0, 1]. Especially, our tree similarity function 1 2(,)K T T over two trees 1T and 2T ,

with the root nodes 1r and 2r , is defined as follows:

1 2 1 2 1 2 1 2
(,) (,) * (,) ([], []){ }

C
K T T m s Kr r r r r r= + c c (1)

where,
• ,)(i jm p p is a matching function over the features of two tree nodes ip

and
j

p . In this paper, only the node tag feature (2f) is considered:

2 2 ,) 1 if . .(
 0 otherwise

 ji
i j

f fp pm p p
 =

= (2)

The binary function (1) means that two nodes are matched only if they
share the same Node Tag.

• 1 2(,)p ps is a similarity function between two nodes ip and jp :

1 1

3 3

1 1

 &
if

, else if

other features match

no match

. .
1 . .

() 0.5 . .

0.25
0

i j

i j

jii j

p f p f

p f p f

p p f fp ps

 =

=

= =

 (3)

where the values of the weights are assigned empirically according to the
discriminative ability of the feature types. Function (3) measures the similar-
ity between two nodes according to the weights of matched features.

• CK is the similarity function over the two children node sequences 1[]p c

and 2[]p c :

1 2 1 2
, , () ()

([], []) ([], [])argmax { }
C

l l
K p p K p p

=
=

a b a b
c c a b (4)

1 2 21

()

1
([], []) ([], [])

l

i
K p p K p p

=
= ∑ i i

a
a ba b (5)

where a and b are two index sequences, i.e., a is a sequence
 1 10 ... []ma a p< < ≤ | |C and l(a) is the length of sequence a, and likewise for b.

The node set
1 1 1
[] { [], ..., []}p p p= 1 ma a a is the subset

of
1
[]p c ,

1 1
[] []p p⊆a c ,

1
[]p ai is the ith node of

1
[]p a , and likewise for 2p .

We define 1 2(,)K T T in terms of the similarity function 1 2(,)r rs between the par-

ent nodes and the similarity function CK over the two children node sequences 1[]r c

and 2[]r c . Formula (5) defines the similarity between two node sequences by sum-

ming up the similarity of each corresponding node pair. CK in Formula (4) searches
out such two children node subsequences 1[]p a and 2[]p b , which has the maximum
node sequence similarity among all the possible combining pairs of node subse-
quences. Given the similarity scores of all children node pairs, Formula (4) can be
easily resolved by the dynamic programming (DP) algorithm5. By traversing the two
trees from top to down and applying the DP algorithm layer by layer, the parse tree
similarity 1 2(,)K T T defined by Formula (1) is obtained. Due to the DP algorithm, the
defined tree similarity function is computable in O(mn), where m and n are the num-
ber of nodes in the two trees, respectively. The matching function ,)(i jm p p in For-
mula (2) can narrow down the search space during similarity calculation, since the
sub-trees with unmatched root nodes are unnecessary to be further explored.

Fig. 1. Sub-structure with maximum similarity

From the above discussion, we can see that our defined tree similarity function is
trying to detect the two trees’ maximum isomorphic sub-structures. The similarity
score between the maximum isomorphic sub-structures is returned as the value of the
similarity function. Fig. 1 illustrates the sub-structures with the maximum similarity
between two trees. Among the all matched sub-structures, only the sub-structures
circled by the dashed lines are the isomorphic sub-structures with the maximum simi-
larity. The similarity score between the sub-structures is obtained by summing up the
similarity score between the corresponding matched nodes.

Finally, since the size of the input parse tree is not constant, the similarity score is

normalized as follows:

5 A well-known application of Dynamic Programming is to compute the edit distance between

two character strings. Let us regard a node as a character and a node sequence as a character
string. Then given the similarity score between nodes, Formula (4) can be resolved using DP
algorithm in the same way as that of strings. Due to space limitation, the implementation
deatils are not discussed here.

