
A Digital Signature S
heme Se
ure Against Adaptive Chosen-Message Atta
ks*(Revision Mar
h 23, 1995)Sha� Goldwasser��Silvio Mi
ali��Ronald L. Rivest ��Abstra
tWe present a digital signature s
heme based on the
omputational diÆ
ulty of integer fa
torization.The s
heme possesses the novel property of being robust against an adaptive
hosen-message atta
k:an adversary who re
eives signatures for messages of his
hoi
e (where ea
h message may be
hosen ina way that depends on the signatures of previously
hosen messages)
an not later forge the signatureof even a single additional message. This may be somewhat surprising, sin
e the properties of havingforgery being equivalent to fa
toring and being invulnerable to an adaptive
hosen-message atta
k were
onsidered in the folklore to be
ontradi
tory.More generally, we show how to
onstru
t a signature s
heme with su
h properties based on theexisten
e of a \
law-free" pair of permutations { a potentially weaker assumption than the intra
tibilityof integer fa
torization.The new s
heme is potentially pra
ti
al: signing and verifying signatures are reasonably fast, andsignatures are
ompa
t.Keywords: Cryptography, digital signatures, fa
toring,
hosen-message atta
ks, authenti
ation, trap-door permutations, randomization.

* This resear
h was supported by NSF grants MCS-80-06938, DCR-8607494, and DCR-8413577, anIBM/MIT Fa
ulty Development Award, and DARPA
ontra
t N00014-85-K-0125.�� MIT Laboratory for Computer S
ien
e, Cambridge, Mass. 021391

1. INTRODUCTION.The idea of a \digital signature" �rst appeared in DiÆe and Hellman's seminal paper, \New Dire
-tions in Cryptography"[DH76℄. They propose that ea
h user A publish a \publi
 key" (used for validatingsignatures), while keeping se
ret a \se
ret key" (used for produ
ing signatures). In their s
heme userA's signature for a message M is a value whi
h depends on M and on A's se
ret key, su
h that anyone
an verify the validity of A's signature using A's publi
 key. However, while knowing A's publi
 key issuÆ
ient to allow one to validate A's signatures, it does not allow one to easily forge A's signatures.They also proposed a way of implementing signatures based on \trap-door fun
tions" (see se
tion 2.1.1).The notion of a digital signature is useful and is a legal repla
ement for handwritten signatures[LM78, Ma79℄. However, a number of te
hni
al problems arise if digital signatures are implemented usingtrap-door fun
tions as suggested by DiÆe and Hellman [DH76℄; these problems have been addressed andsolved in part elsewhere. For example, [GMY83℄ showed how to handle arbitrary or sparse messages setsand how to ensure that if an enemy sees previous signatures (for messages that he has not
hosen) it doesnot help him to forge new signatures (this is a \non-adaptive
hosen-message atta
k" { see se
tion 2.2).The signature s
heme presented here, using fundamentally di�erent ideas than those presented byDiÆe and Hellman, advan
es the state of the art of signature s
hemes with provable se
urity propertieseven further; it has the following important
hara
teristi
s:� What we prove to be diÆ
ult is forgery, and not merely obtaining the se
ret key used by the signingalgorithm (or obtaining an eÆ
ient equivalent algorithm).� Forgery is proven to be diÆ
ult for a \most general" enemy who
an mount an adaptive
hosen-message atta
k. (An enemy who
an use the real signer as \an ora
le"
an not in time polynomial inthe size of the publi
 key forge a signature for any message whose signature was not obtained fromthe real signer.) In
ontrast to all previous published work on this problem, we prove the s
hemeinvulnerable against su
h an adaptive atta
k where ea
h message whose signature is requested maydepend on all signatures previously obtained from the real signer. We believe that an adaptive
hosen-message atta
k is the most powerful atta
k possible for an enemy who is restri
ted to usingthe signature s
heme in a natural manner.� The properties we prove about the new signature s
heme do not depend in any way on the set ofmessages whi
h
an be signed or on any assumptions about a probability distribution on the messageset.� Our s
heme
an be generalized so that it
an be based on \hard" problems other than fa
toringwhenever one
an
reate
law-free trap-door pair generators.Our s
heme
an be based on any family of pairs of
law-free permutations, yielding a signature s
hemethat is invulnerable to a
hosen-message atta
k even if the
law-free trap-door permutations are vulnerableto a
hosen-message atta
k when used to make a trap-door signature s
heme (see se
tion 2.1.1).Fundamental ideas in the
onstru
tion are the use of randomization, signing by using two authenti-
ation steps (the �rst step authenti
ates a random value whi
h is used in the se
ond step to authenti
atethe message), and the use of a tree-like bran
hing authenti
ation stru
ture to produ
e short signatures.We note that our signature s
heme is not of the simple DiÆe-Hellman \trap-door" type. For example,a given message
an have many signatures.Our signature s
heme is seemingly \paradoxi
al", in that we prove that forgery is equivalent tofa
toring even if the enemy uses an adaptive
hosen-message atta
k. We
an restate the paradox asfollows:� Any general te
hnique for forging signatures
an be used as a \bla
k box" in a
onstru
tion thatenables the enemy to fa
tor one of the signer's publi
 moduli (he has two in our s
heme), but� The te
hnique of \forging" signatures by getting the real signer to play the role of the \bla
k box"(i.e. getting the real signer to produ
e some desired genuine signatures) does not help the enemy tofa
tor either of the signer's moduli.Resolving this paradox was previously believed to be impossible and
ontradi
tory [Wi80, misled byRivest℄.The rest of this paper is organized as follows. In se
tion 2 we present de�nitions of what it means to\break" a signature s
heme and what it means to \atta
k" a signature s
heme. In se
tion 3 we reviewpreviously proposed signature s
hemes. In se
tion 4 we review more
losely the nature of the \paradox",2

