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The inference of genetic interactions from measured expression data is one of the most 
challenging tasks of modern functional genomics. When successful, the learned network of 
regulatory interactions yields a wealth of useful information. An inferred genetic network 
contains information about the pathway to which a gene belongs and which genes it 
interacts with. Furthermore, it explains the gene’s function in terms of how it influences 
other genes and indicates which genes are pathway initiators and therefore potential drug 
targets. Obviously, such wealth comes at a price and that of genetic network modeling is 
that it is an extremely complex task. Therefore, it is necessary to develop sophisticated 
computational tools that are able to extract relevant information from a limited set of 
microarray measurements and integrate this with different information sources, to come 
up with reliable hypotheses of a genetic regulatory network. Thus far, a multitude of 
modeling approaches has been proposed for discovering genetic networks. However, it is 
unclear what the advantages and disadvantages of each of the different approaches are 
and how their results can be compared. In this review, genetic network models are put in a 
historical perspective that explains why certain models were introduced. Various modeling 
assumptions and their consequences are also highlighted. In addition, an overview of the 
principal differences and similarities between the approaches is given by considering the 
qualitative properties of the chosen models and their learning strategies.
In pharmacogenomics and related areas, a lot of
research is directed towards discovering, under-
standing and/or controlling the outcome of
some particular biological pathway. Numerous
examples exist where the manipulation of a key
enzyme in such a pathway did not lead to the
desired effect [1]. This usually happens because
the intended effect was compensated for by the
genetic regulation of enzyme levels. Such exam-
ples illustrate the importance of accounting for
genetic regulation.

We know that the structure of complex
genetic and biochemical networks lies hidden in
the sequence information of our DNA but it is
far from trivial to predict gene expression from
the sequence code alone. The current availability
of microarray measurements of thousands of
gene expression levels during the course of an
experiment or after the knockout of a gene pro-
vides a wealth of complementary information
that may be exploited to unravel the complex
interplay between genes. It now becomes possi-
ble to start answering some of the truly challeng-
ing questions in systems biology. For example, is
it possible to model these genetic interactions as

a large network of interacting elements and can
these interactions be effectively learned from
measured expression data?

Since Kauffman [2] introduced the concept of
mathematical modeling of complex systems, the
reverse engineering of genetic networks has trig-
gered the imagination of many molecular biolo-
gists. Somogyi1 [3] also investigated some of the
properties of Boolean networks in relation to
biological systems. These researchers showed
that Boolean networks possess properties like
global complex behavior, self-organization, sta-
bility, redundancy and periodicity. Analogies
between basins of attraction and different tissue
types, as well as cyclic attractors and cell cycles
have also been discussed by many other research-
ers.

Although the behavior and properties of artifi-
cial networks match the observations made in
real biological systems well, the field of genetic
network modeling has yet to reach its full matu-
rity. The automatic discovery of genetic net-
works from expression data alone is far from
trivial because of the combinatorial nature of the
problem and the poor information content of
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the data. First, to model genetic regulation, one
needs to take into account the fact that gene
expression levels are regulated by the combined
action of multiple gene products [4]. Second, the
number of measurements (arrays) is relatively
small compared to the number of measured
objects (genes) and the data are corrupted with a
substantial amount of measurement noise.
Together, these two complicating factors make
the construction of genetic networks from
empirical observations extremely difficult. In
addition, results are further complicated by the
presence of inherent noise caused by, for exam-
ple, variations between different individuals,
small numbers of molecules available in a given
cell, variations between tissues in a given individ-
ual, variations caused by effects that are not
measured etc.

The dimensionality problem (many objects
and few measurements) plays a fundamental role
in genetic network modeling causing the
straightforward estimation of model parameters
to become extremely unreliable (many equally
good solutions). The common approach to avoid
this problem is to either reduce the model’s com-
plexity or to apply constraints on the parameters.
Consequently, the relatively young field of
genetic network modeling has been governed by
the introduction of a plethora of different mod-
els and learning strategies.

This paper provides an overview of genetic
network modeling approaches that employ
expression data to automatically discover genetic
interactions. Developments in this field are
placed in a historical context and the qualitative
properties and learning strategies of the proposed
models are compared and discussed. Recently,
another review on genetic network models has
appeared [5], but that review focuses more on the
mathematical properties of the models.

In this review, the different modeling
approaches are first introduced by presenting a
historical perspective on the development of
genetic network modeling. Then, we briefly con-
sider other approaches that utilize alternative
information sources to discover genetic interac-
tions. Focusing on genetic network models with
an automatic way of discovering interactions
from expression data, we organize them based on
the qualitative properties of the underlying
model and on their strategy for learning the
interactions. Finally, we discuss the current
trends in genetic network modeling and indicate
which developments are, in our opinion, to be
expected in the near future.

The analytic approach: traditional 
reductionism
For many years, biological research was governed
by a reductionist’s approach, i.e., a system was
investigated by studying the characteristics of its
building blocks. Making measurements was
laborious and therefore only a handful of ele-
ments were typically measured. Consequently,
the traditional approach towards genetic net-
work modeling was knowledge driven and based
on integrating existing pieces of biological
knowledge into a realistic model. Typically, a
small complex model was constructed and its
parameters tuned manually, until the simulated
behavior of the model approached the observa-
tions made on the biological system under study.
This analytic (or deductive) method of genetic
network modeling is still commonly practiced
and is currently well-established.

Realistic models of biological phenomena
On the one hand, this approach has led and still
leads to very realistic models with manually
tuned parameters that can accurately describe
some biological phenomena. To name but a few: 

• McAdams [6] proposed to use electrical circuits
with logical elements to model the circuit dia-
gram of the lysis-lysogeny switch of the bacte-
riophage lambda in E. coli. McAdams also
studied the stochastic mechanisms of gene
expression in prokaryotes [7].

• Matsuno [8] constructed a hybrid Petri net
model (with continuous as well as discrete
expression levels) that accurately models the
same lysis-lysogeny switch of lambda phage.

• Yuh [9] has constructed a model of the cis-reg-
ulatory control of the endo16 gene in the sea
urchin, based on sequence information as well
as expression data.