 T1) S T2) S

 NP VP NP VP

 Paul bought NP Smith sold NP yesterday

 a red car the flat

1 2

1 1 2 2
1 2

(,)
(,)* (,)

ˆ (,) K T T
K T T K T T

K T T = (6)

The value of 1 2
ˆ (,)K T T ranges from 0 to 1. In particular, 1 2

ˆ (,)K T T =1 if and only

if 1 2T T= . For example, given two parse trees A and B, and A is a subtree of B, then
under Formula (1), K(A, B) = K(A, A). However, after the normalization through
Equation (6), we can get ˆ ˆ (,) (,) 1K A B K A A< = . In this way, we can differentiate such
two cases.

According to the Formula (1) to (5), the similarity function 1 2(,)K T T over the two
trees in Fig. 1 is computed as follows:

1 2 ([NP, VP], [NP, VP])

([bought, NP],[sold, NP, yesterday])

1 bought sold (NP, NP)

= 1+0.25+0.25+ ([a, red, car]

(,) (S,S) *{ (S,S) }

0.25 (NP, NP) (VP, VP)

0.25 0.25 (Paul, Smith) 0.25

(,)

c

c

c

K T T m s K

K K

K

K

K K

K

= +

= +

= + +

= + + +

+

+

, [the, flat])

1.5 a the car flat(,) (,)

2

K K= + +

=

The above similarity score is more than one. This is because we did not normalize

the score using Formula (6).

2.3 Tree Similarity Based Unsupervised Learning

Our method consists of five steps:

1) Named Entity (NE) tagging and sentence parsing: Detailed and accurate NE
types provide more effective information for relation discovery. Here we use Sekine’s
NE tagger [20], where 150 hierarchical types and subtypes of Named Entities are
defined [21]. This NE tagger has also been adopted by Hasegawa et al. [8]. Besides,
Collin’s parser [18] is adopted to generate shallow parse trees.

2) Similarity calculation: The similarity between two relation instances is defined
between two parse trees. However, the state-of-the-art of parser is always error-prone.
Therefore, we only use the minimum span parse tree including the NE pairs when
calculating the similarity function [4]. Please note that the two entities may not be the
leftmost or rightmost node in the sub-tree.

3) NE pairs clustering: Clustering of NE pairs is based on the similarity score
generated by the tree similarity function. Rather than k-means [17], we used a bot-

tom-up hierarchical clustering method so that there is no need to determine the num-
ber of clusters in advance. This means that we are not restricted to the limited types of
relations defined in MUC [1] or ACE [22]. Therefore, more substantial existing rela-
tions can be discovered. We adopt the group-average clustering algorithm [17] since
it produces the best performance compared with the complete-link and single-link
algorithms in our study.

4) Cluster labeling: In our study, we label each cluster by the most frequent
“Head Word” in this cluster. As indicated in subsection 2.1, the “Head Word” of
root node defines the main meaning of a parse tree. This way, the “Head Word” of
the root node of the minimum span tree naturally characterizes the relation between
this NE pair in this tree. Thus, we simply count the frequency of the “Head Word” of
the root node in the cluster, and then chose the most frequent “Head Word” as the
relation type of the cluster.

5) Cluster pruning: Unreliable clusters may be generated due to various reasons
such as divergent relation type distributions and the fact that most of the entity pairs
inside this cluster are totally unrelated. Therefore, pruning is necessary and done in
our approach using two criteria. Firstly, if the most frequent “Head Word” occurs
less than a predefined percentage in this cluster, which means that the relation type
defined by this “Head Word” is not significant statistically, the cluster is pruned out.
Secondly, we prune out the clusters whose NE pair number is below a predefined
threshold because such clusters may not be representative enough for this relation.

3 Experiments

3.1 Experimental Setting

To verify our proposed method and establish proper comparison with Hasegawa et al.
[8], we use the same corpus “The New York Times (1995)”, and evaluate our work
on the same two kinds of NE pairs: COMPANY-COMPANY (COM-COM) and
PERSON-GPE (PER-GPE) as Hasegawa et al. in [8]. First, we iterate over all pairs of
Named Entities occurring in the same sentence to generate potential relation in-
stances. Then, according to the co-occurrence frequency of NE pairs, all the relation
instances are grouped into three categories:

1) High frequent instances with the co-occurrence frequency not less than 30.
In this category, only the relation instances, which satisfy the all criteria of
Hasegawa et al. [8]6, are kept for final experiment. By doing so, this cate-
gory data is the same as the entire experimental set used by Hasegawa et al.
[8].