and dis
uss how it
anbe resolved. Se
tion 5 de�nes some useful
onventions and notation, and se
tion6 des
ribes the
omplexity-theoreti
 foundations of our s
heme. In se
tion 7 we give the some of thefundamental notions for our signature s
heme, and se
tion 8 gives the details. In se
tion 9 we prove thatit has the desired properties. In the last se
tion we dis
uss some ways to improve the running time andmemory requirements of this s
heme.2. FUNDAMENTAL NOTIONSTo properly
hara
terize the results of this paper, it is helpful to answer the following questions:� What is a digital signature s
heme?� What kinds of atta
ks
an the enemy mount against a digital signature s
heme?� What is meant by \breaking" the signature s
heme?Little attention has been so far devoted to pre
isely answer these questions. For instan
e, signatures
hemes have been generi
ally
alled "se
ure" without spe
ifying against what kind of atta
k. This way,it would not be surprising that "se
ure" signature s
hemes were later broken by an unforseen atta
k.We hope that the
lassi�
ation we propose in this se
tion may prove useful in resolving unpleasantambiguities.2.1. What Is a Digital Signature S
heme?A digital signature s
heme
ontains the following
omponents:� A se
urity parameter k, whi
h is
hosen by the user when he
reates his publi
 and se
ret keys. Theparameter k determines a number of quantities (length of signatures, length of signable messages,running time of the signing algorithm, overall se
urity, et
.).� A message spa
eM whi
h is the set of messages to whi
h the signature algorithm may be applied.Without loss of generality, we assume in this paper that all messages are represented as binarystrings { that isM� f0; 1g+. To ensure that the entire signing pro
ess is polynomial in the se
urityparameter, we assume that the length of the messages to be signed is bounded by k
, for some
onstant
 > 0.� A signature bound B whi
h is an integer bounding the total number of signatures that
an beprodu
ed with an instan
e of the signature s
heme. This value is typi
ally bounded above by alow-degree polynomial in k, but may be in�nite.� A key generation algorithm G whi
h any user A
an use on input 1k (i.e. k in unary) to generatein polynomial time a pair (P kA; SkA) of mat
hing publi
 and se
ret keys. The se
ret key is sometimes
alled the trap-door information.� A signature algorithm � whi
h produ
es a signature �(M;SA) for a message M using the se
ret keySA. Here � may re
eive other inputs as well. For example, in the s
heme we propose �rst, � has anadditional input whi
h is the number of previously signed messages.� A veri�
ation algorithm V whi
h tests whether S is a valid signature for messageM using the publi
key PA. (I.e. V (S;M;PA) will be true if and only if it is valid.)Any of the above algorithms may be \randomized" algorithms that make use of auxiliary random bitstream inputs. We note that G must be a randomized algorithm, sin
e part of its output is the se
retkey, whi
h must be unpredi
table to an adversary. The signing algorithm � may be randomized { wenote in parti
ular that our signing algorithm is randomized and is
apable of produ
ing many di�erentsignatures for the same message. In general, the veri�
ation algorithm need not be randomized, and oursis not.We note that there are other kinds of \signature" problems whi
h are not dealt with here; the mostnotable being the \
ontra
t signing problem" where two parties wish to ex
hange their signatures to anagreed-upon
ontra
t simultaneously (for example, see [Bl83℄, [EGL82℄, [BGMR85℄).2.1.1 A Classi
al Example: Trap-Door SignaturesTo
reate a signature s
heme, DiÆe and Hellman proposed that A use a \trap-door fun
tion" f :informally, a fun
tion for whi
h it is easy to evaluate f(x) for any argument x but for whi
h, givenonly f(x), it is
omputationally infeasible to �nd any y with f(y) = f(x) without the se
ret \trap-door"information. A

ording to their suggestion, A publishes f and anyone
an validate a signature by
he
kingthat f(signature) = message. Only A possesses the \trap-door" information allowing him to invert f :3

f�1(message) = signature. (Trap-door fun
tions will be formally de�ned in se
tion 6.) We
all anysignature s
heme that �ts into this model (i.e. uses trap-door fun
tions and signs by apply f�1 to themessage) a trap-door signature s
heme.We note that not all signature s
hemes are trap-door s
hemes, although most of the ones proposedin the literature are of this type.2.2 Kinds of Atta
ksWe distinguish two basi
 kinds of atta
ks:� Key-Only Atta
ks in whi
h the enemy knows only the real signer's publi
 key, and� Message Atta
ks where the enemy is able to examine some signatures
orresponding to eitherknown or
hosen-messages before his attempt to break the s
heme.We identify the following four kinds of message atta
ks, whi
h are
hara
terized by how the messageswhose signatures the enemy sees are
hosen. Here A denotes the user whose signature method is beingatta
ked.� Known Message Atta
k: The enemy is given a

ess to signatures for a set of messagesm1; : : : ;mt.The messages are known to the enemy but are not
hosen by him.� Generi
 Chosen Message Atta
k: Here the enemy is allowed to obtain from A valid signaturesfor a
hosen list of messages m1; : : : ;mt before he attempts to break A's signature s
heme. Thesemessages are
hosen by the enemy, but they are �xed and independent of A's publi
 key (for examplethemi's may be
hosen at random). This atta
k is nonadaptive: the entire message list is
onstru
tedbefore any signatures are seen. This atta
k is \generi
" sin
e it does not depend on the A's publi
key; the same atta
k is used against everyone.� Dire
ted Chosen Message Atta
k: This is similar to the generi

hosen-message atta
k, ex
eptthat the list of messages to be signed may be
reated after seeing A's publi
 key but before anysignatures are seen. (The atta
k is still nonadaptive.) This atta
k is \dire
ted" against a parti
ularuser A.� Adaptive Chosen Message Atta
k: This is more general yet: here the enemy is also allowed touse A as an \ora
le"; not only may he request from A signatures of messages whi
h depend on A'spubli
 key but he may also request signatures of messages whi
h depend additionally on previouslyobtained signatures.The above atta
ks are listed in order of in
reasing severity, with the adaptive
hosen-message atta
kbeing the most severe natural atta
k an enemy
an mount. That the adaptive
hosen-message atta
k is anatural one
an be seen by
onsidering the
ase of a notary publi
 who must sign more-or-less arbitrarydo
uments on demand. In general, the user of a signature s
heme would like to feel that he may signarbitrary do
uments prepared by others without fear of
ompromising his se
urity.2.3 What Does It Mean To \Break" a Signature S
heme?One might say that the enemy has \broken" user A's signature s
heme if his atta
k allows him todo any of the following with a non-negligible probability:� A Total Break: Compute A's se
ret trap-door information.� Universal Forgery: Find an eÆ
ient signing algorithm fun
tionally equivalent to A's signing algo-rithm (based on possibly di�erent but equivalent trap-door information).� Sele
tive Forgery: Forge a signature for a parti
ular message
hosen a priori by the enemy.� Existential Forgery: Forge a signature for at least one message. The enemy has no
ontrol overthe message whose signature he obtains, so it may be random or nonsensi
al. Consequently thisforgery may only be a minor nuisan
e to A.Note that to forge a signature means to produ
e a new signature; it is not forgery to obtain from A a validsignature for a message and then
laim that he has now \forged" that signature, any more than passingaround an authenti
 handwritten signature is an instan
e of forgery. For example, in a
hosen-messageatta
k it does not
onstitute sele
tive forgery to obtain from the real signer a signature for the targetmessage M .Clearly, the kinds of \breaks" are listed above in order of de
reasing severity { the least the enemymight hope for is to su

