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Abstract. We propose a tree-similarity-based unsupervised learning method to 
extract relations between Named Entities from a large raw corpus. Our method 
regards relation extraction as a clustering problem on shallow parse trees. First, 
we modify previous tree kernels on relation extraction to estimate the similarity 
between parse trees more efficiently. Then, the similarity between parse trees is 
used in a hierarchical clustering algorithm to group entity pairs into different 
clusters. Finally, each cluster is labeled by an indicative word and unreliable 
clusters are pruned out. Evaluation on the New York Times (1995) corpus 
shows that our method outperforms the only previous work by 5 in F-measure. 
It also shows that our method performs well on both high-frequent and less-
frequent entity pairs. To the best of our knowledge, this is the first work to use 
a tree similarity metric in relation clustering. 

1   Introduction  

The relation extraction task identifies various semantic relations such as location, 
affiliation, revival and so on between entities from text. For example, the sentence 
“George Bush is the president of the United States.” conveys the semantic relation 
“President”, between the entities “George Bush” (PERSON) and “the United States” 
(GPE1). The task of relation extraction was first introduced as part of the Template 
Element task in MUC6 and formulated as the Template Relation task in MUC7 [1]. 
Most work at MUC [1] was rule-based, which tried to use syntactic and semantic 
patterns to capture the corresponding relations by means of manually written linguis-
tic rules. The major drawback of this method is the poor adaptability and the poor 
robustness in handling large-scale or new domain data due to two reasons. First, rules 
have to be rewritten for different tasks or when porting to different domains. Second, 
generating rules manually is quite labor- and time-consuming. 

                                                           
1 GPE is an acronym introduced by the ACE (2004) program to represent a Geo-Political En-

tity --- an entity with land and a government. 



Since then, various supervised learning approaches [2,3,4,5] have been explored 
extensively in relation extraction. These approaches automatically learn relation pat-
terns or models from a large annotated corpus. To decrease the corpus annotation 
requirement, some researchers turned to weakly supervised learning approaches [6,7], 
which rely on a small set of initial seeds instead of a large annotated corpus. How-
ever, there is no systematic way in selecting initial seeds and deciding an “optimal” 
number of them. 

Alternatively, Hasegawa et al. [8] proposed a cosine similarity-based unsupervised 
learning approach for extracting relations from a large raw corpus. The context words 
in between the same entity pairs in different sentences are used to form word vectors, 
which are then clustered according to the cosine similarity. This approach does not 
rely on any annotated corpus and works effectively on high-frequent entity pairs [8]. 
However, there are two problems in this approach: 

 
 

• The assumption that the same entity pairs in different sentences have the 
same relation. 

 
 

• The cosine similarity measure between the flat feature vectors, which only 
consider the words between entities. 

 
 

In this paper, we propose a tree similarity-based unsupervised learning approach 
for relation extraction. In order to resolve the above two problems in Hasegawa et al. 
[8], we assume that the same entity pairs in different sentences can have different 
relation types. Moreover, rather than the cosine similarity measure, a similarity func-
tion over parse trees is proposed to capture much larger feature spaces instead of the 
simple word features. 

The rest of the paper is organized as follows. In Section 2, we discuss the proposed 
tree-similarity-based clustering algorithm. Section 3 shows the experimental result. 
Section 4 compares our work with the previous work. We conclude our work with a 
summary and an outline of the future direction in Section 5. 

2   Tree Similarity-based Unsupervised Learning 

We use the shallow parse tree as the representation of relation instances, and regard 
relation extraction as a clustering problem on shallow parse trees. Our method con-
sists of three steps: 

 
 

1) Calculating the similarity between two parse trees using a tree similarity 
function; 

 

2) Clustering relation instances based on the similarities using a hierarchical 
clustering algorithm; 

 

3) Labeling each cluster using indicative words as its relation type, and prun-
ing out unreliable clusters.  

 
 

In this section, we introduce the parse tree representation for a relation instance, 
define the tree similarity function, and describe the clustering algorithm. 



