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Hyperbolic Polynomials and Convex
Analysis

Heinz H. Bauschke, Osman Güler, Adrian S. Lewis and Hristo
S. Sendov

Abstract. A homogeneous real polynomial p is hyperbolic with respect to a given vector d if the uni-

variate polynomial t 7→ p(x − td) has all real roots for all vectors x. Motivated by partial differential

equations, Gårding proved in 1951 that the largest such root is a convex function of x, and showed var-

ious ways of constructing new hyperbolic polynomials. We present a powerful new such construction,

and use it to generalize Gårding’s result to arbitrary symmetric functions of the roots. Many classi-

cal and recent inequalities follow easily. We develop various convex-analytic tools for such symmetric

functions, of interest in interior-point methods for optimization problems over related cones.

1 Introduction

A homogeneous polynomial p is hyperbolic with respect to some fixed direction d if
the univariate polynomial

(1) t 7→ p(x − td)

has only real roots for all points x. A canonical example is the determinant, consid-
ered as a polynomial on the space of symmetric matrices: the determinant is hyper-
bolic with respect to the identity matrix (the roots then being simply the eigenvalues).

Interest in hyperbolic polynomials was originally motivated by the partial differ-
ential equations literature [8], [14]. An important paper of Gårding [9] showed vari-
ous ways of constructing new hyperbolic polynomials from old ones; it is known they
form a rich class. Our key result is a new such construction. Specifically, we show that

if a symmetric polynomial q is hyperbolic with respect to the direction (1, 1, . . . , 1)
then the composition q ◦ λ is hyperbolic with respect to d, where the components of
λ are the roots of the original hyperbolic polynomial (1).

We apply this simple and powerful result to show that for any symmetric convex

function f , the function f ◦ λ is convex. This generalizes a fundamental tool of
Gårding: the largest root is a convex function. In the determinant example above, our
result shows that any symmetric convex function of the eigenvalues of a symmetric
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matrix is a convex function of that matrix, a beautiful theorem of Davis [6]. Another
choice of hyperbolic polynomial gives von Neumann’s famous characterization of

unitarily invariant matrix norms as symmetric gauge functions of the singular values
[33]. By varying the choice of polynomial we derive many elegant, often classical,
inequalities in a remarkably unified way. Examples include diverse properties of the
elementary symmetric functions, and in particular some sophisticated recent results

of Krylov [19].

The second half of this paper is convex-analytic in character. Symmetric func-
tions of eigenvalues are fundamental in eigenvalue optimization and semidefinite
programming [24]. They have an attractive duality theory: the Fenchel conjugate
is described elegantly by the formula ( f ◦λ)∗ = f ∗ ◦λ [21]. Von Neumann proved a

similar result for unitarily invariant norms, useful in matrix approximation problems
[15].

Hyperbolic polynomials offer a a unifying framework in which to study such con-
vexity and duality results. They also have potential application in modern interior

point methodology. Following Gårding, we can associate with any hyperbolic poly-
nomial the open convex cone

{x : p(x − td) 6= 0, ∀t ≤ 0}.

In the determinant example this is simply the cone of positive definite matrices. Opti-
mization problems over such cones are good candidates for interior point algorithms
analogous to the dramatically successful techniques current in semidefinite program-

ming [11]. With these aims in mind, we outline an attractive duality theory, devel-
oping convex-analytic tools for symmetric convex functions of the roots associated
with general hyperbolic polynomials. For clarity, we omit some of the details: they
may be found in [1], which is accessible at http://orion.uwaterloo.ca/∼aslewis.

Notation

We write R
m
++ (resp. R

m
+ ) for the set {u ∈ R

m : ui > 0, ∀i} (resp. {u ∈ R
m :

ui ≥ 0, ∀i}). The closure (resp. boundary, convex hull, linear span) of a set S is

denoted cl S (resp. bd S, conv S, span S). A cone is a nonempty set that contains every
nonnegative multiple of all its members. If u ∈ R

m, then u↓ is the vector u with its
coordinates arranged decreasingly; also, U↓ := {u↓ : u ∈ U}, for every subset U

of R
m. The transpose of a matrix (or vector) A is denoted AT . The identity matrix

or map is written I. If X is a Euclidean space with inner product 〈·, ·〉 and h : X →
[−∞, +∞] is convex, then h∗ (resp. ∂h, ∇h, dom h) stands for the Fenchel conjugate

(resp. subdifferential map, gradient map, domain) of h. (Rockafellar’s [32] is the
standard reference for these notions from convex analysis.) Higher order derivatives

are denoted by ∇kh. If U ⊆ X, then the positive polar cone is U⊕ := {x ∈ X :
〈x,U 〉 ≥ 0}. If A is a linear operator between Euclidean spaces, then its conjugate is
written A∗. The range of a map λ is denoted by ran λ. Finally, if A, B are two subsets
of X, then d(A, B) := inf ‖A − B‖ is the distance between A and B.
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2 Tools

We assume throughout the paper that

X is a finite-dimensional real vector space.

This section contains a selection of important facts on hyperbolic polynomials
from Gårding’s fundamental work [8], [9], and a deep inequality on elementary sym-
metric functions.

Hyperbolic Polynomials and Characteristic Roots

If p is a nonconstant polynomial on X and m is a positive integer then we say p is

homogeneous of degree m if p(tx) = tm p(x) for all t ∈ R and every x ∈ X.