eed with an existential forgery.4

We say that a s
heme is respe
tively totally breakable, universally forgeable, sele
tively forgeable, orexistentially forgeable if it is breakable in one of the above senses. Note that it is more desirable to provethat a s
heme is not even existentially forgeable than to prove that it is not totally breakable. The abovelist is not exhaustive; there may be other ways of \breaking" a signature s
heme whi
h �t in betweenthose listed, or are somehow di�erent in
hara
ter.We utilize here the most realisti
 notion of forgery, in whi
h we say that a forgery algorithm su

eedsif it su

eeds probabilisti
ally with a non-negligible probability. To make this notion pre
ise, we say thatthe forgery algorithm su

eeds if its
han
e of su

ess is at least as large as one over a polynomial in these
urity parameter k.To say that the s
heme is \broken", we not only insist that the forgery algorithm su

eed with anon-negligible probability, but also that it must run in probabilisti
 polynomial time.We note here that the
hara
teristi
s of the signature s
heme may depend on its message spa
ein subtle ways. For example, a s
heme may be existentially forgeable for a message spa
e M but notexistentially forgeable if restri
ted to a message spa
e whi
h is a suÆ
iently small subset ofM.The next se
tion exempli�es these notions by reviewing previously proposed signature s
hemes.3. PREVIOUS SIGNATURE SCHEMES AND THEIR SECURITYIn this se
tion we list a number of previously proposed signature s
hemes and brie
y review somefa
ts about their se
urity.Trap-Door Signature S
hemes [DH76℄: Any trap-door signature s
heme is existentially forgeablewith a key-only atta
k sin
e a valid (message, signature) pair
an be
reated by beginning with a random\signature" and applying the publi
 veri�
ation algorithm to obtain the
orresponding \message". A
ommon heuristi
 for handling this problem in pra
ti
e is to require that the message spa
e be sparse(i.e. requiring that very few strings a
tually represent messages { for example this
an be enfor
ed byhaving ea
h message
ontain a reasonably long
he
ksum.) In this
ase this spe
i�
 atta
k is not likelyto result in a su

essful existential forgery.Rivest-Shamir-Adleman [RSA78℄: The RSA s
heme is sele
tively forgeable using a dire
ted
hosen-message atta
k, sin
e RSA is multipli
ative: the signature of a produ
t is the produ
t of the signatures.(This
an be handled in pra
ti
e as above using a sparse message spa
e.)Merkle-Hellman [MH78℄: Shamir showed the basi
 Merkle-Hellman \knapsa
k" s
heme to be univer-sally forgeable using just a key-only atta
k [Sh82℄. (This s
heme was perhaps more an en
ryption s
hemethan a signature s
heme, but had been proposed for use as a signature s
heme as well.)Rabin [Ra79℄: Rabin's signature s
heme is totally breakable if the enemy uses a dire
ted
hosen-messageatta
k (see se
tion 4). However, for non-sparse message spa
es sele
tive forgery is as hard as fa
toring ifthe enemy is restri
ted to a known message atta
k.Williams [Wi80℄: This s
heme is similar to Rabin's. The proof that sele
tive forgery is as hard asfa
toring is slightly stronger, sin
e here only a single instan
e of sele
tive forgery guarantees fa
toring(Rabin needed a probabilisti
 argument). Williams uses e�e
tively (as we do) the properties of numberswhi
h are the produ
t of a prime p � 3 (mod 8) and a prime q � 7 (mod 8). Again, this s
heme istotally breakable with a dire
ted
hosen-message atta
k.Lieberherr [Li81℄: This s
heme is similar to Rabin's and Williams', and is totally breakable with adire
ted
hosen-message atta
k.Shamir [Sh78℄: This knapsa
k-type signature s
heme has re
ently been shown by Tulpan [Tu84℄ to beuniversally forgeable with a key-only atta
k for any pra
ti
al values of the se
urity parameter.Goldwasser-Mi
ali-Yao [GMY83℄: This paper presents for the �rst time signature s
hemes whi
hare not of the trap-door type, and whi
h have the interesting property that their se
urity
hara
teristi
shold for any message spa
e. The �rst signature s
heme presented in [GMY83℄ was proven not to be evenexistentially forgeable against a generi

hosen-message atta
k unless fa
toring is easy. However, it is notknown to what extent dire
ted
hosen-message atta
ks or adaptive
hosen-message atta
ks might aid anenemy in \breaking" the s
heme. 5

The se
ond s
heme presented there (based on the RSA fun
tion) was also proven not to be evenexistentially forgeable against a generi