2.1 Parse Tree Representation for Relation Instance 

A parse treeT  is a set of node
1

}{ ... np p , which are connected hierarchically. Here, a 

node ip includes a set of features 
1 4

{ , ..., }f f as follows: 
 

• Head Word ( 1f ): for a leaf (or terminal) node, it is the word itself of the 
leaf node; for a non-terminal node, it is a “Head Word” propagated from a 
leaf node. This feature defines the main meaning of the phrase or the sub-
tree rooted by the current node. 

 

• Node Tag ( 2f ): for a leaf node, it is the part-of-speech of this node; for a 
non-terminal node, it is a phrase name, such as Noun Phrase (NP), Verb 
Phrase (VP). This feature defines the linguistic category of this node. 

 

• Entity Type ( 3f )2: it indicates the entity type which can be PER, COM or 
GPE if the current node refers to a Named Entity.  

 

• Relation Order ( 4f ): it is used to differentiate asymmetric relations, e.g., 
“A belongs to B” or “B belongs to A”. 

 
 

These features are widely-adopted in Relation Extraction task.  In the parse tree rep-
resentation, we denote by .

i j
fp  the jth feature of node ip , by [ ]ip j   the jth child of 

node ip , and by [ ]ip C  the set of all children of node ip , i.e., [ ] [ ]i ip j p∈ C .   

2.2 Tree Similarity Function  

Inspired by the special property of kernel-based methods3, we extend the tree kernels 
in Zelenko et al. [3] to a novel tree similarity measure function, and apply the above 
tree similarity function to unsupervised learning for relation extraction. Mostly, in 
previous work, kernels are used in supervised learning algorithms such as SVM, 
Perceptron and PCA (Collins and Duffy, 2001). In our approach, the hierarchical 
clustering algorithm is adopted, this allows us to explore more robust and powerful 
similarity functions, other than a proper kernel function4.  

                                                           
2 For the features of “Entity Type”, please refer to the literature ACE [22] for details. 
3 As an alternative to the feature-based method [5], the advantage of kernels [9] is that they can 

replace any dot product between input points in a high dimensional feature space. Compared 
with the feature-based method, the kernel method displays several unique characteristics, 
such as implicitly mapping the feature space from low-dimension to high-dimension, and ef-
fectively modeling structure data. A few kernels over structured data have been proposed in 
NLP study [10-16]. Zelenko et al. [3] and Culotta et al. [4] explored tree kernels with SVM 
[9] for relation extraction. We study the tree kernels from similarity measure viewpoints. 

4 A function is a kernel function if and only if the function is symmetric and positive semi-
definite [3, 9].  



A similarity function returns a normalized, symmetric similarity score in the range 
[0, 1]. Especially, our tree similarity function 1 2( , )K T T over two trees 1T  and 2T , 

with the root nodes 1r  and 2r , is defined as follows: 
 

1 2 1 2 1 2 1 2
( , ) ( , ) * ( , ) ( [ ], [ ]){ }

C
K T T m s Kr r r r r r= + c c                                   (1) 

where,  
• , )( i jm p p is a matching function over the features of two tree nodes ip  

and
j

p . In this paper, only the node tag feature ( 2f ) is considered:  

2 2  , ) 1      if . .(
 0     otherwise

 ji
i j

f fp pm p p
 =



=                                                (2) 

 

The binary function (1) means that two nodes are matched only if they 
share the same Node Tag. 

• 1 2( , )p ps  is a similarity function between two nodes ip  and jp : 

1 1

3 3

1 1

  

 &   
if 

, else if

other features match

no match

 

 

       

. .
1         . .

( ) 0.5        . .

0.25   
0    

i j

i j

jii j

p f p f

p f p f

p p f fp ps

 =


=




= =




                                 (3) 

where the values of the weights are assigned empirically according to the 
discriminative ability of the feature types. Function (3) measures the similar-
ity between two nodes according to the weights of matched features. 