Definition 2.1 (Hyperbolic Polynomial) Suppose that p is a homogeneous poly-
nomial of degree m on X and d ∈ X with p(d) 6= 0. Then p is hyperbolic with respect

to d, if the polynomial t 7→ p(x−td) (where t is a scalar) has only real zeros, for every
x ∈ X.

Definition 2.2 (“Characteristic Roots and Trace”) Suppose p is hyperbolic with
respect to d ∈ X of degree m. Then for every x ∈ X, we can write

p(x + td) = p(d)

m∏

i=1

(
t + λi(x)

)

and assume without loss of generality that λ1(x) ≥ λ2(x) ≥ · · · ≥ λm(x). The
corresponding map X → R

m
↓ : x 7→

(
λ1(x), . . . , λm(x)

)
is denoted by λ and called

the characteristic map (with respect to p and d). We say that λi(x) is the i-th largest

characteristic root of x (with respect to p and d) and define the sum of the k largest

characteristic roots by σk :=
∑k

i=1 λi , for every 1 ≤ k ≤ m. The function σm is called

the trace.

The characteristic roots {λi(x)} are thus the roots of the polynomial t 7→
p(x − td). It follows that the trace σm is linear (see also the paragraph following
Fact 2.10).

Unless stated otherwise, we assume throughout the paper that

p is a hyperbolic polynomial of degree m with respect to d,

with characteristic map λ and σk :=
∑k

i=1 λk,

for every 1 ≤ k ≤ m. The notions “characteristic root” and “trace” are well-

motivated by the the following example.

The Hermitian Matrices Let X be the real vector space of the m × m Hermitian
matrices and p := det. Then p is hyperbolic of degree m with respect to d := I and λ
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maps x ∈ X to its eigenvalues, arranged decreasingly. Thus for every 1 ≤ k ≤ m, the
function σk is indeed the sum of the k largest eigenvalues and σm is the (ordinary)

trace.

As we go, we will point out what some of the results become in the important case
of the Hermitian matrices. Further examples are provided in Section 6.

A simple way to generate new hyperbolic polynomials is differentiation:

Proposition 2.3 If m > 1, then q(x) := d
dt

p(x + td)|t=0 =

(
∇p(x)

)
(d) is hyperbolic

with respect to d.

Proof This is essentially a consequence of Rolle’s theorem; see also [9, Lemma 1].

The following property of the characteristic roots is well-known [9, Equation (2)].

Fact 2.4 For all r, s ∈ R and every 1 ≤ i ≤ m:

λi(rx + sd) =

{

rλi(x) + s, if r ≥ 0;

rλm+1−i(x) + s, otherwise.

Hence the characteristic map λ is positively homogeneous (λ(tx) = tλ(x), for all
t ≥ 0 and every x ∈ X) and continuous (use, for instance, [31, Appendix A]).

Gårding showed that the largest characteristic root is a sublinear function, that is,
positively homogeneous and convex.

Theorem 2.5 (Gårding) The largest characteristic root λ1(·) is a sublinear function.

Proof Positive homogeneity follows from Fact 2.4. Now Gårding showed that λm

is concave (see [9, Theorem 2] and [8]), which is equivalent to the convexity of λ1,
since λ1(−x) = −λm(x), for every x ∈ X.

Gårding’s proof of his result is complex-variable-based. Other approaches include
Lax’s PDE-based argument for an analogous result on matrices [20], and an argu-
ment using Bezout’s Theorem proposed (without proof) in [18].

The Hermitian Matrices (continued) It is well-known that the largest eigenvalue
map is convex in this case; see, for instance, [13].

Hyperbolicity Cone

Definition 2.6 (Hyperbolicity Cone) The hyperbolicity cone of p with respect to d,
written C(d) or C(p, d), is the set {x ∈ X : p(x − td) 6= 0, ∀t ≤ 0}.

Fact 2.7 C(d) = {x ∈ X : λm(x) > 0}. Hence C(d) is an open convex cone that
contains d with closure cl C(d) = {x ∈ X : λm(x) ≥ 0}. If c ∈ C(d), then p is
hyperbolic with respect to c and C(c) = C(d).
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Proof See Gårding’s [8] and [9, Section 2].

Definition 2.8 (Complete Hyperbolic Polynomial) p is complete if

{x ∈ X : λ(x) = 0} = {0}.

Fact 2.9 Suppose p is hyperbolic with respect to d, with corresponding character-
istic map λ and hyperbolicity cone C(d). Then

{x ∈ X : λ(x) = 0} = {x ∈ X : x + C(d) = C(d)}
= {x ∈ X : p(tx + y) = p(y), ∀y ∈ X, ∀t ∈ R}.

Consequently, {x ∈ X : λ(x) = 0} = cl C(d) ∩
(
− cl C(d)

)
.

Proof See Gårding’s [8] and [9, Section 3].

The Hermitian Matrices (continued) The hyperbolicity cone of p = det with re-
spect to d = I is the set of all positive definite matrices. The polynomial p = det is
complete, since every nonzero Hermitian matrix has at least one nonzero eigenvalue.

Elementary Symmetric Functions

A function f on R
m is symmetric if f (u) = f (uπ(i)) for all permutations π of

{1, . . . , m} and every u ∈ R
m. For any given integer k = 1, 2, . . . , m, the map

Ek : R
m → R : u 7→

∑

i1<···<ik

k∏

l=1

ui l

is called the k-th elementary symmetric function on R
m. We also set E0 := 1.

Repeatedly applying Proposition 2.3 gives the following result.