hosen-message atta
k. This s
heme may also resist existentiallyforgery against an adaptive
hosen-message atta
k, although this has not been proven. (A proof wouldrequire showing
ertain properties about the density of prime numbers and making a stronger intra
tabil-ity assumption about inverting RSA.) We might note that, by
omparison, the s
heme presented here ismu
h faster, produ
es mu
h more
ompa
t signatures, and is based on mu
h simpler assumptions (onlythe diÆ
ulty of fa
toring or more generally the existen
e of
law-free permutation pair generators).Several of the ideas and te
hniques presented in [GMY83℄, su
h as bit-by-bit authenti
ation, are usedin the present paper.Ong-S
hnorr-Shamir [OSS84a℄: Totally breaking this s
heme using an adaptive
hosen-message at-ta
k has been shown to be as hard as fa
toring. However, Pollard [Po84℄ has re
ently been able to showthat the \OSS" signature s
heme is universally forgeable in pra
ti
e using just a key-only atta
k; hedeveloped an algorithm to forge a signature for any given message without obtaining the se
ret trap-doorinformation. A more re
ent \
ubi
" version has re
ently been shown to be universally forgeable in pra
ti
eusing just a key-only atta
k (also by Pollard). An even more re
ent version [OSS84b℄ based on polyno-mial equations was similarly broken by Estes, Adleman, Kompella, M
Curley and Miller [EAKMM85℄for quadrati
 number �elds.El Gamal[EG84℄: This s
heme, based on the diÆ
ulty of
omputing dis
rete logarithms, is existentiallyforgeable with a generi
 message atta
k and sele
tively forgeable using a dire
ted
hosen-message atta
k.Okamoto-Shiraishi[OS85℄: This s
heme, based on the diÆ
ulty of solving quadrati
 inequalities mod-ulo a
omposite modulus, was shown to be universally forgeable by Bri
kell and DeLaurentis [BD85℄.4. THE PARADOX OF PROVING SIGNATURE SCHEMES SECUREThe paradoxi
al nature of signature s
hemes whi
h are provably se
ure against
hosen-message at-ta
ks made its �rst appearan
e in Rabin's paper, \Digitalized Signatures as Intra
table as Fa
torization"[Ra79℄. The signature s
heme proposed there works as follows. User A publishes a number n whi
h is theprodu
t of two large primes. To sign a messageM , A
omputes asM 's signature one of M 's square rootsmodulo n. (When M is not a square modulo n, A modi�es a few bits of M to �nd a \nearby" square.)Here signing is essentially just extra
ting square roots modulo n. Using the fa
t that extra
ting squareroots modulo n enables one to fa
tor n, it follows that sele
tive forgery in Rabin's s
heme is equivalentto fa
toring if the enemy is restri
ted to at most a known message atta
k.However, it is true (and was noti
ed by Rabin) that an enemy might totally break the s
heme usinga dire
ted
hosen-message atta
k. By asking A to sign a value x2 mod n where x was pi
ked at random,the enemy would obtain with probability 12 another square root y of x2 su
h that g
d(x + y; n) was aprime fa
tor of n.Rabin suggested that one
ould over
ome this problem by, for example, having the signer
on
atenatea fairly long randomly
hosen pad U to the message before signing it. In this way the enemy
an notfor
e A to extra
t a square root of any parti
ular number.However, the reader may now observe that the proof of the equivalen
e of sele
tive forgery to fa
toringno longer works for the modi�ed s
heme. That is, being able to sele
tively forge no longer enables theenemy to dire
tly extra
t square roots and thus to fa
tor. Of
ourse, breaking this equivalen
e was reallythe whole point of making the modi�
ation.4.1 The ParadoxWe now \prove" that it is impossible to have a signature s
heme for whi
h it is both true that forgeryis provably equivalent to fa
toring, and yet the s
heme is invulnerable to adaptive
hosen-message atta
ks.The argument is essentially the same as the one given in [Wi80℄. By forgery we mean in this se
tion anyof universal, sele
tive, or existential forgery { we assume that we are given a proof that forgery of thespe
i�ed type is equivalent to fa
toring.Let us begin by
onsidering this given proof. The main part of the proof presumably goes as follows:given a subroutine for forging signatures, a
onstru
tive method is spe
i�ed for fa
toring. (The other6

part of the equivalan
e, showing that fa
toring enables forgery, is usually easy, sin
e fa
toring usuallyenables the enemy to totally break the s
heme.)But it is trivial then to show that an adaptive
hosen-message atta
k enables an enemy to totallybreak the s
heme. The enemy merely exe
utes the
onstru
tive method for fa
toring given in the proof,using the real signer instead of the forgery subroutine! That is, whenever he needs to exe
ute the forgerysubroutine to obtain the signature of a message, he merely performs an \adaptive
hosen-message atta
k"step { getting the real user to sign the desired message. In the end the unwary user has enabled theenemy to fa
tor his modulus! (If the proof redu
es fa
toring to universal or sele
tive forgery, the enemyhas to get the real user to sign a parti
ular message. If the proof redu
es fa
toring to existential forgery,the enemy need only get him to sign anything at all.)4.2 Breaking The ParadoxHow
an one hope to get around the apparent
ontradi
tory natures of equivalen
e to fa
toring andinvulnerability to an adaptive
hosen-message atta
k?The key idea in resolving the paradox is to have the
onstru
tive proof that forgery is as hard asfa
toring be a uniform proof whi
h makes essential use of the fa
t that the forger
an forge for arbitrarypubli
 keys with a non-negligible probability of su

ess. However, in \real life" a signer will only produ
esignatures for a parti
ular publi
 key. Thus the
onstru
tive proof
an not be applied in \real life" (byasking the real signer to unwittingly play the role of the forger) to fa
tor.In our s
heme this
on
ept is implemented using the notion of \random rooting". Ea
h user publishesnot only his two
omposite moduli n1 and n2, but also a \random root" r. This value r is used whenvalidating the user's signatures. The paradox is resolved in our
ase as follows:� It is provably equivalent to fa
toring for an enemy to have a uniform algorithm for forging; uniformin the sense that if for all pairs of
omposite numbers n1 and n2 if the enemy
an randomly forgesignatures for a signi�
ant fra
tion of the possible random roots r, then he
an fa
tor either n1 orn2.� The above proof requires that the enemy be able to pi
k r himself { the forgery subroutine is fedtriples (n1; n2; r) where the r part is
hosen by the enemy a

ording the pro
edure spe
i�ed in the
onstru
tive proof. However, in \real life" the user has pi
ked a �xed r at random to put in hispubli
 key, so an adaptive
hosen-message atta
k will not enable the enemy to \forge" signatures
orresponding to any other values of r. Thus the
onstru
tive method given in the proof
an not beapplied! More details
an be found in se
tion 9.5. GENERAL NOTATION AND CONVENTIONS5.1 Notation and Conventions for StringsLet � = �0�1 : : : �x be a binary string, then �� will denote the integer Pxk=0 �k2x�k. (Note that agiven integer may have several denotations, but only one of a given length.) The strings in f0; 1g� areordered as follows: if � and � are binary strings, we write � < � if there exists a string
 su
h that � isa pre�x of
,
 has exa
tly the same length as �, and �
 < ��.If i is a k-bit string, we let DFS(i) = f� j � � ig. (Imagine a full binary tree of depth k whoseroot is labelled �, and the left (right) son of a node labelled � is �0 (�1) and let DFS be the Depth FirstSear
h algorithm that starts at the root and explores the left son of any node before the right son of thatnode. Then DFS(i) represents the set of nodes visited by DFS up to and in
luding the time when itrea
hes node i). Note that DFS(i)
ontains the empty string.5.2 Notation and Conventions for Probabilisti
 Algorithms.We introdu
e some generally useful notation and
onventions for dis
ussing probabilisti
 algorithms.(We make the natural assumption that all parties, in
luding the enemy, may make use of probabilisti
methods.)We emphasize the number of inputs re
eived by an algorithm as follows. If algorithm A re
eives onlyone input we write \A(�)", if it re
eives two inputs we write \A(�; �)" and so on.We write \PS" for \probability spa
e"; in this paper we only
onsider
ountable probability spa
es.In fa
t, we only deal with probability spa
es arising from probabilisti
 algorithms.7