• CK  is the similarity function over the two children node sequences 1[ ]p c  

and 2[ ]p c :  

 

1 2 1 2
, , ( ) ( )

( [ ], [ ]) ( [ ], [ ])argmax { }
C

l l
K p p K p p

=
=

a b a b
c c a b                              (4)  
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a ba b                                             (5) 

where a and b are two index sequences, i.e., a is a sequence 
 1 10 ... [ ]ma a p< < ≤ | |C  and l(a) is the length of sequence a, and likewise for b. 

The node set 
1 1 1
[ ] { [ ], ..., [ ]}p p p= 1 ma a a  is the subset 

of
1
[ ]p c ,

1 1
[ ] [ ]p p⊆a c ,

1
[ ]p ai is the ith node of

1
[ ]p a , and likewise for 2p . 

 

We define 1 2( , )K T T in terms of the similarity function 1 2( , )r rs  between the par-

ent nodes and the similarity function CK  over the two children node sequences 1[ ]r c  



and 2[ ]r c . Formula (5) defines the similarity between two node sequences by sum-

ming up the similarity of each corresponding node pair. CK  in Formula (4) searches 
out such two children node subsequences 1[ ]p a and 2[ ]p b , which has the maximum 
node sequence similarity among all the possible combining pairs of node subse-
quences. Given the similarity scores of all children node pairs, Formula (4) can be 
easily resolved by the dynamic programming (DP) algorithm5. By traversing the two 
trees from top to down and applying the DP algorithm layer by layer, the parse tree 
similarity 1 2( , )K T T defined by Formula (1) is obtained. Due to the DP algorithm, the 
defined tree similarity function is computable in O(mn), where m and n are the num-
ber of nodes in the two trees, respectively. The matching function , )( i jm p p in For-
mula (2) can narrow down the search space during similarity calculation, since the 
sub-trees with unmatched root nodes are unnecessary to be further explored.  

 
 

 

Fig. 1. Sub-structure with maximum similarity 

From the above discussion, we can see that our defined tree similarity function is 
trying to detect the two trees’ maximum isomorphic sub-structures. The similarity 
score between the maximum isomorphic sub-structures is returned as the value of the 
similarity function. Fig. 1 illustrates the sub-structures with the maximum similarity 
between two trees. Among the all matched sub-structures, only the sub-structures 
circled by the dashed lines are the isomorphic sub-structures with the maximum simi-
larity. The similarity score between the sub-structures is obtained by summing up the 
similarity score between the corresponding matched nodes.  

 
Finally, since the size of the input parse tree is not constant, the similarity score is 

normalized as follows: 

                                                           
5 A well-known application of Dynamic Programming is to compute the edit distance between 

two character strings. Let us regard a node as a character and a node sequence as a character 
string. Then given the similarity  score between nodes, Formula (4) can be resolved using DP 
algorithm in the same way as that of strings. Due to space limitation, the implementation 
deatils are not discussed here. 
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                      NP          VP                                          NP          VP 
 
 
       Paul          bought     NP                    Smith     sold       NP     yesterday 
 
 
                               a         red      car                              the      flat 
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The value of 1 2
ˆ ( , )K T T ranges from 0 to 1. In particular, 1 2

ˆ ( , )K T T =1 if and only 

if 1 2T T= . For example, given two parse trees A and B, and A is a subtree of B, then 
under Formula (1), K(A, B) = K(A, A). However, after the normalization through 
Equation (6), we can get ˆ ˆ  ( , ) ( , ) 1K A B K A A< = . In this way, we can differentiate such 
two cases.  

According to the Formula (1) to (5), the similarity function 1 2( , )K T T  over the two 
trees in Fig. 1 is computed as follows: 

 
1 2 ([NP, VP], [NP, VP])

([bought, NP],[sold, NP, yesterday])

1 bought sold (NP, NP)

= 1+0.25+0.25+ ([a, red, car]

( , ) (S,S) *{ (S,S) }
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2
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The above similarity score is more than one. This is because we did not normalize 

the score using Formula (6). 

2.3 Tree Similarity Based Unsupervised Learning 

Our method consists of five steps: 
 

1) Named Entity (NE) tagging and sentence parsing: Detailed and accurate NE 
types provide more effective information for relation discovery. Here we use Sekine’s 
NE tagger [20], where 150 hierarchical types and subtypes of Named Entities are 
defined [21]. This NE tagger has also been adopted by Hasegawa et al. [8]. Besides, 
Collin’s parser [18] is adopted to generate shallow parse trees.  