A prerequisite for this type of approach is that a
lot of a priori knowledge is available, which is
why it is unsuitable for modeling organisms and
pathways about which little information is
known. Additionally, one needs to focus on a few
genes, thereby possibly ignoring other important
factors.

Understanding network behavior
On the other hand, the analytic approach gener-
ates a lot of knowledge about the specific proper-
ties that an artificial network should possess,
such that the simulated expression behavior
resembles the real life behavior. Savageau [10], for
instance, studied the molecular mode of control
Pharmacogenomics (2002)  3(4)
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and the capacity of a gene in power-law models
in relation to the level of demand. He found that
a positive molecular mode of control, where an
inducer activates a necessary protein, is best
suited for a high level of demand for expression,
whereas a negative molecular mode of control,
where an inducer removes a repressor-protein, is
better suited for a low level. He also considered
three types of coupling between regulator and
effector genes, i.e., direct coupling, uncoupled
and inverse coupling where the regulator gene
expression (respectively) increases, stays the same
and decreases with an increase in effector gene
expression. He found that for a positive mode of
control, directly coupling, uncoupled and
inversely coupling causes a respectively low,
intermediate and high capacity of a gene, i.e., its
maximal change in expression. For a negative
mode of control this relationship was the exact
opposite. Savageau further reasoned that, based
on studies of random Boolean networks [11],
molecular analysis of bacteria and sequence
homology [12], the connectivity of genetic net-
works is likely to be limited and ranges between
2–12 connections per gene.

Thieffry [13] analytically constructed a qualita-
tive (discrete) model and then studied all of its
possible feedback loops. The number of negative
interactions inside a feedback loop simply
defines the type of circuit, i.e., an even (odd)
number defines a positive (negative) circuit. Thi-
effry found that positive circuits are necessary to
obtain multi-stationarity, which is biologically
similar to the differentiation of tissues. Negative
circuits produce gene profiles that show stable
periodicity, a property biologically associated
with homeostasis. Studies of known circuits in
E. coli indicate low connectivity in genetic net-
works [14], while studies of random Boolean net-
works indicate small circuit lengths. Together
this suggested to him that a genetic network is
not a large intertwined network but rather a col-
lection of many small weakly interconnected reg-
ulatory modules.

Szallasi [15] defined a ‘realistic’ Boolean model
that consists of nodes representing not only
genes but also proteins and their activated states.
He remarked that < 2% of the Yeast genes are
actually cycling and that no gene changes its
expression more than twice during the cell cycle.
When simulations were run with his model,
however, the number of cycling genes always
turned out to be much larger and more frequent

changes occurred. This behavior could not be
corrected by making changes to some model
properties such as the number of ingoing and
outcoming connections, the type of canalization,
the size of the network or its resulting cycle
length. Szallasi further postulated that cancer
might be similar to a change from a ‘normal’
attractor to a ‘diseased’ attractor. He considered
situations in which this change may or may not
be reversible. In that sense, the analysis of the
basins of attraction for Boolean networks as per-
formed by Wuensche [16] may provide a useful
tool.

The notion of a field of attraction is fre-
quently mentioned in the context of Boolean
networks but is not specific to the Boolean con-
text. In fact, it originates from the field of con-
tinuous dynamic models. Wuensche noted that
to be robust and flexible, a biological model
must reside on the edge between chaos and
order.

Many of the above-mentioned findings are
not only interesting for understanding biologi-
cal processes but may also prove to provide
important support for the synthetic approach,
i.e., these properties could be incorporated in
genetic network models that are learned from
expression data.

The synthetic approach: the introduction of 
large-scale reverse engineering
The introduction of microarray technology
made it possible to measure the gene-expression
levels of thousands of genes simultaneously. This
introduced a new impulse to genetic network
modeling, namely the reverse engineering of
large-scale genetic networks based on measured
expression data. This challenge required a syn-
thetic (or inductive) approach, where a network
is constructed automatically, starting from
microarray data and a general model of genetic
interactions.

This section starts with a historical perspective
that describes the introduction of the dynamical
models, i.e., models that are learned on time
course gene expression data. At the end of this
section, the static models that are learned on
(steady-state) perturbation gene expression data
are described.

Boolean networks (1998–2000)2

In 1998, Liang [17] started off by introducing
REVEAL, an algorithm that automatically con-

2

k 3

The indicated years (here and at other headings) refer to the publication year of the papers covered in each section, though in 
many cases work is still going on. 
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Figure 1. Example o
c) Boolean rules.
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c) Rules:

g1(t+1) = g1(t) AND 
g2(t+1) = NOT g3(t)
g3(t+1) = g1(t) OR g
structs a large-scale Boolean network from data.
In a general Boolean network model, all gene
expression levels are discretized into binary
expression levels; a gene is either on or off. The
binary expression levels of all genes in the system
at a certain point in time define the state of the
network at that time instant. A state transition
table defines, for each possible network state,
which network state will be next (see Figure 1b).
From this table, a Boolean rule can be deter-
mined for each gene that describes how its
expression level at the next time instant depends
on some combination of the gene expression lev-
els at the current time instant.

Typical Boolean rules contain logical opera-
tors such as AND, OR and NOT (see Figure 1c).
By placing connections between each of the
input genes in the rule and the output gene, the
structure of the network can be determined,
which expresses the interactions among all genes
(see Figure 1a). A typical gene expression dataset,
after discretization, represents an incomplete
state-transition table, since not all possible states
will have been measured.

REVEAL constructs the rule for a target gene
from this incomplete table by considering the
mutual information between the input states of
each single gene (k = 1) and the output state of
the target gene. If the output can be perfectly
determined by one of the inputs, the corre-
sponding rules and connections are extracted. If
not, all combinations of two genes (k = 2) are

considered as input and it is examined whether
this pair can perfectly predict the target. If not,
the procedure repeats for k = k + 1 etc. In other
words, the structure is learned using a forward
exhaustive search procedure that stops as soon as
a perfect reconstruction is possible.