Fact 2.10 For every x ∈ X and all t ∈ R,

p(x + td) = p(d)

m∏

i=1

(
t + λi(x)

)
= p(d)

m∑

i=0

Ei

(
λ(x)

)
tm−i

and for every 0 ≤ i ≤ m,

p(d)Ei

(
λ(x)

)
=

1

(m − i)!
∇m−i p(x)[d, d, . . . , d

︸ ︷︷ ︸

m−i times

].

If 1 ≤ i ≤ m, then Ei ◦ λ is hyperbolic with respect to d of degree i.

In particular, the trace σm = E1 ◦ λ is a homogeneous (hyperbolic) polynomial of
degree 1 (and hence linear).

Notice the elementary symmetric functions themselves are hyperbolic:
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Example 2.11 Let X = R
m and d = (1, 1, . . . , 1) ∈ R

m. Then for every 1 ≤ k ≤ m,
the k-th elementary symmetric function Ek is hyperbolic of degree k with respect to d.

Proof Let p := Em. It is straightforward to check that Em is hyperbolic of degree m

with respect to d with corresponding characteristic map λ(x) = x↓. Since each Ek is
symmetric, the result now follows from Fact 2.10.

An Inequality in Elementary Symmetric Functions

The following inequality was discovered independently by McLeod [28] and by

Bullen and Marcus [4, Theorem 3].

Fact 2.12 (McLeod, 1959; Bullen and Marcus, 1961) Suppose 1 ≤ k ≤ l ≤ m and
u, v ∈ R

m
++. Set q := (El/El−k)1/k. Then

q(u + v) > q(u) + q(v),

unless u and v are proportional or k = l = 1, in which case we have equality.

Bullen and Marcus’s proof relies on an inequality by Marcus and Lopes [25, The-
orem 1], which is the case k = 1 in Fact 2.12. (Proofs can also be found in [2,
Theorem 1.16], [5, Section V.4], and [30, Section VI.5].) We record two interesting

consequences of Fact 2.12.

Corollary 2.13 (Marcus and Lopes’s [25, Theorem 2]) The function −E
1/m
m is sub-

linear on R
m
+ , and it vanishes on bd R

m
+ .

Recall that a function h is called logarithmically convex, if log ◦h is convex. The
function q in Fact 2.12 is concave (“strictly modulo rays”), which easily yields loga-
rithmic and strict convexity of 1/q (see [1]):

Proposition 2.14 Suppose q is a function defined on R
m
++. Consider the following

properties:

(i) the range of q is contained in (0, +∞);

(ii) q(ru) = rq(u), for all r > 0 and every u ∈ R
m
++;

(iii) q(u + v) ≥ q(u) + q(v), for all u, v ∈ R
m
++;

(iv) if u, v ∈ R
m
++ with q(u + v) = q(u) + q(v), then v = ρu, for some ρ > 0.

Suppose q satisfies (i)–(iii). Then 1/q is logarithmically convex. If furthermore (iv)

holds, then 1/q is strictly convex.

Applying this to Fact 2.12 gives the following result.

Corollary 2.15 Suppose 1 ≤ k ≤ l ≤ m. Then the function (El−k/El)
1/k is sym-

metric, positively homogeneous, and logarithmically convex. Moreover, the function is

strictly convex on R
m
++ unless l = 1 and m ≥ 2.
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3 Composition and Convexity

We begin this section with our key result, a powerful new construction for hyperbolic
polynomials.

Theorem 3.1 Suppose q is a homogeneous symmetric polynomial of degree n on R
m,

hyperbolic with respect to e := (1, 1, . . . , 1) ∈ R
m, with characteristic map µ. Then

q ◦ λ is a hyperbolic polynomial of degree n with respect to d and its characteristic map

is µ ◦ λ.

Proof For simplicity, write p̃ for q ◦ λ.

Step 1 p̃ is a polynomial on X.
Since q(y) is a symmetric polynomial on R

m, it is (by, for example, [17, Proposi-
tion V.2.20.(ii)]) a polynomial in E1(y), . . . , Em(y). On the other hand, by Fact 2.10,
Ei ◦ λ is a hyperbolic polynomial with respect to d of degree i, for 1 ≤ i ≤ m.

Altogether, p̃(x) = q
(
λ(x)

)
is a polynomial on X.

Step 2 p̃ is homogeneous of degree n.
Since q is symmetric and homogeneous, and in view of Fact 2.4, we obtain p̃(tx) =

q
(
λ(tx)

)
= tn p̃(x), for all t ∈ R and every x ∈ X.

Step 3 p̃(d) 6= 0.
Again using Fact 2.4, we have p̃(d) = q

(
λ(d)

)
= q(e) 6= 0.

Step 4 p̃ is hyperbolic with respect to d.
Using once more Fact 2.4, we write for every x ∈ X and all t ∈ R:

p̃(x + td) = q
(
λ(x + td)

)
= q

(
λ(x) + te

)
= q(e)

n∏

k=1

(

t + µk

(
λ(x)

))

.

The next example is easy to check.

Example 3.2 Fix 1 ≤ k ≤ m, set e := (1, 1, . . . , 1) ∈ R
m, and let

q(u) :=
∏

1≤i1<i2<···<ik≤m

k∑

l=1

ui l
.

Then q is a homogeneous symmetric polynomial on R
m of degree

(
m
k

)
, hyperbolic

with respect to e, and its characteristic roots are

{
1
k

k∑

l=1

ui l
: 1 ≤ i1 < i2 < · · · < ik ≤ m

}

.

In particular, the largest characteristic root of q is the arithmetic mean of the k largest
components of u.
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Sublinearity of Sums of the Largest Characteristic Roots

We now present our generalization of Gårding’s theorem (2.5): the sum of the k

largest characteristic roots is sublinear.