 

2) Similarity calculation: The similarity between two relation instances is defined 
between two parse trees. However, the state-of-the-art of parser is always error-prone. 
Therefore, we only use the minimum span parse tree including the NE pairs when 
calculating the similarity function [4]. Please note that the two entities may not be the 
leftmost or rightmost node in the sub-tree. 

 

3) NE pairs clustering: Clustering of NE pairs is based on the similarity score 
generated by the tree similarity function. Rather than k-means [17], we used a bot-



tom-up hierarchical clustering method so that there is no need to determine the num-
ber of clusters in advance. This means that we are not restricted to the limited types of 
relations defined in MUC [1] or ACE [22]. Therefore, more substantial existing rela-
tions can be discovered. We adopt the group-average clustering algorithm [17] since 
it produces the best performance compared with the complete-link and single-link 
algorithms in our study.  

 

4) Cluster labeling: In our study, we label each cluster by the most frequent 
“Head Word” in this cluster. As indicated in subsection 2.1, the “Head Word” of 
root node defines the main meaning of a parse tree. This way, the “Head Word” of 
the root node of the minimum span tree naturally characterizes the relation between 
this NE pair in this tree. Thus, we simply count the frequency of the “Head Word” of 
the root node in the cluster, and then chose the most frequent “Head Word” as the 
relation type of the cluster.  

 

5) Cluster pruning: Unreliable clusters may be generated due to various reasons 
such as divergent relation type distributions and the fact that most of the entity pairs 
inside this cluster are totally unrelated. Therefore, pruning is necessary and done in 
our approach using two criteria. Firstly, if the most frequent “Head Word” occurs 
less than a predefined percentage in this cluster, which means that the relation type 
defined by this “Head Word” is not significant statistically, the cluster is pruned out. 
Secondly, we prune out the clusters whose NE pair number is below a predefined 
threshold because such clusters may not be representative enough for this relation.  

3   Experiments 

3.1 Experimental Setting 

To verify our proposed method and establish proper comparison with Hasegawa et al. 
[8], we use the same corpus “The New York Times (1995)”, and evaluate our work 
on the same two kinds of NE pairs: COMPANY-COMPANY (COM-COM) and 
PERSON-GPE (PER-GPE) as Hasegawa et al. in [8]. First, we iterate over all pairs of 
Named Entities occurring in the same sentence to generate potential relation in-
stances. Then, according to the co-occurrence frequency of NE pairs, all the relation 
instances are grouped into three categories: 

1) High frequent instances with the co-occurrence frequency not less than 30. 
In this category, only the relation instances, which satisfy the all criteria of 
Hasegawa et al. [8]6, are kept for final experiment. By doing so, this cate-
gory data is the same as the entire experimental set used by Hasegawa et al. 
[8]. 

2) Intermediate frequent instances with the co-occurrence frequency between 5 
and 30. In this category, only two distinct NE pairs are randomly picked at 

                                                           
6  To discover reliable relations, Hasegawa et al. [8] sets five conditions to generate relation 

instance set. NE pair co-occurrence more than 30 times is one of the five conditions. 



each frequency for final evaluation due to the large number of such NE 
pairs. 

3) Less frequent instances with the co-occurrence frequency not more than 5. 
In this category, twenty distinct NE pairs are randomly picked at each fre-
quency for final evaluation due to the similar reason as 2). 

Table 1 reports the statistics of the entire evaluation corpus7 which is manually 
tagged. Table 2 reports the percentage of the NE pairs which carry more than one 
relation types when occurring at different relation instances. The numbers inside 
parentheses in Table 1 and Table 2 correspond to the statistical values of the NE pair 
“PER-GPE”, while the numbers outside parentheses are related to the NE pair 
“COM-COM”. Table 2 shows that at least 9.88% of distinct NE pairs have more than 
one relation types in the test corpus. Thus it is reasonable and necessary to assume 
that each occurrence of NE pairs forms one individual relation instance. 