A year later, Akutsu [18] proved, using a con-
ceptually simpler approach, that O(log2 N) ran-
dom measurements are sufficient to identify a
network of N genes with bounded connectivity
K but this algorithm takes O(NK+1Q) time, with
Q the number of state transitions. This implies
that for a typical gene expression dataset with
1000 genes and connectivity K = 2, in the order
of 10 independent measurements are sufficient
but in that case O(1010) time is required! The
algorithm learns a Boolean model by performing
an exhaustive search not only for each possible
combination of inputs but also for each possible
configuration of Boolean functions (using only
AND or and NOT operators) that are consistent
with the given state transitions. Unfortunately,
this algorithm was not suited for noisy condi-
tions but a year later Akutsu presented an algo-
rithm that is robust to noise [19,20].

Continuous models (1999–2001)
Although Boolean networks provide a good
starting point, they are generally criticized
because only two discrete expression levels are
allowed. Many examples exist where genes are
regulated in a continuous manner rather than

f: a) a Boolean network of three genes with corresponding b) state-transition table and 
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just turned on or off [21-23]. This inspired the
introduction of models with a continuous repre-
sentation of gene expression.

D’Haeseleer [24] learned a linear model on
data from the rat central nervous system (CNS),
during development and injury after kainate
injection [25]. He coupled two partly overlapping
datasets, to utilize as much information as possi-
ble, resulting in a dataset of 65 genes and 28
time points. Even this simple linear model (with
a single parameter per gene) contains more
parameters than the number of measurements.
This so-called dimensionality problem makes it
possible to find many parameter sets that per-
fectly reconstruct the data. As a result, the
parameter estimations become unreliable. To
accommodate the fact that the datasets were dif-
ferently sampled, D’Haeseleer employed a non-
linear interpolation method (resulting in 68 time
points). By employing a nonlinear interpolation
scheme, he enforces smoothness and tries to
avoid the dimensionality problem.

Weaver [26] also employed the linear model
but augmented it with a biologically inspired,
non-linear dose–response curve. Although non-
linear, this model is essentially a recurrent neural
network without a hidden layer. By de-squashing
the dose–response curve, the model can be
solved by simple linear algebra. To handle the
dimensionality problem, Weaver proposed the
use of the Moore-Penrose pseudo-inverse. This
special matrix inverse produces a solution for
underdetermined problems that minimizes the
sum of the squared weights but still perfectly fits
the data. To introduce limited connectivity, he
proposed a greedy backward search that itera-
tively sets the smallest weight to zero and then
recomputes the pseudo-inverse on the now
slightly less underdetermined problem. Unfortu-
nately, the de-squashing step is quite sensitive to
small changes in the data.

Rather than a discrete-time model, Wahde [27]

employed a continuous-time recurrent neural
network. A genetic algorithm (GA) was
employed to find the parameters of small net-
works (four genes) learned on the average pro-
files of clustered data. A genetic algorithm [28] is
an optimization technique based on natural
selection in which a set of possible solutions,
called a population, is evaluated in parallel. New
populations of potentially better solutions are
generated and evaluated by combining (crosso-
ver) and modifying (mutation) the best solutions
in the current population. After learning the
parameters with a GA, a qualitative description

of the parameters is given. Wahde showed results
on artificial data as well as on the CNS dataset
presented by Wen [25]. Using artificial data he
showed that it is better to have multiple shorter
time series than one long series. In later work
[29,30], he suggested a procedure that forced
parameters that were not significant to zero.
Repeated elimination of the most unreliable
parameters can also be viewed as a form of back-
ward search.

Chen [31] proposed an even more realistic
model based on a system of differential equations
that models both mRNA and protein levels,
including degradation. Chen showed that, pro-
vided that both mRNA and protein levels are
given, solving this model is similar to the prob-
lem of finding minimum weight solutions to lin-
ear equations (MWSLE). Unfortunately, this
problem is known to be NP complete. However,
for a constant connectivity, K, the problem can
be solved in O(QNK+1) time (using a dataset of N
genes and Q time points) by just checking all NK

possible structures. Chen also reasoned that, as
many genes showed periodic expression, the
Fourier transform for stable systems (FTSS)
might be employed as an alternative approach.

A year earlier, Spirov [32] had also suggested
the use of a system of differential equations but
for a smaller network and with more data points.
For learning the parameters, he suggested first
using a genetic algorithm to come up with an
initial population of globally ‘optimal’ solutions,
which is then used as seeds for a parallel simu-
lated annealing (SA) search. Simulated annealing
is a sequential optimization technique that is
based on evaluating random changes to the cur-
rent solution. Better solutions are always
accepted, whereas worse solutions are accepted
with a probability that decreases during optimi-
zation. As a result, SA moves consistently to bet-
ter solutions but is able to jump out of local
optima. When these runs have almost con-
verged, a local gradient descent (GD) approach
is employed.

Modeling concerns (1999–2001)
Apart from many papers that introduced a new
reverse engineering approach based on yet
another model, gradually more papers emerged
that addressed the issues associated with genetic
network modeling itself. With the reductionist’s
approach, the combinatorial nature of genetic
regulation had largely been ignored [33]. There-
fore, it took some time before researchers real-
ized the immense complexity that learning
k 5
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genetic networks from expression data involved
and the early enthusiasm subdued.

Szallasi [33] claimed that there are four factors
inherent in biological systems that influence the
reverse engineering of genetic networks from
expression data. First, the nature of genetic net-
works is undoubtedly stochastic but microarray
measurements are population averaged, which
may mask the real individual regulatory interac-
tions. Also, a faster sampling rate is not always
possible because the measurement error deter-
mines a lower bound on the sampling interval,
i.e., the expected difference in expression within
one sampling interval should be larger than the
measurement noise. Secondly, there are also
many regulatory factors that are not modeled,
such as (de-)stabilization of mRNA, transloca-
tion, phosphorylization etc. Thirdly, he reasons
that the information content of the data is not as
large as its size would suggest (1–2 orders of
magnitude smaller), as only a few genes cycle
and even fewer show frequent changes during
cell cycle. On the other hand, a property that is
favorable for network analysis is that networks
are believed to exhibit a high level of compart-
mentalization.