Corollary 3.3 For every 1 ≤ k ≤ m, the function σk is sublinear.

Proof Fix 1 ≤ k ≤ m, define q as in Example 3.2, and consider p̃ := q ◦ λ. By
Theorem 3.1 and Example 3.2, the largest characteristic root of p̃ is equal to 1

k
σk(x).

Now Theorem 2.5 yields the sublinearity of σk.

This readily implies Lipschitzness of the characteristic map (with respect to any
norm on X).

Corollary 3.4 Each characteristic root λk is (globally) Lipschitz.

Proof Recall that every sublinear finite function is globally Lipschitz (this follows
from [32, Theorem 13.2, Corollary 13.2.2, and Corollary 13.3.3]); in particular, so is
each σi . Thus λ1 is Lipschitz. If k ≥ 2, then λk = σk − σk−1 is—as the difference of
two Lipschitz functions— Lipschitz as well.

The Hermitian Matrices (continued) Here it is well known that the sum of the k

largest eigenvalues is a convex function and that the k-th largest eigenvalue map is
Lipschitz; see, for instance, [13].

Corollary 3.5 The function wTλ(·) is sublinear, for every w ∈ R
m
↓ .

Proof Write wTλ =

∑m
i=1 wiλi = wmσm +

∑m−1
i=1 (wi − wi+1)σi and then apply

Corollary 3.3.

We can rewrite Corollary 3.5 as

wT
(
λ(x + y) − λ(x)

)
≤ wTλ(y), for all x, y ∈ X and w ∈ R

m
↓ .

This leads to the following question:

Open Problem 3.6 (The Lidskii Property) Decide whether or not

wT
(
λ(x + y) − λ(x)

)
≤ wT

↓λ(y), for all x, y ∈ X and w ∈ R
m.

The condition means that the vector λ(y) “majorizes” the vector λ(x + y) − λ(x),
for all x, y ∈ X; see [27, Proposition 4.B.8]. (The interested reader is referred to [27]
for further information on majorization.) If this condition is satisfied, then we will
simply say that “the Lidskii property holds”.

The Hermitian Matrices (continued) The Lidskii property does hold for the Hermi-
tians, and indeed is a crucial tool in perturbation theory. A recent and very complete
reference is Bhatia’s [3]; see also [23] for a new proof rooted in nonsmooth analysis.

In Section 6, we point out further examples where the Lidskii property holds.
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Convexity of Composition

We next aim to generalize Gårding’s theorem still further. We begin with a useful
tool.

Fact 3.7 Suppose f : R
m → [−∞, +∞] is convex and symmetric. Suppose further

u, v ∈ R
m
↓ and u − v ∈ (R

m
↓ )⊕. Then f (u) ≥ f (v). Moreover: if f is strictly convex

on conv
{

uπ(i) : π is a permutation of {1, . . . , m}
}

and u 6= v, then f (u) > f (v).

Proof Imitate the proof of [22, Theorem 3.3] and consider [22, Example 7.1]. See
also [27, 3.C.2.c on p. 68].

Lemma 3.8 Suppose x, y ∈ X, α ∈ (0, 1), and f : R
m → [−∞, +∞] is convex and

symmetric. Then

f
(

λ
(
αx + (1 − α)y

))

≤ f
(
αλ(x) + (1 − α)λ(y)

)
.

If f is strictly convex and αλ(x)+(1−α)λ(y) 6= λ
(
αx+(1−α)y

)
, then the inequality

holds strictly.

Proof (See also [22, Proof of Theorem 4.3]) Fix an arbitrary w ∈ R
m
↓ . Set u :=

αλ(x) + (1 − α)λ(y) and v := λ
(
αx + (1 − α)y

)
. Then both u and v belong

to R
m
↓ . By Corollary 3.5, wTλ is convex on X. Therefore, wTλ

(
αx + (1 − α)y

)
≤

αwTλ(x)+(1−α)wTλ(y); equivalently, wT(u−v) ≥ 0. It follows that u−v ∈ (R
m
↓ )⊕.

By Fact 3.7, f (u) ≥ f (v), as required. The last part now follows from Fact 3.7.

We hence obtain the following very pleasing generalization of Gårding’s theorem
(which is the case f (u) = max ui).

Theorem 3.9 (Convexity) If f : R
m → [−∞, +∞] is convex and symmetric then

f ◦ λ is convex.

The Hermitian Matrices (continued) In this case, the convexity of the composition
is attributed to Davis [6]; see also [21, Corollary 2.7].

Another consequence is Gårding’s inequality; see [11, Lemma 3.1].

Corollary 3.10 (Gårding’s Inequality) Suppose p(d) > 0. Then function x 7→
−

(
p(x)

) 1/m
is sublinear on the hyperbolicity cone C(d), and it vanishes on its boundary.

Proof By Corollary 2.13, the function −E
1/m
m is sublinear and symmetric on R

m
+ .

Hence, by Theorem 3.9, the function x 7→ −Em

(
λ(x)

) 1/m
is sublinear on {x ∈ X :

λ(x) ≥ 0} = cl C(d). The result follows, since p(x) = p(d)Em

(
λ(x)

)
, for every

x ∈ X.
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For a further discussion of this and other inequalities involving hyperbolic poly-
nomials, see [18].

The Hermitian Matrices (continued) Corollary 3.10 implies the Minkowski Deter-

minant Theorem: m
√

det(x + y) ≥ m
√

det x + m
√

det y, whenever x, y are positive semi-

definite.