Table 1.  Statistics on the manually annotated evaluation data 

Category by 
frequency 

# of instances # of distinct NE pairs    # of relation  
types 

High 8931 (13205) 65 (177) 10 (38) 
Intermediate 672  (783) 38 (41) 6 (7) 

Less 276  (215) 76 (81) 5 (8) 

Table 2.  % of distinct NE pairs with more than one relation types on the evaluation data 

Category by frequency % of NE pairs have more than one relations 
    High  15.4   (12.99) 

    Intermediate 28.9   (24.4) 
    Less 11.8   (9.88) 

3.2 Evaluation Measures 

All the experiments are carried out against the manually annotated evaluation corpus. 
We adopt the same criteria as Hasegawa et al. [8] to evaluate the performance of our 
method. Grouping and labeling are evaluated separately. For grouping evaluation, all 
the single NE pair clusters are labeled as non-relation while all the other clusters are 
labeled as the most frequent relation type counted in this cluster. For each individual 
relation instance, if the manually assigned relation type is the same as its cluster label, 
the grouping of this relation instance is counted as correct, otherwise, are counted as 
incorrect. Recall (R), Precision (P) and F-measure (F) are adopted as the main per-

                                                           
7  Due to the parsing errors and NE tagging errors, the actual number of relation instances is 

less than the theory number that we should pick up. 



formance measure for grouping [8]. For labeling evaluation, a cluster is labeled cor-
rectly only if the labeling relation type, represented by most frequent “Head Word” 
of the root node of the minimal-span subtree, is the same as the cluster label gotten in 
the grouping process. 

3.3 Experimental Results 

Like other applications using clustering algorithms, the performance of the proposed 
method also depends on the threshold of the clustering similarity. Here this threshold 
is used to truncate the hierarchical tree, so that the different clusters are generated. 
When the threshold is set to 1, then each individual relation instance forms one 
unique group; when the threshold is set to 0, then the all relation instance form one 
big group. Table 3 reports the evaluation results of grouping, where the best F-
measures and the corresponding similarity thresholds are listed. We can see that our 
method not only achieves good performance on the high-frequent data, but also per-
forms well on the intermediate and less-frequent data. The higher frequency, the 
higher performance. Since the best thresholds of the two NE cases are the almost 
same, we just fix the universal threshold as the one used in “PER-GPE” case in each 
category.  

Table 3.  Performance evaluation of Grouping phase, the numbers inside parentheses corre-
spond to the evaluation score of “PER-GPE” while the numbers outside parentheses are related 
to “COM-COM” 

Performance Category by frequency 
  F P (%) R (%) 

Threshold 

High 80 (87) 82 (90) 78 (84) 0.28 (0.29) 
Intermediate 74 (76) 87 (84) 64 (69)  0.32 (0.30) 

Less   62 (65) 75 (77) 53 (56)  0.36 (0.35) 

Table 4.  Best performance comparison in the high-frequent data (F) 

 Our approach  Hasegawa et al. [8] 

PER-GPE 87 82 

COM-COM 80 77 
 

Table 4 compares the performances of the proposed method and Hasegawa et al. 
[8], where the best F-measures on the same high-frequent data are reported. Table 4 
shows that our method outperforms the previous approach by 5 and 3 F-measures in 
clustering NE pairs of “PER-GPE” and “COM-COM”, respectively.  

An interesting phenomenon is that the best threshold is set to be just above 0 for 
the cosine similarity in Hasegawa et al. [8]. This means that each word feature vector 
of each combination of NE pairs in the same cluster shares at least one word in com-
mon --- and most of these common words were pertinent to the relations [8]. This 



also prevents them from working well on less-frequent data [8]. In contrast, for the 
similarity function in our approach, the best threshold is much greater than 0. The 
difference between the two thresholds implies that the similarity function over the 
parse trees can capture more common structured features than the word feature vec-
tors can. This is also the reason why our method is effective on both high and less-
frequent data. 