If A(�) is a probabilisti
 algorithm then, for any input i, the notation A(i) refers to the PS whi
hassigns to the string � the probability that A, on input i, outputs �. We point out the spe
ial
ase that Atakes no inputs; in this
ase the notation A refers to the algorithm itself, whereas the notation A() refersto the PS de�ned by running A with no input. If S is a PS, we denote by PS(e) the probability that Sasso
iates with element e. Also, we denote by [S℄ the set of elements whi
h S gives positive probability.In the
ase that [S℄ is a singleton set feg we will use S to denote the value e; this is in agreement withtraditional notation. (For instan
e, if A(�) is an algorithm that, on input i, outputs i3, then we may writeA(2) = 8 instead of [A(2)℄ = f8g.)If f(�) and g(�; � � �) are probabilisti
 algorithms then f(g(�; � � �)) is the probabilisti
 algorithm obtainedby
omposing f and g (i.e. running f on g's output). For any inputs x; y; : : : the asso
iated probabilityspa
e is denoted f(g(x; y; : : :)).If S is a PS, then x S denotes the algorithm whi
h assigns to x an element randomly sele
teda

ording to S; that is, x is assigned the value e with probability PS(e).The notation P(p(x; y; : : :)jx S; y T ; : : :) will then denote the probability that the predi
atep(x; y; : : :) will be true, after the (ordered) exe
ution of the algorithms x S, y T , et
.We let RA denote the set of probabilisti
 polynomial-time algorithms. We assume that a naturalrepresentation of these algorithms as binary strings is used.By 1k we denote the unary representation of integer k, i.e.11 : : : 1| {z }k6. THE COMPLEXITY THEORETIC BASIS OF THE NEW SCHEMEA parti
ular instan
e of our s
heme
an be
onstru
ted if integer fa
torization is
omputationallydiÆ
ult. However, we will present our s
heme in a general manner without assuming any parti
ularproblem to be intra
table. This
lari�es the exposition, and helps to establish the true generality ofthe proposed s
heme. We do this by introdu
ing the notion of a \
law-free permutation pair", and
onstru
tively showing the existen
e of su
h obje
ts under the assumption that integer fa
torization isdiÆ
ult.This se
tion builds up the relevant
on
epts and de�nitions in stages. In subse
tion 6.1. we givea
areful de�nition of the notions of a trap-door permutation and a trap-door permutation generator.These notions are not dire
tly used in this paper, but serve as a simple example of the use of our notation.(Furthermore, no previous de�nition in the literature was quite so
omprehensive.) The reader may, ifhe wishes, skip se
tion 6.1 without great loss.In subse
tion 6.2. we de�ne
law-free permutation pairs and
law-free permutation pair generators.In subse
tion 6.3. we show how to
onstru
t
law-free permutation pair generators under the as-sumption that fa
toring is diÆ
ult.Finally, in subse
tion 6.4. we show how to
onstru
t an in�nite family of pairwise
law-free permu-tations, given a generating pair f0, f1, of
law-free permutations.Altogether, then, this se
tion provides the underlying de�nitions and assumptions required for
on-stru
ting our signature s
heme. The a
tual
onstru
tion of our signature s
heme will be given in se
tions7 and 8.6.1 Trap-door PermutationsInformally, a family of trap-door permutations is a family of permutations f possessing the followingproperties:� It is easy, given a integer k, to randomly sele
t permutations f in the family whi
h have k as theirse
urity parameter, together with some extra \trap-door" information allowing easy inversion of thepermutations
hosen.� It is hard to invert f without knowing f 's trap-door.We
an interpret the two properties above by saying that any user A
an easily randomly sele
t a pair ofpermutations, (f; f�1), inverses of ea
h other. This will enable A to easily evaluate and invert f ; if nowA publi
izes f and keeps se
ret f�1, then inverting f will be hard for all other users.8

In the informal dis
ussion above, we used the terms \easy" and \hard". The term \easy"
an beinterpreted as \in polynomial time"; \hard", however, is of more diÆ
ult interpretation. By saying thatf is hard to invert we
annot possibly mean that f�1
annot be easily evaluated at any of its arguments.*We mean, instead, that f�1 is hard to evaluate at a random argument. Thus, if one wants (as we do) touse trap-door fun
tions to generate problems
omputationally hard for an \adversary", he must be ableto randomly sele
t a point in the domain of f and f�1. This operation is easy for all
urrently known
andidates of a trap-door permutation, and we expli
itly assume it to be easy in our formal treatment.De�nition: Let G be an algorithm in RA that on input 1k, outputs an ordered triple (d; f; f�1) ofalgorithms. (Here D = [d()℄ will denote the domain of the trap-door permutation f and its inverse f�1.)We say that G is a trap-door permutation generator if there is a polynomial p su
h that(1) Algorithm d always halts within p(k) steps and de�nes a uniform probability distribution over the�nite set D = [d()℄. (I.e., running d with no inputs uniformly sele
ts an element from D.)(2) Algorithms f and f�1 halt within p(k) steps on any input x 2 D. (For inputs x not in D, thealgorithms f and f�1 either loop forever or halt and print an error message that the input is notin the appropriate domain.) Furthermore, the fun
tions x 7! f(x) and x 7! f�1(x) are inversepermutations of D.(3) For all (inverting) algorithms I(�; �; �; �) 2 RA, for all
 and suÆ
iently large k:P(y = f�1(z)j(d; f; f�1) G(1k); z d(); y I(1k; d; f; z)) < k�
:We make the following informal remarks
orresponding to parts of the above de�nition.(1) This
ondition makes it expli
it that it is possible to sample the domain of f in a uniform manner.(3) This part of the de�nition states that if we run the experiment of generating (d; f; f�1) using thegenerator G and se
urity parameter k, and then randomly generating an element z in the range off , and then running the \inverting" algorithm I (for polynomially in k many steps) on inputs d; f;and z, the
han
e that I will su

essfully invert f at the point z is vanishingly small as a fun
tionof k.De�nition: If G is a trap-door permutation generator, we say that [G(1k)℄ is a family of trap-doorpermutations. We say that f and f�1 are trap-door permutations if (d; f; f�1) 2 [G(1k)℄ for some k andtrap-door permutation generator G.6.2 \Claw-Free" Permutation PairsThe signature s
heme we propose is based on the existen
e of \
law-free" permutation pairs { infor-mally, these are permutations f0 and f1 over a
ommon domain for whi
h it is
omputationally infeasibleto �nd a triple x, y, and z su
h that f0(x) = f1(y) = z (a \
law" or \f -
law" { see Figure 1).