Corollary 3.11 Suppose x, y ∈ X. Then:

(i) ‖λ(x + y)‖ ≤ ‖λ(x) + λ(y)‖, and equivalently

(ii) ‖λ(x + y)‖2 − ‖λ(x)‖2 − ‖λ(y)‖2 ≤ 2〈λ(x), λ(y)〉.

Moreover, equality holds in (i) or (ii) if and only if λ(x + y) = λ(x) + λ(y).

Proof Let w := λ(x + y) ∈ R
m
↓ . Then, using Corollary 3.5 and the Cauchy-Schwarz

inequality in R
m, we estimate

‖λ(x + y)‖2
= wTλ(x + y) ≤ wT

(
λ(x) + λ(y)

)

≤ ‖w‖ ‖λ(x) + λ(y)‖ = ‖λ(x + y)‖ ‖λ(x) + λ(y)‖.

The inequality follows. The condition for equality follows from the condition for
equality in the Cauchy-Schwarz inequality.

4 Euclidean Structure

The characteristic map λ induces a natural norm as follows.

Definition 4.1 Define ‖ · ‖ : X → [0, +∞) : x 7→ ‖λ(x)‖ and

〈·, ·〉 : X × X → R : (x, y) 7→ 1
4
‖x + y‖2 − 1

4
‖x − y‖2.

Theorem 4.2 Suppose p is complete. Then X equipped with 〈·, ·〉 is a Euclidean space

with induced norm ‖ · ‖.

Proof We have ‖x‖2
= ‖λ(x)‖2

=

∑m
i=1 λi(x)2

=

(

E1

(
λ(x)

)) 2

− 2E2

(
λ(x)

)
.

Facts 2.4 and 2.10 imply that ‖ · ‖2 is a homogeneous polynomial of degree 2 on
X. Since ‖ · ‖ ≥ 0 and p is complete, the result now follows from the Polarization
Identity.

Remark 4.3 The norm ‖ · ‖ defined in Definition 4.1 is precisely the Hessian norm

used in interior point methods and thus well-motivated. To see this, assume that
p is complete and recall that the hyperbolic barrier function is defined by F(x) :=

− ln
(

p(x)
)

. The Hessian norm at x is then given by

‖x‖2
d := ∇2F(d)[x, x].



480 H. H. Bauschke, O. Güler, A. S. Lewis and H. S. Sendov

For small positive t we have p(tx + d) = p(d)
∏m

i=1

(
1 + tλi(x)

)
and hence

F(d + tx) = F(d) −
m∑

i=1

ln
(

1 + tλi(x)
)
.

Expanding each side and comparing coefficients of t 2 gives the result. Further infor-
mation can be found in [11].

Proposition 4.4 (Sharpened Cauchy-Schwarz) Suppose p is complete. Then

〈x, y〉 ≤ 〈λ(x), λ(y)〉 ≤ ‖x‖ ‖y‖, for all x, y ∈ X.

Proof The Cauchy-Schwarz inequality in R
m and Corollary 3.11 imply

2〈λ(x), λ(y)〉 ≥ ‖λ(x + y)‖2 − ‖λ(x)‖2 − ‖λ(y)‖2

= ‖x + y‖2 − ‖x‖2 − ‖y‖2
= 2〈x, y〉,

as required.

The Hermitian Matrices (continued) The inner product on the Hermitian matri-
ces is precisely what one would expect: 〈x, y〉 = trace(xy). The sharpening of the
Cauchy-Schwarz inequality is essentially due to von Neumann; see [21, Theorem 2.2]
and the discussion therein.

We can now refine Theorem 3.9.

Theorem 4.5 (Strict Convexity) Suppose p is complete and f : R
m → [−∞, +∞] is

strictly convex and symmetric. Then the composition f ◦ λ is strictly convex on X.

Proof Fix α ∈ (0, 1), x, y ∈ X and set β := 1 − α. Suppose

( f ◦ λ)(αx + βy) = α( f ◦ λ)(x) + β( f ◦ λ)(y).

We have to show x = y. By Lemma 3.8 and convexity of f , we have

α( f ◦ λ)(x) + β( f ◦ λ)(y) = ( f ◦ λ)(αx + βy)

≤ f
(
αλ(x) + βλ(y)

)

≤ α( f ◦ λ)(x) + β( f ◦ λ)(y);

hence equality must hold throughout. By strict convexity of f , we conclude that

λ(x) = λ(y). We also know that αλ(x)+βλ(y) = λ(αx+βy) (otherwise, Lemma 3.8
would imply that the first displayed inequality is strict, which is a contradiction).
Thus λ(x) = λ(y) = αλ(x) + βλ(y) = λ(αx + βy). Since λ is norm preserving, we
obtain ‖x‖ = ‖y‖ = ‖αx + βy‖. But ‖ · ‖ is induced by an inner product, whence

‖ · ‖2 is strictly convex. Therefore, x = y and the proof is complete.

Theorem 4.5 gives an immediate, transparent proof of a recent result of Krylov:
see [19, Thm 6.4.(ii)] (whose proof is considerably more involved).
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Corollary 4.6 Suppose p(d) > 0. Then each of the following functions is convex on

the hyperbolicity cone C(d):

− ln p, ln
Em−1 ◦ λ

Em ◦ λ
,

Em−1 ◦ λ

Em ◦ λ
.

If p is complete, then each of these functions is strictly convex.