It is not surprising that we do have that a few identical NE pairs, occurring in dif-
ferent relation instances, are grouped into different relation sets. For example, the NE 
pairs “General Electric Co. and NBC”, in one sentence “General Electric Co., which 
bought NBC in 1986, will announce a new marketing plan.”, is grouped into the rela-
tion set “M&A”, but in another sentence “Prime Star Partners and General Electric 
Co., parent of NBC, has signed up 430,000 subscribers.”, is grouped into another 
relation set “parent”. Among all the NE pairs that carry more than one relation types, 
41.8% of them are grouped correctly using our tree similarity function.  

The performance of grouping is the upper bound of the performances of labeling 
and pruning. In the final, there are 146 PER-GPE clusters and 95 COM-COM clusters 
are generated after grouping. Out of which, only 57 PER-GPE clusters and 42 COM-
COM clusters are labeled correctly before pruning. This is because that a large por-
tion of the non-relation clusters are labeled as one kind of true relations. After prun-
ing, 117 PER-GPE clusters and 84 COM-COM clusters are labeled correctly. This is 
because lots of the non-relation clusters are labeled correctly by the pruning process, 
so we can say that pruning is a non-relation labeling process, which greatly improves 
the performance of labeling.  

 
The experimental results discussed above suggest that our proposed method is an 

effective solution for discovering relation from a large raw corpus. 

4 Discussions 

It would be interesting to review and summarize how the proposed method deals with 
the relation extraction issue differently from other related works. Table 5 in the next 
page summarizes the differences between our method and Hasegawa et al. [8]. 

In addition, since our tree similarity function has benefited from the relation tree 
kernels of Zelenko et al. [3], let us compare our similarity measure function with their 
relation kernel function [3] from the viewpoint of computational efficiency. Zelenko 
et al. [3] defined the first parse tree kernels for relation extraction, and then this rela-
tion tree kernels were extended to dependency tree kernels by Culotta et al. [4].  Their 
tree kernels sum up the similarity scores among all possible subsequences of children 
nodes with matching parents, and give a penalty to longer sequences. Their tree ker-
nels are closely related to the convolution kernels [12]. But, by doing so, lots of sub-
trees will be considered again and again. An extreme case occurs when two tree struc-
tures are identical. In that situation all the sub-trees will be considered exhaustedly, 
even if the sub-tree is a part of other bigger sub-trees. We use the maximum score in 
Formula (4) instead of the summation in our approach. With our approach, the entire 



tree is only considered once. The replacement of summation with maximization re-
duces the computational time greatly. 

Table 5.  The differences between our method and Hasegawa et al. [8] 

 Our approach  Hasegawa et al. [8] 

Similarity  
Measure 

tree similarity over parse 
tree structures 

cosine similarity between the 
context word feature vectors 

Assumption No Yes (The same entity pairs in 
different sentences have the 
same relation) 

Labeling the most frequent “Head 
Word” of the root node of 
sub-tree 

the most frequent context 
word 

Pruning Yes (We present two prun-
ing criterion) 

No 

Data Frequency effective on both high and 
less-frequent data 

effective only on high-
frequent data 

5 Conclusions and Future Directions 

We modified the relation tree kernels [3] to be a tree similarity measure function by 
replacing the summation over all possible subsequences of children nodes with 
maximization, and used it in clustering for relation extraction. The experimental re-
sult showed much improvement over the previous best result [8] on the same test 
corpus. It also showed that our method is high effective on both high-frequent and 
less-frequent data. Our work demonstrated the effectiveness of combining the tree 
similarity measure with unsupervised learning for relation extraction. 

Although our method shows good performance, there are still other aspects of the 
proposed method worth discussing here. Without additional knowledge, relation 
detecting and relation labeling are still not easy to be resolved, especially in less-
frequent data. We expect that using additional easily-acquired knowledge can im-
prove the performance of the proposed method. For example, we can introduce the 
WordNet [19] thesaurus information into Formula (3) to obtain more accurate node 
similarities and resolve data sparse problem. We can also use the same resource to 
improve the labeling scheme and find more abstract relation types like the definitions 
used in ACE program [22].  
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