Figure 1. A Claw* For example, any f
an be easily inverted at the image of a �xed argument, say 0. In fa
t, we may
onsider inverting algorithms that, on inputs x and f , �rst
he
k whether x = f(0).9

De�nition: LetG be an algorithm inRA that, on input 1k, outputs an ordered quintuple (d; f0; f�10 ; f1; f�11)of algorithms. We say that G is a
law-free permutation pair generator if there is a polynomial p su
hthat:(1) Algorithm d always halts within p(k) steps and de�nes a uniform probability distribution over the�nite set D = [d()℄.(2) Algorithms f0, f�10 , f1 and f�11 halt within p(k) steps on any input x 2 D. (For inputs x not inD, these algorithms either loop forever or halt with an error message that the input is not in thene
essary domain.) Furthermore, the fun
tions x 7! f0(x) and x 7! f�10 (x) are permutations of Dwhi
h are inverses of ea
h other, as are x 7! f1(x) and x 7! f�11 (x).(3) For all (
law-making) algorithms I(�; �; �; �) 2 RA, for all
 and suÆ
iently large k:P(f0(x) = f1(y) = zj(d; f0; f�10 ; f1; f�11) G(1k); (x; y; z) I(1k; d; f0; f1)) < k�
:Note: It would be possible to use a variant of the above de�nition, in whi
h the fun
tion f may a
tuallyreturn answers for inputs outside of D, as long as it is understood that the diÆ
ulty of
reating a \
law"applies to all x; y for whi
h the fun
tion f returns an answer. Thus, it should be hard to �nd any triplet(x; y; z) su
h that f0(x) = f1(y) = z even when x; y are not in D. We do not pursue this variation furtherin this paper.De�nition: We say that f = (d; f0; f1) is a
law-free permutation pair (or
law-free pair for short) if(d; f0; f�10 ; f1; f�11) 2 [G(1k)℄ for some k and
law-free permutation pair generator G. In this
ase, f�1will denote the pair of permutations (f�10 ; f�11).6.2.1 Claw-Free Permutation Pairs vs. Trapdoor PermutationsIn this subse
tion we
larify the relation between the notions of
law-free permutation pairs andtrapdoor permutations, by showing that the existen
e of the former ones implies the existan
e of thelatter ones. (Sin
e trapdoor permutations are not used in our signature s
heme, this subse
tion
an beskipped by the reader without loss of
larity.)Claim: Let G 2 RA be a
law-free permutation generator. Then there exists a �G 2 RA whi
h is atrapdoor permutation generator.Proof: The algorithm �G is de�ned as follows on input 1k: Run G on input 1k. Say, G outputs theordered tuple (d; f0; f�10 ; f1; f�11). Then, �G outputs (d; f0; f�10).We now show that �G is a trapdoor permutation generator. Assume for
ontradi
tion that it not the
ase. Namely, there exists a
onstant
 > 0 and an inverting algorithm �I(�; �; �; �) 2 RA su
h that forin�nitely many k:P(f0(y) = zj(d; f0; f�10) �G(1k); z d(); y �I(1k; d; f0; z)) � k�
:Note now, that sin
e f1 is a permutation, algorithms f1(d(�)) and d(�) both de�ne the uniformprobability distribution over [d()℄. Thus, for in�nitely many k,P(f1(x) = f0(y) = zj(d; f0; f�10 ; f1; f�11) G(1k);x d(); z f1(x); y �I(1k; d; f0; z)) � k�
:Let I(�; �; �; �) be the following inverting algorithm: On input 1k; d; f0, and f1,
ompute x d(),z f1(x), y �I(1k; d; f0; z), and output (x; y; z).Then, I is in RA and for in�nitely many k,P(f0(x) = f1(y) = zj(d; f0; f�10 ; f1; f�11) G(1k); (x; y; z) I(1k; d; f0; f1)) > k�
:This
ontradi
ts G being a
law-free permutation generator and thus �G must be a trapdoor permu-tation generator. 10

We note, however, that the the
onverse to the above
laim may be false. For example, the pair of(\RSA") permutations over Z�n = f1 � x � n : g
d(x; n) = 1g, de�ned byf0(x) � x3 (mod n); andf1(x) � x5 (mod n)(where g
d(�(n); 15) = 1) is not
law-free : sin
e the two fun
tions
ommute it is easy to
reate a
lawby
hoosing w at random and then de�ning x � f1(w), y � f0(w), andz � f0(x) � f1(y) � w15 (mod n):However, it is likely that f0 and f1 are trap-door permutations.In pra
ti
e, one may want to relax the de�nition of a
law-free permutation pair generator slightly,to allow the generator to have a very small
han
e of outputting fun
tions f0 and f1 whi
h are notpermutations. We do not pursue this line of development in this paper.6.3 Claw-free permutations exist if fa
toring is hardThe assumption of the existen
e of
law-free pairs is made in this paper in a general manner, inde-pendent of any parti
ular number theoreti
 assumptions. Thus instan
es of our s
heme may be se
ureeven if fa
toring integers turns out to be easy. However for
on
retely implementing our s
heme thefollowing is suggested.We �rst make an assumption about the intra
tability of fa
toring, and then exhibit a
law-freepermutation pair generator based on the diÆ
ulty of fa
toring.Notation: Let Hk = �n = p � q �� jpj = jqj = k; p � 3 (mod 8); q � 7 (mod 8)	(the set of
omposite numbers whi
h are the produ
t of two k-bit primes whi
h are both
ongruent to 3modulo 4 but not
ongruent to ea
h other modulo 8), and let H = SkHk.Remark: One way to
hoose \hard" instan
es for all known fa
toring algorithms seems to be to
hoosek to be large enough and then to
hoose n randomly from Hk.These numbers were used in [Wi80℄ and their wide appli
abilty to
ryptography was demonstratedby Blum in [Bl82℄ { hen
e they are
ommonly referred to as \Blum integers".Let Qn denote the set of quadrati
 residues (mod n). We note that for n 2 H :�1 has Ja
obi symbol +1 but is not in Qn.2 has Ja
obi symbol �1 (and is not in Qn).We also note every x 2 Qn has exa
tly one square root y 2 Qn, but has four square roots y;�y; w;�waltogether (see [Bl82℄ for proof). Roots w and �w have Ja
obi symbol �1, while y and �y have Ja
obisymbol +1.The following assumption about the intra
tability of fa
toring is made throughout this subse
tion.Intra
tability Assumption for Fa
toring (IAF): Let A be a probabilisti
 polynomial-time (fa
toring)algorithm. Then for all
onstants
 > 0 and suÆ
iently large kP(x is a nontrivial divisor of njn Hk();x A(n)) < 1k
 :(Here we have used the notation n Hk() to denote the operation of sele
ting an element ofHk uniformlyat random.)De�ne f0;n and f1;n as follows:f0;n(x) = �x2 (mod n) if x2 (mod n) < n=2;�x2 (mod n) if x2 (mod n) > n=2.11