2) Intermediate frequent instances with the co-occurrence frequency between 5
and 30. In this category, only two distinct NE pairs are randomly picked at

6 To discover reliable relations, Hasegawa et al. [8] sets five conditions to generate relation

instance set. NE pair co-occurrence more than 30 times is one of the five conditions.

each frequency for final evaluation due to the large number of such NE
pairs.

3) Less frequent instances with the co-occurrence frequency not more than 5.
In this category, twenty distinct NE pairs are randomly picked at each fre-
quency for final evaluation due to the similar reason as 2).

Table 1 reports the statistics of the entire evaluation corpus7 which is manually
tagged. Table 2 reports the percentage of the NE pairs which carry more than one
relation types when occurring at different relation instances. The numbers inside
parentheses in Table 1 and Table 2 correspond to the statistical values of the NE pair
“PER-GPE”, while the numbers outside parentheses are related to the NE pair
“COM-COM”. Table 2 shows that at least 9.88% of distinct NE pairs have more than
one relation types in the test corpus. Thus it is reasonable and necessary to assume
that each occurrence of NE pairs forms one individual relation instance.

Table 1. Statistics on the manually annotated evaluation data

Category by
frequency

of instances # of distinct NE pairs # of relation
types

High 8931 (13205) 65 (177) 10 (38)
Intermediate 672 (783) 38 (41) 6 (7)

Less 276 (215) 76 (81) 5 (8)

Table 2. % of distinct NE pairs with more than one relation types on the evaluation data

Category by frequency % of NE pairs have more than one relations
 High 15.4 (12.99)

 Intermediate 28.9 (24.4)
 Less 11.8 (9.88)

3.2 Evaluation Measures

All the experiments are carried out against the manually annotated evaluation corpus.
We adopt the same criteria as Hasegawa et al. [8] to evaluate the performance of our
method. Grouping and labeling are evaluated separately. For grouping evaluation, all
the single NE pair clusters are labeled as non-relation while all the other clusters are
labeled as the most frequent relation type counted in this cluster. For each individual
relation instance, if the manually assigned relation type is the same as its cluster label,
the grouping of this relation instance is counted as correct, otherwise, are counted as
incorrect. Recall (R), Precision (P) and F-measure (F) are adopted as the main per-

7 Due to the parsing errors and NE tagging errors, the actual number of relation instances is

less than the theory number that we should pick up.

formance measure for grouping [8]. For labeling evaluation, a cluster is labeled cor-
rectly only if the labeling relation type, represented by most frequent “Head Word”
of the root node of the minimal-span subtree, is the same as the cluster label gotten in
the grouping process.

3.3 Experimental Results

Like other applications using clustering algorithms, the performance of the proposed
method also depends on the threshold of the clustering similarity. Here this threshold
is used to truncate the hierarchical tree, so that the different clusters are generated.
When the threshold is set to 1, then each individual relation instance forms one
unique group; when the threshold is set to 0, then the all relation instance form one
big group. Table 3 reports the evaluation results of grouping, where the best F-
measures and the corresponding similarity thresholds are listed. We can see that our
method not only achieves good performance on the high-frequent data, but also per-
forms well on the intermediate and less-frequent data. The higher frequency, the
higher performance. Since the best thresholds of the two NE cases are the almost
same, we just fix the universal threshold as the one used in “PER-GPE” case in each
category.

Table 3. Performance evaluation of Grouping phase, the numbers inside parentheses corre-
spond to the evaluation score of “PER-GPE” while the numbers outside parentheses are related
to “COM-COM”

Performance Category by frequency
 F P (%) R (%)

Threshold

High 80 (87) 82 (90) 78 (84) 0.28 (0.29)
Intermediate 74 (76) 87 (84) 64 (69) 0.32 (0.30)

Less 62 (65) 75 (77) 53 (56) 0.36 (0.35)

Table 4. Best performance comparison in the high-frequent data (F)

 Our approach Hasegawa et al. [8]

PER-GPE 87 82

COM-COM 80 77

Table 4 compares the performances of the proposed method and Hasegawa et al.
[8], where the best F-measures on the same high-frequent data are reported. Table 4
shows that our method outperforms the previous approach by 5 and 3 F-measures in
clustering NE pairs of “PER-GPE” and “COM-COM”, respectively.