Spirtes [34] also discussed some of the compli-
cating issues of data acquisition in relation to the
construction of genetic networks. Apart from the
above-mentioned issues of small sample sizes
(dimensionality problem), the substantial meas-
urement error and the masking effect of popula-
tion averaged measurements, he also points to
the fact that the final results can be influenced by
hidden (e.g., not modeled) effects and the loss of
synchronization of cells.

Erb [35] experimentally examined the influence
of measurement noise. He performed Khalil’s sen-
sitivity analysis on a complex non-linear model
proposed by Mjolsness [67], employing a fully con-
nected network of only three genes. Already with
such a small network, the parameters turned out
to be very sensitive to noise in the data.

A comparative study done by Wessels [36,37]

proposed a set of mathematical properties that
genetic network models should possess and by
means of which they can be compared. In a small
experimental study of continuous models, in
which the models were learned on data gener-
ated by the other models, he reported disap-
pointing results in terms of how well models can
reveal the underlying interactions when faced
with noise and limited data. The results favor

simple, i.e., linear or pair-wise, models that are
less sensitive to unfavorable data conditions3. 

Pairwise models (1997, 1999, 2000)
One way to overcome the dimensionality prob-
lem is to restrict the complexity of the model, for
example, by only considering pair-wise relation-
ships.

Arkin [38] was the first to suggest the construc-
tion of biochemical pathways by means of time-
shifted pair-wise correlations. First, the position
and magnitude at which the maximal time-
shifted cross-correlation occurs is computed in a
pair-wise fashion. From this, a distance measure
is constructed and single linkage hierarchical
clustering is employed, resulting in a singly
linked tree that connects associated genes. Aug-
mented with directional and time-lag informa-
tion this association diagram reveals temporal
interactions. Arkin suggested that his approach
could also be used to learn genetic networks.

Later, Chen [39] proposed a similar scheme,
based on matching peaks in the signals rather
than using correlation. After thresholding and
clustering, the remaining profiles are represented
as a set of peaks. Then peaks in the profiles are
compared in a pair-wise fashion to determine
causal activation scores. Similarly, inhibition
scores are determined. From these scores a puta-
tive regulation network is constructed using sim-
ulated annealing.

Woolf [40] was the first to describe a fuzzy model
for learning genetic interactions. He searched for
all possible triplets of an activator and a repressor
(two inputs) that influence a target gene (one out-
put). All triplets are scored and ordered on how
well they fit the expression data and on whether
the inputs showed enough variation.

Unfortunately, these pair-wise (triple-wise)
models are fundamentally limited to considering
only singly (doubly) connected networks.

Qualitative models (2000, 2002)
A different way to cope with the limitations of
the data is to learn qualitative models, thus
avoiding the necessity to estimate model param-
eters precisely.

Akutsu [19,20] described a collection of algo-
rithms that are an intermediate solution, some-
where between Boolean models and continuous
differential models. These qualitative models are
based on linear differential equations but instead
of trying to learn the exact parameters, the
Pharmacogenomics (2002)  3(4)
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researcher derives qualitative abstractions of the
parameters. For instance, it is only relevant
whether the differences are positive, negative or
zero. In this case, a solution can be found by
solving a set of inequality relations. Provided that
a lot of data are available, these inequalities can
be solved using linear programming (LP). Alter-
natively, the parameters of a non-linear S-system
(power-law) can be found using linear algebra by
taking the logarithm on both sides of the equa-
tions. An S-system is a set of non-linear differen-
tial equations of a special form belonging to the
power-law formalism (products of exponentially
weighted inputs). If the logarithm is taken, the
obtained parameter values only portray a relative
meaning. But this was exactly the goal: to obtain
a qualitative description.

Because of the multitude of detailed biological
information acquired over the years, a qualitative
model provides an excellent tool to describe the
working hypothesis of researchers. Shrager [41]

proposed an automatic scheme to revise an ini-
tial qualitative model such that it better matches
the expression data. This scheme is based on
comparing the expected pair-wise correlations of
all pairs in the initial scheme with the correla-
tions in the expression data. This measure of
data fit is used to construct a fitness function,
which is augmented with terms to reduce the
number of variables and links in the model.
With this fitness function a simple greedy search
is performed based on considering single changes
in the model. Unfortunately, the employed pair-
wise correlation measure does not fully capture
the combinatorial nature of the qualitative
model.

Modeling revisited (2001–2002)
A better understanding of the consequences of
the dimensionality problem resulted in modeling
approaches that were better adapted to handle
the limitations of the data. For example, strate-
gies started to focus on first reducing the prob-
lem (e.g., taking a smaller network, using
clustering or structure determination) such that
the resulting parameters are estimated more reli-
ably. As a result, the boundaries between the ana-
lytic and synthetic approaches gradually became
blurred.

Van Someren suggested a number of general
approaches to reduce the dimensionality prob-
lem by incorporating biologically motivated con-
straints and showed results from artificial data
generated with linear networks. The reduction of
the number of genes by clustering gene expres-

sion profiles was considered by many
[24,27,29,30,32,39,42,46,77]. However, Van Someren
[42] studied the relationship between clustering
and its effect on the dimensionality problem
when learning linear genetic network models. In
[43,44], he showed that genetic network models
could be made robust to noise by minimizing the
first-order derivative of the model’s output with
respect to its input. For non-linear models,
robustness is imposed by learning the model on a
set of noisy profiles. To impose limited connec-
tivity of the models, Van Someren [45] compared
a number of search algorithms that search for
structures with limited connectivity. In this com-
parison, a forward beam search approach proved
to be the best.

Mjolsness [46] also suggested the use of clus-
tered data and learned a system of non-linear dif-
ferential equations using simulated annealing.
Apart from minimizing the prediction error, he
included a weight-decay term to minimize the
weight values and an exponential term that keeps
the parameters bounded in the cost function.

Koza [47] employed genetic programming to
determine the structure and rate constants of
small metabolic pathways. He showed that it was
possible to automatically create a metabolic
pathway involved in the phospholipid cycle
using 270 time points of E-CELL simulations of
a 4-enzyme network where all enzymes were per-
turbed. Unfortunately, a large amount of data
were required.