f1;n(x) = � 4x2 (mod n) if 4x2 (mod n) < n=2;�4x2 (mod n) if 4x2 (mod n) > n=2.The
ommon domain of these fun
tions isDn = fx 2 Zn j �xn� = 1 & 0 < x < n=2g;it is easy to see that the range of these fun
tions is in
luded in Dn for n 2 H . Note also that it is easyto test whether or not a given element x is a member of Dn, sin
e Ja
obi symbols
an be evaluated inpolynomial time.We now show that f0;n and f1;n are a
tually permutations of Dn for n 2 H . Suppose f0;n is not apermutation of Dn; then there exist distin
t elements x; y in Dn su
h that f0;n(x) = f0;n(y). This
anonly happen if x2 � y2 (mod n), whi
h would imply that x � �y (mod n). But this is impossible ifx and y are both in Dn, thus proving that f0;n is a permutation. The proof for f1;n is similar.Not only are f0;n and f1;n permutations of Dn when n 2 H , but their inverses are easily
omputed,given knowledge of p and q. Given p and q, it is easy to distinguish quadrati
 residues (mod n) fromresidues with Ja
obi symbol equal to 1; this ability enables one to negate the input to the inverse fun
tionif ne
essary in order to obtain a quadrati
 residue (mod n). Of
ourse, dividing by 4 is easy { this step isneeded only for inverting f1;n. Next, taking square roots (mod n) is easy, sin
e we
an take square rootsmodulo p and q separately (making sure to pi
k the square root whi
h is itself a quadrati
 residue) and
ombine the results using the Chinese Remainder Theorem. Finally, the result
an be negated (mod n)as ne
essary in order to obtain a result in Dn. Sin
e all of these steps are
omputable in polynomial time,ea
h of the inverse fun
tions f�10;n and f�11;n is
omputable in polynomial time, given p and q as additionalinputs.Theorem 1: Under the IAF, the following algorithm G is a
law-free permutation pair generator. Oninput 1k, G:(1) Generates two random primes p and q of length k, where p � 3 (mod 8) and q � 7 (mod 8).(2) Outputs the quintuple (d; f0;n; f�10;n; f1;n; f�11;n)where(a) Algorithm d generates elements uniformly at random in Qn.(b) Algorithms f0;n and f1;n are as des
ribed in the above equations.(
) Algorithms f�10;n and f�11;n are algorithms for the inverse fun
tions (these algorithms make use ofp and q).Proof: We �rst note that uniformly sele
ting k-bit guaranteed primes
an be a

omplished in expe
tedpolynomial (in k) time, by the re
ent work of Goldwasser and Kilian [GK86℄, and that asymptoti
allyone-quarter of these will be
ongruent to 3 (mod 8) (similarly for those
ongruent to 7 (mod 8)). (Inpra
ti
e, one would use a faster probabilisti
 primality test su
h as the one proposed by Solovay andStrassen [SS77℄ or Rabin [Ra80℄.)Let n 2 H and (d; f0;n; f�10;n; f1;n; f�11;n) 2 [G(1k)℄. First, f0;n and f1;n are permutations of Dn = [d()℄.Then, we need only show that if there exists a fast algorithm that �nds x and y in Dn su
h thatf0;n(x) � f1;n(y) (mod n) (i.e. a
law-
reating algorithm) then fa
toring is easy. Suppose su
h an xand y have been found. Then x2 � 4y2 (mod n). (Note that x2 � �4y2 (mod n) is impossible: sin
e4y2 is a quadrati
 residue (mod n), �4y2
an not be a quadrati
 residue (mod n), for n 2 H .) Thisimplies that (x + 2y)(x � 2y) � 0 (mod n). Moreover, we also know that x 6� �2y (mod n), sin
e� xn� = 1 and � 2yn � = �1. Thus g
d(x� 2y; n) will produ
e a nontrivial fa
tor of n.12

6.4 An In�nite Set of Pairwise Claw-Free PermutationsFor our s
heme we need not just
law-free pairs of permutations, but an in�nite family of permuta-tions whi
h are pairwise
law-free and generated by a single
law-free pair f = (d; f0; f1).We de�ne the fun
tion fi(�) for any string i 2 f0; 1g+ by the equation:fi(x) = fi0(fi1(: : : (fid�1(fid(x)) : : :)))if i = i0i1 : : : id�1id. (Also, read f�1i as (fi)�1 so that f�1i (fi(x)) = x.)Ea
h fi is a trap-door permutation: it is easy to
ompute fi(x) given f0, f1, i, and x, and to
omputef�1i (x) if f�10 and f�11 are available. However, given only f0 and f1 it should be hard to invert fi on arandom input z, or else f0 and f1 are not trap-door permutations. (By inverting fi on a random inputone also e�e
tively inverts fi0 on a random input, where i0 is the �rst bit of i.)This way of generating an in�nite family of trap-door permutations was also used in [GMY83℄.Looking ahead, we shall see that a user A of our s
heme
an use the fi's to perform basi
 authen-ti
ation steps as follows. Let us presume that A has published f0 and f1 as part of his publi
 key, andhas kept their inverses f�10 and f�11 se
ret. If user A is known to have authenti
ated a string y, then bypublishing strings i and x su
h that fi(x) = y;he thereby authenti
ates the new strings i and x.For this to work, when the signer A reveals f�1i (y) he should not enable anyone else to
omputef�1j (y) for any other j.The signer a
hieves this in our s
heme by
oding i using a pre�x-free mapping h�i. This preventsan enemy from
omputing f�1hji (x) from f�1hii (x) in an obvious way sin
e hji is never a pre�x of hii. Thefollowing lemma 1 shows that this approa
h is not only ne
essary but suÆ
ient.Note: A
tually, the mapping h�i that we use is a one-to-one mapping from tuples of strings of bits tostrings of bits. The mapping h�i is pre�x-free in the sense that ha1; : : : ; ani is never a pre�x of hb1; : : : ; bmiunless n = m and a1 = b1; :::; an = bn. Any pre�x-free mapping is usable if it and its (partial) inverses arepolynomial-time
omputable and the lengths of a1; :::; an and ha1; : : : ; ani are polynomially related. For
on
reteness, we suggest the following en
oding s
heme for the tuple of strings a1; :::; an. Ea
h string aiis en
oded by
hanging ea
h 0 to 00 and ea
h 1 to 11, and the en
oding is followed by 01. The en
odingsof a1; :::; an are
on
atenated and followed by 10.Lemma 1 essentially says that if (d; f0; f1) is a
law-free pair, then it will be hard to �nd two di�erenttuples of strings i and j, and elements x and y su
h that f<i>(x) = f<j>(y).Lemma 1: Let f = (d; f0; f1) be a
law-free pair, x and y be elements of d and i; j two di�erent tuplesof binary strings su
h that there exists a string z su
h that z = fhii(x) = fhji(y). Then there exists anf -
law (x1; x2; x3) where x3 = f�1
 (z) for some pre�x
 of hii.Proof: Let
 2 f0; 1g� be the longest
ommon pre�x of hii and hji. Su
h a
 must exist sin
e h�i is apre�x-free en
oding s
heme. Thus, setting x3 f�1
 (z), x1 f�1
0 (z), and x2 f�1
1 (z), we obtain anf -
law (x1; x2; x3). (If
 is the empty string then f�1
 denotes the identity fun
tion, so x3 = z.) Notethat the f -
law is easily
omputed from f , x, and y.7. BUILDING BLOCKS FOR SIGNINGIn this se
tion we de�ne the basi
 building blo
ks needed for des
ribing our signature s
heme. Inse
tion 8, we will de�ne what a signature is and how to sign, using the obje
ts and data stru
turesintrodu
ed here.Assumption: We assume from here on that all
law-free fun
tions used are de�ned over domains whi
hdo not in
lude the empty string �.This assumption is ne
essary sin
e we use � as a \marker" in our
onstru
tion; note that it is easy,via simple re
odings, to enfor
e this
onstru
tion if ne
essary.We begin by de�ning the essential notion of an f -item.13