An interesting phenomenon is that the best threshold is set to be just above 0 for
the cosine similarity in Hasegawa et al. [8]. This means that each word feature vector
of each combination of NE pairs in the same cluster shares at least one word in com-
mon --- and most of these common words were pertinent to the relations [8]. This

also prevents them from working well on less-frequent data [8]. In contrast, for the
similarity function in our approach, the best threshold is much greater than 0. The
difference between the two thresholds implies that the similarity function over the
parse trees can capture more common structured features than the word feature vec-
tors can. This is also the reason why our method is effective on both high and less-
frequent data.

It is not surprising that we do have that a few identical NE pairs, occurring in dif-
ferent relation instances, are grouped into different relation sets. For example, the NE
pairs “General Electric Co. and NBC”, in one sentence “General Electric Co., which
bought NBC in 1986, will announce a new marketing plan.”, is grouped into the rela-
tion set “M&A”, but in another sentence “Prime Star Partners and General Electric
Co., parent of NBC, has signed up 430,000 subscribers.”, is grouped into another
relation set “parent”. Among all the NE pairs that carry more than one relation types,
41.8% of them are grouped correctly using our tree similarity function.

The performance of grouping is the upper bound of the performances of labeling
and pruning. In the final, there are 146 PER-GPE clusters and 95 COM-COM clusters
are generated after grouping. Out of which, only 57 PER-GPE clusters and 42 COM-
COM clusters are labeled correctly before pruning. This is because that a large por-
tion of the non-relation clusters are labeled as one kind of true relations. After prun-
ing, 117 PER-GPE clusters and 84 COM-COM clusters are labeled correctly. This is
because lots of the non-relation clusters are labeled correctly by the pruning process,
so we can say that pruning is a non-relation labeling process, which greatly improves
the performance of labeling.

The experimental results discussed above suggest that our proposed method is an

effective solution for discovering relation from a large raw corpus.

4 Discussions

It would be interesting to review and summarize how the proposed method deals with
the relation extraction issue differently from other related works. Table 5 in the next
page summarizes the differences between our method and Hasegawa et al. [8].

In addition, since our tree similarity function has benefited from the relation tree
kernels of Zelenko et al. [3], let us compare our similarity measure function with their
relation kernel function [3] from the viewpoint of computational efficiency. Zelenko
et al. [3] defined the first parse tree kernels for relation extraction, and then this rela-
tion tree kernels were extended to dependency tree kernels by Culotta et al. [4]. Their
tree kernels sum up the similarity scores among all possible subsequences of children
nodes with matching parents, and give a penalty to longer sequences. Their tree ker-
nels are closely related to the convolution kernels [12]. But, by doing so, lots of sub-
trees will be considered again and again. An extreme case occurs when two tree struc-
tures are identical. In that situation all the sub-trees will be considered exhaustedly,
even if the sub-tree is a part of other bigger sub-trees. We use the maximum score in
Formula (4) instead of the summation in our approach. With our approach, the entire

tree is only considered once. The replacement of summation with maximization re-
duces the computational time greatly.

Table 5. The differences between our method and Hasegawa et al. [8]

 Our approach Hasegawa et al. [8]

Similarity
Measure

tree similarity over parse
tree structures

cosine similarity between the
context word feature vectors

Assumption No Yes (The same entity pairs in
different sentences have the
same relation)

Labeling the most frequent “Head
Word” of the root node of
sub-tree

the most frequent context
word

Pruning Yes (We present two prun-
ing criterion)

No

Data Frequency effective on both high and
less-frequent data

effective only on high-
frequent data

5 Conclusions and Future Directions

We modified the relation tree kernels [3] to be a tree similarity measure function by
replacing the summation over all possible subsequences of children nodes with
maximization, and used it in clustering for relation extraction. The experimental re-
sult showed much improvement over the previous best result [8] on the same test
corpus. It also showed that our method is high effective on both high-frequent and
less-frequent data. Our work demonstrated the effectiveness of combining the tree
similarity measure with unsupervised learning for relation extraction.