Maki [48] proposed a two-step approach in
which first the structure of a pair-wise Boolean
network is learned from the steady-state expres-
sions obtained after perturbation of each gene in
the network. The resulting network structure is
used to define smaller networks modeled by S-
systems. The parameters of these systems are
then learned using a GA applied on dynamic
data. Unfortunately, this approach still needs a
lot of measurements, i.e., at least perturbation
experiments of all genes!

Static models (2000–2002)
In parallel with the dynamic models we have
described thus far, a different type of model was
introduced. Though static models were initially
also learned on time course data, they are specif-
ically suited to exploit data from perturbation
experiments, such as measured gene expression
in steady-state or after knockout of a gene.

Butte [54] presented a simple approach to con-
struct relevance networks. He made pair-wise
correlation comparisons of both gene expression
k 7
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profiles and susceptibility data of anticancer
agents. Networks were constructed by keeping
only the most significant pairs.

Ideker [55] proposed a simulator–identificator
system for perturbation data. His system was
especially suited to the experimental cycle in
which iterations are made between experimental
suggestions and experimental results (he used
simulations). The goal was to incrementally
determine a static Boolean network using a min-
imal number of experiments.

In [49], Friedman learned a Bayesian network
after gene expressions were discretized into three
discrete levels: {-1;0;1}. This paper was based on
earlier work [50], where a novel search algorithm
was introduced. Confidence measures where
estimated on two types of pair-wise features:
Markov relations and order relations. Two genes
have a Markov relation if there is an edge
between them or both are parents of another var-
iable. Order relations are determined based on
whether a gene is an ancestor of the other.
Results were shown on a selection of 800 genes
from the Spellman dataset [51], consisting of 76
microarray measurements of 6177 S. cerevisiae
open reading frames (ORFs). This dataset repre-
sents six different time series’ measured under
different synchronization conditions. In a similar
paper [52], he also considered continuous rela-
tions based on linear Gaussian relations.

A year later, Pe’er [53] adapted the Bayesian
network framework proposed by Friedman [52]

to utilize perturbation data and to specifically
construct subnetworks of genes that have high
confidence. Subnetworks were constructed using
a (forward) greedy hill-climbing method using
high-scoring triplets as seeds. This approach was
successfully demonstrated on expression profiles
of S. cerevisiae.

Hartemink [56] also utilized the Bayesian net-
work framework to score different proposed
structures. He extended the semantics by aug-
menting normal edges with annotations that
describe positive or negative influences among
nodes. The principle was shown on an Affyme-
trix dataset of 52 arrays of Saccharomyces cerevisiae
to distinguish part of the galactose pathway. A
year later, Hartemink augmented this model with
a structure-search algorithm based on simulated
annealing [57]. In addition, some interactions
were forced to be present based on location data.
This new type of data makes it possible to deter-
mine where a certain protein binds on the DNA.

Imoto [58] extended Friedman’s continuous
Bayesian network [52] to cope with non-linear rela-

tionships using non-parametric regression. He
assumed that a non-linear relationship consists of
a sum of simple basis functions. His approach
resembles the concept of Fourier decomposition
but Imoto used B-splines as basis functions.

An approach specifically suited for perturba-
tion experiments was introduced by de la Fuente
[59]. If small perturbations are applied systemati-
cally to all genes in a genome, this approach
finds a network of regulatory interactions based
on co-responses of messenger RNA to a com-
mon perturbation.

Yoo [59] suggested an approach that can
employ both static observational (non-interven-
tional) expression data as well as static perturba-
tion (controlled expression alteration) data.
Bayesian relationships with latent variables were
learned in a pair-wise fashion on data presented
by Ideker [60].

Considering the number of papers, Bayesian
networks seem to be most successful for static
expression data. A major drawback of the Baye-
sian networks is, however, the fact that they can-
not handle feedback loops [34]. Feedbacks such as
the cell cycle are, however, clearly present in real
genetic networks.

Strongly related approaches
In the historical perspective (see section on the
synthetic approach), the main focus was on a
specific subset of approaches that try to learn
networks of genetic interactions. Clearly, there
are other methodologies to discover regulatory
interactions. These approaches differ in the type
of information they discover and the informa-
tion source they utilize. We distinguish four
main approaches:

• spatial-temporal models
• pathway scoring
• promoter analysis
• integrated approaches.

Spatial-temporal models
Spatio-temporal models [61-66] take both spatial
and temporal information into account, by
modeling the development of a population of
interacting cells, each with their own gene
expression levels. These models are mostly vari-
ants of the model introduced by Mjolsness [67] in
1991. Patterns of gene expression are simulated
and compared to patterns measured by in vitro
fluorescence imaging. In these approaches, the
number of considered genes remains limited,
partly because of the computational complexity
Pharmacogenomics (2002)  3(4)
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but mostly because of current restrictions on the
measurement techniques.

Obviously, these models cannot employ
microarray data because typical microarray
measurements represent the average expression
level from multiple cell extracts and not of indi-
vidual cells. From a modeling perspective, how-
ever, the spatial-temporal models and the
dynamic models have much in common and
therefore may benefit strongly from learning
from each other’s developments.

Pathway scoring
Pathway scoring approaches employ information
stored in large databases and (in some cases)
match that with measured expression data. Typi-
cally, information is used from databases of
known pathways, databases with annotations
and text databases containing paper abstracts.

Some pathway scoring approaches utilize
databases of existing general pathways to enu-
merate all possible pathway variations and assign
scores to each of these potential pathways based
on how well they match the measured expression
data [56,68]. Scores indicate whether the genes in a
pathway were active, coregulated and/or
expressed in cascade.

Pavlidis [69] uses no pathway database but
scores groups of genes with the same function
annotation, based on how well their expression
profiles match.

Stephens [70] employs an alternative approach
by searching for genetic relations in abstracts of
papers stored in Medline. A similar system pre-
sented by Wong [71] also includes a tool to visual-
ize the found interactions.