Proof Define first f (u) := − ln p(d) −
∑m

i=1 ln ui on R
m
++ and F(x) := − ln p(x)

on C(d). Then f is strictly convex and symmetric. Since p(x) = p(d)Em

(
λ(x)

)
,

we have F = f ◦ λ. It follows that F is convex (by Theorem 3.9), even strictly if p

is complete (by Theorem 4.5). This proves the result for the first function. Now let

f := ln(Em−1/Em) on R
m
++ and F := ln

Em−1◦λ
Em◦λ on C(d). Then f is strictly convex by

Corollary 2.15. By Theorem 3.9 (or Theorem 4.5), F is convex (or strictly convex, if p

is complete). This yields the statement for the second function. Finally observe that
the third function is obtained by taking the exponential of the second function. But
this operation preserves (strict) convexity.

Krylov’s result relates closely to Güler’s recent work on hyperbolic barrier func-
tions. With this new approach we have a simple proof of Güler’s [11, Theorem 6.1].
The functions F and g below are crucial in interior-point theory, as they allow the
construction of ‘long-step’ methods.

Corollary 4.7 Suppose p(d) > 0 and c belongs to the hyperbolicity cone C := C(d).

Define

F : C → R : x 7→ − ln
(

p(x)
)

and g : C → R : x 7→ −
(
∇F(x)

)
(c).

Then F and g are convex on C. If p is complete, then both F and g are strictly convex.

Proof The statement on F is already contained in Corollary 4.6. Now let µ be the
characteristic map corresponding to c. Then, by Fact 2.10, p(x) = p(c)Em

(
µ(x)

)

and
(
∇p(x)

)
(c) = p(c)Em−1

(
µ(x)

)
. Thus

g(x) =

1

p(x)

(
∇p(x)

)
(c) =

Em−1

(
µ(x)

)

Em

(
µ(x)

) .

Now argue as for the second function in the proof of Corollary 4.6.

The Hermitian Matrices (continued) The statement on F corresponds to strict con-

vexity of the function x 7→ − ln det(x) on the cone of positive semi-definite Hermi-
tian matrices; this result is due to Fan [7].

We end this section with an easy exercise emphasizing the naturalness of the inner

product.

Proposition 4.8 (Trace) σm(x) = 〈d, x〉, for every x ∈ X.
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5 Duality

The last part of our development concerns duality. For this we need a little more

structure.

Definition 5.1 (Isometric Hyperbolic Polynomial) We say p is isometric, if for all
y, z ∈ X, there exists x ∈ X such that

λ(x) = λ(z) and λ(x + y) = λ(x) + λ(y).

Clearly, if p is isometric then ran λ is a closed convex cone contained in R
m
↓ . How-

ever, the next example shows the range of λ need not be convex.

Example 5.2 (A Hyperbolic Polynomial That Is Not Isometric) If the polynomial
p(x) = x1x2x3 is defined on X = span{(1, 1, 1), (3, 1, 0)}, then p is hyperbolic of
degree m = 3 with respect to d = (1, 1, 1). Hence λ(x) = x↓ and p is complete. It
follows that for all α, β ∈ R,

λ
(
α(1, 1, 1) + β(3, 1, 0)

)
=

{

α(1, 1, 1) + β(3, 1, 0), if β ≥ 0;

α(1, 1, 1) + β(0, 1, 3), otherwise.

Since λ(3, 1, 0) + λ(−3,−1, 0) = (3, 0,−3) /∈ ran λ, the set ran λ is a closed noncon-

vex cone in R
3
↓. In particular, p is not isometric.

Unless stated otherwise, we assume from now on that

p is complete, with corresponding inner product 〈·, ·〉 and norm ‖ · ‖.

We call p “isometric” because of the equivalent condition (iii) in the following
proposition [1, Proposition 5.4].

Proposition 5.3 The following are equivalent:

(i) p is isometric.

(ii) maxx:λ(x)=u〈x, y〉 = 〈u, λ(y)〉, for all u ∈ ran λ and every y ∈ X.

(iii) d
(

u, λ(y)
)

= d
(
λ−1(u), y

)
, for all u ∈ ran λ and every y ∈ X.

The Hermitian Matrices (continued) Clearly, ran λ = R
m
↓ in this case, and an easy

exercise shows p = det is indeed isometric [1].

The isometric property leads to a very concise duality result.

Theorem 5.4 (Fenchel Conjugacy) Suppose that f : R
m → (−∞, +∞] is symmet-

ric. Then ( f ◦ λ)∗ ≤ f ∗ ◦ λ. If p is isometric and ran λ = R
m
↓ then ( f ◦ λ)∗ = f ∗ ◦ λ.
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Proof Fix an arbitrary y ∈ X. Then, using Proposition 4.4, symmetry of f , and the
Hardy-Littlewood-Pólya inequality (see [12, Section 10.2]), the inequality follows

from

f ∗
(
λ(y)

)
= sup

u∈Rm

{〈u, λ(y)〉 − f (u)} = sup
u∈R

m
↓

{〈u, λ(y)〉 − f (u)}

≥ sup
u∈ran λ

max
x:λ(x)=u

{
〈x, y〉 − f

(
λ(x)

)}
= sup

x∈X

{〈x, y〉 − ( f ◦ λ)(x)}

= ( f ◦ λ)∗(y).

Now assume that p is isometric and ran λ = R
m
↓ . Then Proposition 5.3 shows

f ∗
(
λ(y)

)
= sup

u∈R
m
↓

{〈λ(y), u〉 − f (u)} ≤ sup
u ′∈ran λ

{〈λ(y), u ′〉 − f (u ′)}

= sup
x∈X

{
〈y, x〉 − f

(
λ(x)

)}
= ( f ◦ λ)∗(y).