Although our method shows good performance, there are still other aspects of the
proposed method worth discussing here. Without additional knowledge, relation
detecting and relation labeling are still not easy to be resolved, especially in less-
frequent data. We expect that using additional easily-acquired knowledge can im-
prove the performance of the proposed method. For example, we can introduce the
WordNet [19] thesaurus information into Formula (3) to obtain more accurate node
similarities and resolve data sparse problem. We can also use the same resource to
improve the labeling scheme and find more abstract relation types like the definitions
used in ACE program [22].

References

1. MUC. 1987-1998. The nist MUC website: http://www.itl.nist.gov/iaui/894.02/related_
projects/muc/

2. Miller, S., Fox, H., Ramshaw, L. and Weischedel, R. 2000. A novel use of statistical pars-
ing to extract information from text. Proceedings of NAACL-00

3. Zelenko, D., Aone, C. and Richardella, A. 2003. Kernel Methods for Relation Extraction.
Journal of Machine Learning Research. 2003(2):1083-1106

4. Culotta, A. and Sorensen, J. 2004. Dependency Tree Kernel for Relation Extraction. Pro-
ceeding of ACL-04

5. Kambhatla, N. 2004. Combining Lexical, Syntactic, and Semantic Features with Maximum
Entropy Models for Extracting Relations. Proceeding of ACL-04, Poster paper.

6. Agichtein, E. and Gravano, L. 2000. Snow-ball: Extracting Relations from Large Plain-text
Collections. Proceedings of the Fifth ACM International Conference on Digital Libraries.

7. Stevenson, M. 2004. An Unsupervised WordNet-based Algorithm for Relation Extraction.
Proceedings of the 4th LREC workshop "Beyond Named Entity: Semantic Labeling for
NLP tasks"

8. Hasegawa, T., Sekine, S. and Grishman, R. 2004. Discovering Relations among Named
Entities from Large Corpora. Proceeding of ACL-04

9. Vapnik, V. 1998. Statistical Learning Theory. John Wiley
10. Collins, M. and Duffy, N. 2001. Convolution Kernels for Natural Language. Proceeding of

NIPS-01
11. Collins, M. and Duffy, N. 2002. New Ranking Algorithm for Parsing and Tagging: Kernel

over Discrete Structure, and the Voted Perceptron. Proceeding of ACL-02.
12. Haussler, D. 1999. Convolution Kernels on Discrete Structures. Technical Report UCS-

CRL-99-10, University of California
13. Lodhi, H., Saunders, C., Shawe-Taylor, J., Cristianini, N. and Watkins, C. 2002. Text

classification using string kernel. Journal of Machine Learning Research, 2002(2):419-444
14. Suzuki, J., Hirao, T., Sasaki Y. and Maeda, E. 2003. Hierarchical Directed Acyclic Graph

Kernel: Methods for Structured Natural Language Data. Proceedings of ACL-03
15. Suzuki, J., Isozaki, H. and Maeda, E. 2003. Convolution Kernels with Feature Selection for

Natural Language Processing Tasks. Proceedings of ACL-04
16. Moschitti, A. 2004. A study on Convolution Kernels for Shallow Semantic Parsing. Pro-

ceedings of ACL-04
17. Manning, C. and Schutze, H. 1999. Foundations of Statistical Natural Language Process-

ing. The MIT Press: 500-527
18. Collins, M. 1999. Head-Driven Statistical Models for Natural Language Parsing. Ph.D.

Thesis. University of Pennsylvania
19. Fellbaum, C. 1998. WordNet: An Electronic Lexical Database and some of its Applica-

tions. Cambridge, MA: MIT Press.
20. Sekine, S. 2001. OAK System (English Sentence Analysis). Http://nlp.cs.nyu.edu/oak
21. Sekine, S., Sudo, K. and Nobata, C. 2002. Extended named entity hierarchy. Proceedings of

LREC-02
22. ACE. 2004. The Automatic Content Extraction (ACE) Projects. http://www.ldc.upenn.edu/

Projects/ACE/