Promoter analysis
Promoter analysis approaches extract regulatory
interactions from the sequence information. The
upstream regions of genes are searched to deter-
mine possible promoter sites. Products of other
genes may bind to this promoter sequence and
thus can be possible regulators of that gene. To
determine these regions, Bussemaker [72] searches
for sequences whose occurrence pattern correlates
with expression data. Other approaches [73-76] first
determine a set of coregulated genes, for example,
by means of clustering, and then search the
upstream regions for common regulatory motifs.

Integrated approaches
Ideker [60] presented a fully integrated approach
on large-scale data in which four main steps were
taken: 

• define an initial model of a pathway
• perturb components in the pathway and

measure the responses in mRNA and protein
levels

• check the responses with the model
• refine the model to explain the unpredicted

responses. 

He was the first to present mRNA expression
data (microarrays) as well as protein abundance
data, using isotope-coded affinity tag (ICAT)
reagents and tandem mass spectrometry (MS/
MS) and to integrate this with information from
databases of known physical interactions of the
galactose pathway.

Clearly the integration of different informa-
tion sources has been an essential part of the ana-
lytical approaches for many years. The main
difference, however, is that, thus far, only a lim-
ited number of genes were considered. For exam-
ple, in 1998 Yuh constructed a model of the cis-
regulatory control of a single gene, i.e., the
endo16 gene in sea urchins, using sequence
information as well as expression data [9].

Considering the trend toward large-scale
approaches that integrate a larger variety of
information sources, we might expect that, in
the near future, results from pathway scoring and
promoter analysis approaches will be integrated
within the analytic and synthetic modeling
approaches.

Model properties and learning strategies
Thus far, a large number of different modeling
methodologies, originating from a plethora of
domains, have been proposed for finding regula-
tory interactions. Among these are Boolean,
Bayesian and neural networks, linear and fuzzy
models, Petri nets, methods based on ordinary
differential equations, Markov models, statistics
and cluster analysis. In this section, we will pro-
vide a taxonomy based on the principal differ-
ences and similarities between the proposed
genetic network models and their learning strat-
egies. We restrict ourselves to approaches that
present some automatic way of learning the
model parameters from gene expression data
(i.e., models of section on the synthetic
approach). This section first considers the quali-
tative model properties that are important for
choosing an appropriate model. Then the strate-
gies to learn the model parameters, once a model
has been chosen, are described.

Note that in light of the dimensionality prob-
lem, model choice and learning strategy together
k 9
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past time instants determine the current (changes
in) gene expression levels. Dynamic models gener-
ally define a parametric model of interactions and
try to estimate the parameters from time course
gene expression data. Thus, dynamic models
depict dependencies between microarray measure-
ments taken at different time instances. 

Static models search for causal interactions
within microarray measurements that are con-
sistent across multiple microarrays. A nice fea-
ture of static models is that they can be applied
to time course gene expression data as well as to
static data. Interactions are found by searching
for mutual dependencies between the gene
expression profiles of different genes. Well-
known examples are clustering approaches [51,78-

81] that group genes that exhibit similar expres-
sion levels across a set of experiments. Clustering
methods are especially suited for discovering
coregulated genes, though clustering should be
used with care, i.e., clustering always converges,
by construction but it does not always converge
to something useful. Clustering methods are
very similar to some of the pair-wise static mod-
els but serve a slightly different objective.
Whereas the clustering methods discover groups
of related genes, the pair-wise models select the
strongest individual (pair-wise) relationships
from the weak [54,82]. Bayesian and Boolean net-
works are typical examples that allow for more
complex static relationships, i.e., they determine
whether a gene’s expression level can be pre-
dicted from a combination of the expression lev-
els of other genes (at the same time instant).

By definition, static and dynamic models rep-
resent completely different types of relationships.
Unfortunately, in practice, the modeling results
tend to be interpreted in the same way.

Gene expression representation
Gene expression measurements are continuous
values that represent the relative4 amount of
mRNA copies in a biological sample. Therefore,
an obvious choice is to represent the gene expres-
sion levels in the model by continuous values.
Even more so because many feedback principles
require a continuous representation [10].

However, microarray data suffers from a sub-
stantial amount of measurement noise. Thus,
one might argue that each measured value repre-
sents only a qualitative description of the gene
expression level (e.g., overexpressed, normal or
underexpressed). Therefore, the effective infor-

mation might be better represented when the
data are discretized into a suitable number of dis-
crete levels. Furthermore, a discrete representa-
tion is a natural way to adapt the complexity of
the model to the quality of the data.

However, designing a discretization method
that properly represents the qualitative informa-
tion in the data is far from trivial. For example,
what is the right number of discretization levels?
The number of levels chosen should not be too
low because this leads to a lot of information
being destroyed in the discretization process,
whereas too many levels will drastically increase
the number of parameters of the model (and
consequently decrease the reliability of the esti-
mated parameters).

Boolean models are discrete models with only
two gene expression levels (on or off). Conse-
quently, a large discrepancy exists between the
measured gene expression signals and their
Boolean representation. Though Boolean mod-
els are conceptually very useful, some of their
dynamic concepts are applicable exclusively
within the Boolean context. Thus far, no
dynamic Boolean model has been applied to real
gene expression data.

Stochastic or deterministic
A deterministic model always predicts the same
outcome when the initial conditions are the
same. A stochastic model models the probability
distribution of possible outcomes. On the cellu-
lar level, we know that gene expression is gov-
erned by stochastic mechanisms, for example,
the binding of RNA polymerase on the pro-
moter site and competition of ribosomes with
RNase E for binding on the transcript in
prokaryotes [7].

However, microarrays generally measure the
total number of mRNA copies across a whole
population of cells, causing the data to represent
the average of many stochastic effects. Neverthe-
less, stochastic components are introduced into
the data because of measurement noise.

This indicates that stochastic models might be
more appropriate. However, although determin-
istic models do not explicitly model the noise
components, this does not mean they cannot
handle noisy data. In fact, quite often robustness
to noisy data is incorporated implicitly in the
learning algorithm. For example, when the least
mean square (LMS) algorithm is employed, a
Gaussian noise model is implicitly assumed.
k 11
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Interaction complexity
Especially for continuous models, the functional
form of the interaction between genes provides a
natural way to restrict the complexity of the
model. A common choice is to restrict the model
to allow only linear relationships. Linear rela-
tionships may greatly simplify parameter estima-
tions and in many cases allow analytical (closed-
form) solutions. Furthermore, the parameters are
relatively easy to understand. However, the linear
representation may severely limit the expressive
power of the model, for example, many biologi-
cal systems show non-linear behavior and any
aspects of chaotic behavior can only be achieved
with non-linear dynamics.