Without the assumption ran λ = R
m
↓ this result may fail (see Example 6.1).

As a consequence of our Fenchel conjugacy formula we are easily able to identify
subgradients of such convex functions.

Theorem 5.5 (Subgradients) Suppose p is isometric, ran λ = R
m
↓ , and f : R

m →
(−∞, +∞] is convex and symmetric. Let x, y ∈ X. Then

y ∈ ∂( f ◦ λ)(x) if and only if λ(y) ∈ ∂ f
(
λ(x)

)
and 〈x, y〉 = 〈λ(x), λ(y)〉.

Consequently, λ[∂( f ◦ λ)(x)] = ∂ f
(
λ(x)

)
.

Proof We know ( f ◦ λ)∗ = f ∗ ◦ λ. In view of Proposition 4.4, the following equiv-

alences hold true: y ∈ ∂( f ◦ λ)(x) ⇔ ( f ◦ λ)(x) + ( f ◦ λ)∗(y) = 〈x, y〉 ⇔
f
(
λ(x)

)
+ f ∗

(
λ(y)

)
= 〈λ(x), λ(y)〉 and 〈x, y〉 = 〈λ(x), λ(y)〉 ⇔ λ(y) ∈ ∂ f

(
λ(x)

)

and 〈x, y〉 = 〈λ(x), λ(y)〉. “Consequently”: Clearly, by the above, λ[∂( f ◦ λ)(x)] ⊆
∂ f

(
λ(x)

)
. Conversely, pick v ∈ ∂ f

(
λ(x)

)
. Then f

(
λ(x)

)
+ f ∗(v) = 〈v, λ(x)〉. By

the assumption that ran λ = R
m and Proposition 5.3.(ii), 〈v, λ(x)〉 = 〈y, x〉, for some

y with λ(y) = v. Hence ( f ◦ λ)(x) + ( f ◦ λ)∗(y) = 〈y, x〉 and so y ∈ ∂( f ◦ λ)(x),
which implies v = λ(y) ∈ λ[∂( f ◦ λ)(x)].

The Hermitian Matrices (continued) Theorem 5.5 corresponds to [21, Theo-
rem 3.2].

We end with another nice generalization of a result of Fan.

Corollary 5.6 (Variational Description of σk) Let p be isometric, and suppose

ran λ = R
m
↓ . Let 1 ≤ k ≤ m. Then for every x ∈ X,

σk(x) = max{〈x, y〉 : λ(y) ≥ 0, σm(y) = k, λ1(y) ≤ 1}, and

∂σk(x) = {y ∈ X : 〈x, y〉 = σk(x), λ(y) ≥ 0, σm(y) = k, λ1(y) ≤ 1}.
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Proof Define f (u) := maxi1<···<ik

∑k
l=1 ui l

. Then f is symmetric and convex on R
m

and f ∗ is the indicator function of the set

{

u ∈ R
m :

∑

ui = k and each 0 ≤ ui ≤ 1
}

.

Now σk = f ◦ λ and so Theorem 5.4 yields σ∗
k = f ∗ ◦ λ. Thus y ∈ ∂σk(x) ⇔ x ∈

∂σ∗
k (y) ⇔ 〈x, y〉 = σk(x), λ(y) ≥ 0, σm(y) = k, and λ1(y) ≤ 1.

The Hermitian Matrices (conclusion) Corollary 5.6 is a generalization of the varia-

tional formulations due to Rayleigh and Ky Fan; see also [13, Section 2].

6 Further Examples

This section contains some particularly natural examples (see [1]). Our aim is to get
across the idea of the unity of the method and its breadth.

Reordering on R
n

Consider the vector space X = R
n, the polynomial

p(x) =

n∏

i=1

xi ,

and the direction d = (1, 1, . . . , 1). Then p is hyperbolic and complete with char-

acteristic map λ(x) = x↓. The induced norm and inner product in X are just the
standard Euclidean ones in R

n. We have ranλ = R
n
↓. It can be seen easily that p is

isometric. In this case the sharpened Cauchy-Schwarz inequality (Proposition 4.4)
reduces to the well-known Hardy-Littlewood-Pólya inequality (see [12, Chapter X])

xT y ≤ xT
↓ y↓.

Equality holds if and only if the vectors x and y can be simultaneously ordered with
the same permutation. Since ranλ = R

n
↓, Theorem 5.4 shows that for every symmet-

ric function f : R
n → (−∞, +∞] we have ( f ◦λ)∗ = f ∗◦λ. Also the Lidskii property

holds, because λ(x) is the ordered set of eigenvalues of the symmetric matrix Diag(x)
(see [3, p. 69]).

Singular Values

Consider the vector space Mn,m of n by m real matrices. We assume m ≤ n and de-
note the singular values of a matrix x in Mn,m by σ1(x) ≥ σ2(x) ≥ · · · ≥ σm(x).
The Frobenius (or Hilbert-Schmidt) norm [15, pp. 291, 421] is defined by ‖x‖F =

‖σ(x)‖, where the latter norm is the standard Euclidean norm in R
n, and σ(x) =

(
σ1(x), σ2(x), . . . , σm(x)

)
. Now consider the vector space X = Mn,m × R, the poly-

nomial
p(x, α) = det(α2Im − xTx) (x ∈ Mn,m, α ∈ R),
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and the direction d = (0, 1). Then p is hyperbolic and complete with characteristic
map

λ(x, α) =

(
α + σ1(x), α + σ2(x), . . . , α − σ2(x), α − σ1(x)

)
.