The interaction complexity of Boolean mod-
els can also be restricted. This is achieved by
allowing only a restricted set of Boolean func-
tions (typically, some combination of AND,
OR, NOT and XOR operators).

Input combinations
Finally, we make a distinction between pair-wise
models and combinatorial models. Pair-wise
models determine relationships between pairs of
genes and thus only consider single-gene influ-
ences. Combinatorial models allow the com-
bined effect of multiple genes to influence a
target gene. A major advantage of the pair-wise
approach is that it is less sensitive to the dimen-
sionality problem. This approach needs to con-
sider relatively few relationships (N2 in total) and
requires only a limited amount of measurements
(arrays).

However, it is known that gene expression is
regulated by the combined action of multiple
gene products [4] and a major drawback of the
pair-wise models is that they do not take this
into account.

Trends and observations
In the table in Figure 2, some relationships
between model properties emerge and
approaches that have never been tried become
apparent. Read this table from left to right; a
property printed in parentheses below another
property indicates that the choice of the property
on top uniquely determines the property in
parentheses. It is not surprising that the choice of
a discrete representation generally means that
non-linear relationships are considered. Less
obvious is the observation that there are no
approaches that propose a learning strategy for
dynamic stochastic models. Although the possi-
bilities (and the difficulties) have been suggested

[34,83], the data requirements would be unfavora-
ble and no implementation has yet been pre-
sented for learning dynamic stochastic genetic
networks. The deterministic dynamic models
employ primarily continuous expression repre-
sentation and those that are discrete are all
Boolean models. The static stochastic models are
all Bayesian models. Considering the time line,
we see that the reverse engineering of Boolean
networks is currently less popular.

A recent trend can be observed to combine
different types of expression data. Recent devel-
opments include the introduction of models that
employ both static as well as dynamic data [47,48].
Hartemink [57], on the other hand, employed
location data together with dynamic data.

Learning strategies
The quality of the final result is not only deter-
mined by choosing the right model properties. A
major issue is to design the inference method
(learning strategy) such that the appropriate rela-
tions are extracted from the data.

A major difficulty of genetic network mode-
ling is caused by the dimensionality problem,
which hampers reliable parameter estimation for
the majority of models. Strategies to relieve the
dimensionality problem are based on:

• reducing the number of modeled elements
(genes)

• increasing the number of samples (microar-
rays)

• simplifying the model’s complexity
• regularization of the inference process. 

For the remainder of this section, we assume that
the model has been chosen and that its complex-
ity remains fixed.

The main approach to solve the dimensional-
ity problem (apart from simplifying the model)
is to utilize additional information (apart from
the data) and incorporate constraints on the
modeling process. Clearly, it is only sensible to
apply constraints if this will produce more (bio-
logically) plausible results.

As a guide to this section, Figure 3 presents a
schematic overview of the considered approaches
and the learning strategies and constraints they
employ. These items are further explained in the
remainder of this section.

Thresholding and clustering
Thresholding and clustering are two strategies
that globally reduce the number of modeled ele-
ments. Although these strategies are specifically
k 13
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mentioned as part of the learning strategy in a
number of approaches [27,29,30,39,40,42,46], they
can be considered as a preprocessing step on the
data, rendering them generally applicable to any
model. For that reason these strategies are con-
sidered optional and are depicted in the last two
columns of Figure 3.

With thresholding, genes with very small or
constant profiles are removed from the data.
Thresholding is based on the assumption that
such profiles do not exhibit a recognizable regu-
latory phenomenon and therefore need not be
considered. In essence, interactions with thresh-
olded genes are thus assumed to be non-existent.

With clustering, gene expression profiles are
grouped together, each group of profiles is
replaced by a prototypical profile (e.g., average)
and only relations between the prototypical pro-
files are learned. This procedure assumes that
genes with similar expression profiles represent
the same regulatory information (are co-regu-
lated) and that their regulatory influences cannot
be distinguished from each other and therefore
need to be considered as one entity. In essence,
the interactions assigned to a prototypical profile
represent the integrated effect of all the regula-
tory influences of the genes in that cluster.

Limited connectivity
The average number of genes that influence the
expression of one gene determines the connectiv-
ity of the underlying genetic network. On the
one hand, it is generally known that gene expres-
sion levels are regulated by the combined action of
multiple gene products [4]. In addition, we know
that genetic networks have limited connectivity
[10]. Arnone and Davidson conclude from a
study of all known cis-regulatory regions that
gene expression is influenced on average by
between four and eight different gene products
[84]. On the other hand, it is likely that the
number of connections varies strongly on a per
gene basis. Jeong [85] showed that the scaling
properties of metabolic networks comply with
scale-free networks, i.e., there topology is domi-
nated by a few highly connected nodes which
link the rest of the less connected nodes.

Constraining the number of connections is by
far the most widely employed constraint and
governs the taxonomy indicated in Figure 3. The
employed learning strategies can be organized in
approaches that consider a fixed connectivity or
approaches that learn the connectivity from the
data. The first category consists of approaches
that either do not consider limited connectivity

and thus solve for a fully connected network or
approaches that consider only one or only two
connections per gene (pair-wise and triple-wise
models). Approaches of the second category
determine the structure either by means of a
search procedure or by optimizing the structure
and the parameters simultaneously. The search
procedure performs iterations between a proce-
dure that suggest a structure and a procedure
that determines the parameters.

Figure 3 also depicts which algorithm is used to
determine the parameters of the model once the
structure of the network is given. The choice of
this algorithm strongly depends on the chosen
model. To further clarify what each considered
approach tries to achieve, we have indicated the
objective function corresponding to its goal.
This objective function indicates which criteria
(e.g., constraints) the approach tries to optimize,
as well as the conditions under which it attempts
to do so. For example, if the objective function is
described by min K; E = 0, this means that this
approach tries to minimize the number of con-
nections under the constraint that the data fit
error remains zero. Approaches that have a zero
data fit error as a constraint are generally not
robust to measurement noise. Similarly, min(E,
K) means that this approach tries to minimize
the connectivity and the error simultaneously.
Although this kind of objective is more appro-
priate to genetic network modeling, the optimal
solution to this optimization is not obvious.
Clearly, the ordering in the table strongly corre-
lates with the choice of objective function. How-
ever, we also observe that a different strategy can
be applied to obtain the same goal. For example,
the objective function min(E, K) can be obtained
by simultaneous optimization of the structure
and parameters as well as by means of a search
procedure.

Robustness against noise
Apart from constraining the connectivity, there
are also other biologically inspired constraints
that can be imposed to improve the final results.
True genetic networks are, in general, assumed to
be robust to noise, i.e., slight distortions of the
state generally do not result in completely differ-
ent behavior. Minimizing the model’s first deriv-
ative of the output with respect to the input can
impose this property. A common approach to
achieve this goal is by keeping the parameters
within bounds or by minimizing them.

Mjolsness [46] minimizes the data fit error
together with the sum of the squared parameters
Pharmacogenomics (2002)  3(4)
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(SSW) and an exponential function of the
parameters (BND). Van Someren [44] has shown
that for linear models, minimization of the sum
of the squared parameters can also be achieved
by learning the model on a dataset augmented
with noise-corrupted duplicates. Such an
approach would provide a simple alternative to
parameter optimization for non-linear models

Other constraints
Time course gene expression profiles generally
exhibit smooth changes over time. D’Haeseleer
[24] employed this property to augment the
number of measurements by means of non-lin-
ear interpolation (see SMOOTH in Figure 3).
However, the information gained by additional
sampling along a given trajectory is rather low
and the process of interpolation to increase the
dataset size should be used with great care.

There exist a number of other general proper-
ties that have not been implemented as a con-
straint in any genetic network modeling
approach so far. Genetic networks are assumed
to be redundant, i.e., cells maintain homeostasis
and are found to be robust against many muta-
tions [1]. As scale-free networks [85] are known to
be robust and error-tolerant, perhaps genetic
networks with a similar topology should be
favored. Genetic networks must also be stable
systems, i.e., the amount of mRNA of any gene
must remain finite at all times. Furthermore,
genetic networks are assumed to be highly com-
partmentalized, i.e., the network consists of
compartments with many connections within a
compartment but few connections between
compartments [33,14].

Outlook and expert opinion
Successful genetic network modeling may prove
to become one of the most promising tools of
twenty-first century functional genomics. How-
ever, the modeling approaches discussed in this
review have yet to proof their ability to extract
substantial new knowledge about genetic inter-
actions. Before genetic network modeling will
grow into a tool for biologist that is used on a
regular basis, more efforts are necessary to
improve the understanding of model differences,
improve model performance and to set up a
proper validation test-bed.

Over the years, many different models have
been proposed for the discovery of genetic inter-
actions among genes. Although one might have
expect that the most suited model would eventu-
ally prevail, we are currently aware that, though

the field is still young, in 4 years of research we
have still have no indication which model is the
most suited to genetic network modeling. Of
course, the obvious remark here should be that
each model reveals a different kind of informa-
tion and that each is valuable in its own respect.
But still, we do not (and perhaps never will)
really understand how to handle the differences
in results obtained by each different model.

For example, it is not easy to understand how
to interpret the differences in results between
static and dynamic models. Basically, the main
difference in learning these models is whether or
not the output data are shifted in time with
respect to the input. It is clear that static relations
tell us something about common regulations
among genes, whereas time relations convey
information about which expression effects fol-
low each other in time. We believe that a thor-
ough investigation of how these different results
should be related to known biological interac-
tions may prove to be very beneficial.

At least for dynamic relationships, it is obvi-
ous that if the complexity of the model is
increased sufficiently, the model will describe the
underlying complex biological processes more
accurately. Clearly, when only a fixed amount of
measurements is available, more parameters will
generally mean less reliable estimates. Thus, it is
necessary to make a trade-off between accuracy
(bias) and uncertainty (variance). However, as we
have indicated, sensible incorporation of con-
straints eventually provides a way to allow com-
plex models to be learned even with a limited
amount of data.

The modeling trend that is revealed by this
review is the use of a larger variety of informa-
tion for learning genetic network models, be it in
terms of other types of measurements, informa-
tion stored in databases or desired properties of
networks. We advocate this trend and encourage
dynamical modelers in particular to integrate the
network properties discovered by analytical
approaches. Similarly, analytical approaches
should benefit from automatic procedures to
learn parameters. From a broader perspective we
would advocate the use and integration of all
types of additional information and measure-
ments that are available in databases.

We also found that few researchers
[26,27,29,30,42-45] validate the proposed learning
strategy on artificial data. Of course, it is essen-
tial to test the final approach on real data but in
the absence of a ground truth, the performance
of an algorithm cannot be evaluated. If the
k 15
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results are poor, we still do not know whether the
learning strategy has failed to find reliable inter-
actions, whether the model did not express the
real phenomenon, whether the data were
wrongly preprocessed or whether the limited

measurements just did not contain sufficient
information. Along the same line of thought,
one should relate any results found by an
approach to the chance of finding anything at
random, i.e., proper confidence measures should
be developed.

To boost confidence in genetic network mod-
eling and to improve cross-hybridization
between model developments, it would be very
fruitful to, on the one hand, develop a good set
of benchmarking tools to thoroughly investigate
the reliability of proposed approaches on artifi-
cial data. On the other hand, a well-studied
pathway of a familiar organism with a diverse set
of measurements should be used as a general test
bed for biological validation.

We have witnessed the highly valued intro-
duction of large-scale reverse engineering, fol-
lowed by increased skepticism when quick
results did not follow. Much progress has been
made since the fundamental problem was real-
ized and the full complexity of the task was
understood. We believe that genetic network
modeling is on the verge of proving its potential
and in the coming years will provide a new
impulse to the field of pharmacogenomics.
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