The induced norm and inner product are given by

‖(x, α)‖2
= 2mα2 + 2‖x‖2

F ,

〈(x, α), (x, β)〉 = 2mαβ + 2 tr xT y,

for (x, α) and (y, β) in X. With the help of the singular value decomposition one
can see that p is isometric. Notice that in this case the sharpened Cauchy-Schwarz
inequality (Proposition 4.4) reduces to

tr xT y ≤ σ(x)Tσ(y).

Equality holds if and only if x and y have a simultaneous ‘ordered’ singular value de-
composition (that is, there are unitary matrices u and v such that x = u

(
Diag σ(x)

)
v

and y = u
(

Diag σ(y)
)

v). This is the classical result known as ‘von Neumann’s
Lemma’ (see for example [16, p. 182]). For a proof using results from this paper
see [1]. We note that the Lidskii property holds too.

Note that when m = 1 we get the Lorentz Cone example which is discussed below.

An analogous example can be obtained by considering the vector space X = Cn,m×R.
Interestingly, in this case we may have ( f ◦ λ)∗ 6= f ∗ ◦ λ.

Example 6.1 Consider the symmetric function f (u) = max ui . If m = 2 and
y ∈ X is such that λ(y) =

1
4
(3, 1, 1,−1), a short calculation [1] shows that 0 =

( f ◦ λ)∗(y) 6= ( f ∗ ◦ λ)(y) = +∞.

Remark 6.2 Von Neumann’s famous characterization of unitarily invariant matrix
norms as symmetric gauge functions of the singular values [33] also follows naturally
in this framework [1].

Absolute Reordering

Consider the vector space X = R
n × R. Let the polynomial be

p(x, α) =

n∏

i=1

(α2 − x2
i ),

and the direction be d = (0, 1). Then p is hyperbolic and complete with characteris-
tic map

λ(x, α) =

(
|x|↓, (−|x|)↓

)
+ αe,

where |x| = (|x1|, |x2|, . . . , |xn|), and e = (1, 1, . . . , 1) ∈ R
2n. Direct verification

of the definition shows that p is isometric and furthermore that the Lidskii property
holds. Note that the similarities with the previous example are not accidental. It
corresponds to the subspace (Diag R

n) × R of Mn,m × R.



486 H. H. Bauschke, O. Güler, A. S. Lewis and H. S. Sendov

Lorentz Cone

Let the vector space be X = R
n, and the polynomial be

p(x) = xTAx = x2
1 − x2

2 − · · · − x2
n,

where A = Diag(1,−1,−1, . . . ,−1) ∈ Mn (n × n real matrices). Let the direction
be d = (d1, d2, . . . , dn) ∈ X such that d2

1 > d2
2 + · · · + d2

n. Then p is hyperbolic and

complete with characteristic map

λ(x) =

(
xTAd +

√
D(x)

p(d)
,

xTAd −
√

D(x)

p(d)

)

,

where D(x) = (xT Ad)2 − p(x)p(d) is the discriminant of p(x + td) considered as a
quadratic polynomial in t . (The fact that D(x) ≥ 0 for each x, and so that p(x) is
hyperbolic, is known as Aczel’s inequality, see [29, p. 57].) The induced norm and
inner product are given by

‖x‖2
= 2

2(xTAd)2 − p(x)p(d)

p(d)2
, and

〈x, y〉 =

4(xTAd)(yT Ad) − 2(xT Ay)p(d)

p(d)2
,

for x and y in X. It is a bit trickier to see that p is isometric. Notice that in this case

the sharpened Cauchy-Schwarz inequality (Proposition 4.4) becomes

(xTAd)(yTAd) − (xTAy)p(d) ≤
√

D(x)D(y),

and [1] gives the necessary and sufficient condition for equality. The Lidskii property
holds as well.

The Degree 2 Case

Let the vector space be X = R
n. We assume that p(x) is homogeneous polynomial of

degree two. Without loss of generality, we write

p(x) = xTAx,

where A ∈ Sn. Fix a direction d in X with p(d) 6= 0. Then p(x) is hyperbolic with
respect to d if and only if the matrix (dTAd)−1A has exactly one positive eigenvalue
(see [9, p. 958]). Furthermore, p is complete if and only if A is nonsingular. Such a p

is always isometric, and the Lidskii property holds.
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Antisymmetric Tensor Powers

Consider the function p(x) = det x on the vector space of n × n real symmetric (or
Hermitian) matrices, and let q = Ek be the elementary symmetric function of order k

and pk(x) = Ek ◦λ(x). We saw earlier that pk is a hyperbolic polynomial with respect

to the identity matrix I (see Fact 2.10). We have

pk(x) =

∑

α=(i1<i2<···<ik)

det x[α|α] = tr(∧kx),

where x[α|α] is the principal submatrix obtained from x by keeping its rows and
columns i1, . . . , ik, and the second equality above can be regarded as the definition
of the symbol tr(∧kx). For the first equality above, see [26], and justification for the

use of the symbol tr(∧kx) can be found in [10]. Now, from Corollary 3.10 (Gårding’s
inequality) and from the fact that pk(x) = tr(∧kx) is a homogeneous hyperbolic
polynomial, it follows immediately that

tr
(
∧k(x + y)

) 1/k ≥ tr(∧kx)1/k + tr(∧k y)1/k,

when x, y are symmetric and positive definite. This is one of the main results in [25].
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