De�nition: Let f = (df ; f0; f1) be a
law-free pair. A tuple of strings (t; r;
1; : : : ;
m) is an f-item iffh
1;:::;
mi(t) = rDe�nition: In an f -item (t; r;
1; : : : ;
m),� t is
alled the tag of the item,� r is
alled the root of the item, and� the
i's are the
hildren of the item. We note that the
hildren are ordered, so that we
an speak ofthe �rst
hild or the se
ond
hild of the item.Note that given a
law free pair f and a tuple it is easy to
he
k if the tuple is an f -item by applyingthe appropriate fhii to the tag, and
he
king if the
orre
t root is obtained.Figure 2 gives our graphi
 representation of an f -item (t; r;
1;
2) with two
hildren.

Figure 2. An f -item with two
hildrenDe�nition: We say that a sequen
e of f -items L1; L2; : : : ; Lb is an f-
hain starting at y if, for i =1; : : : ; b� 1, the root of Li+1 is one of the
hildren of Li and y is the root of L1. We say the
hain endsat x if x is one of the
hildren of the item Lb.For eÆ
ien
y
onsiderations, our signature s
heme will organize a
olle
tion of a spe
ial type off -
hains in the tree-like stru
ture de�ned below.De�nition: Let i be a binary string of length b and f a
law-free pair. An f -i-tree is a bije
tion Tbetween DFS(i) and a set of f -items su
h that:(1) if string j has length b, then T (j) is an f -item with exa
tly two
hildren, exa
tly one of whi
h is �,the empty string. These f -items are
alled bridge items.(2) if string j has length less than b, then T (j) is an f -item with exa
tly two
hildren,
0 and
1, both ofwhi
h are non-empty strings. Moreover,
0, the 0th
hild, is the root of T (j0) and
1, the 1st
hild,the root of T (j1).The f -item T (j) is said to be of depth d if string j has length d. (The bridge items are thus the itemsof depth b.) The root of T is the root of the f -item T (�). The internal nodes of T are the root and the
hildren of the f -items of depth less than b. The leaves of T are the non-empty
hildren of the bridgeitems. Thus the internal nodes and the leaves of an f -i-tree are a
tual values and not f -items. Leavespossess binary names of length b, leaf j is the non-empty
hild of bridge item T (j). The path to leafj = j0 : : : jb is the f -
hain T (�); T (j0); : : : ; T (j0 : : : jb).14

Figure 3 gives our graphi
 representation of an f -100-tree, as it would be used in our signatures
heme. In this �gure we denote by rfi the root of f -item T (i), and by rgi the leaf (non-empty)
hild ofbridge item T (i). (Also present in this �gure are a number of \g-items", whi
h are not part of the f -100tree but are atta
hed to it in a manner to be des
ribed.)

Figure 3. An f -100-tree

15

There are two reasons for letting the bridge items of an f -i-tree have the empty string as one of their
hildren. First, it makes them de fa
to f -items with only one
hild, a subtle point in our proof of se
uritythat is pointed out in remark 1. Se
ond, it makes them distinguishable from items with two
hildren, asimple point used, for instan
e, in Lemma 2.8. DESCRIPTION OF OUR SIGNATURE SCHEME8.1 Message Spa
esThe se
urity properties of the new signatures s
heme hold for any nonempty message spa
e M �f0; 1g+.8.2 How to Generate KeysWe assume the existen
e of a
law-free permutation pair generator G and, without loss of generality,that the bound B on the number of signatures that
an be produ
ed is a power of 2: B = 2b.The key-generation algorithm K runs as follows on inputs 1k and 2b:(1) K runs G twi
e on input 1k to se
retly and randomly sele
t two quintuples(df ; f0; f�10 ; f1; f�11); and (dg ; g0; g�10 ; g1; g�11) 2 [G(1k)℄:(2) K then randomly sele
ts rf� in Df = [df ()℄.(3) K outputs the publi
 key PK = (f; rf� ; g; 2b) where f is the
law-free pair (df ; f0; f1) and g is the
law-free pair (dg ; g0; g1).(4) K outputs the se
ret key SK = (f�1; g�1).The PK and SK so produ
ed are said to be (mat
hing) keys of size k.8.3 What Is a SignatureA signature of a message m with respe
t to a publi
 key (f; rf� ; g; 2b)
onsists of:(1) An f -
hain of length b+ 1 starting at a string rf� and ending at rg , and(2) A g-item with rg as its root and m as its only
hild.8.4 How To Sign?In the remainder of this se
tion we shall presuppose that user A's publi
 key is PK = (f; rf� ; g; 2b)where f = (df ; f0; f1) and g = (dg ; g0; g1). User A's se
ret key is SK = (f�1; g�1). We denote by Dfthe domain [df ()℄, and denote by Dg the domain [dg()℄ similarly.Con
eptually, user A
reates an f -1b-tree T , whi
h has 2b leaves. The root of T will be rf� . Theother internal nodes of T are randomly sele
ted elements of Df . The leaves of T are randomly sele
tedelements of Dg.To sign mi, the i� th message in the
hronologi
al order, user A
omputes a g-item Gi whose rootrgi 2 Dg is the ith leaf of T , and whose only
hild is the message mi. He then outputs, as the signatureof mi, Gi and the f -
hain in T starting at root rf� and ending at leaf rgi .In pra
ti
e, it will be undesirable for user A to pre
ompute and store all of T . He will instead "grow"T as needed and try to optimize his use of storage and time. This is taken into a

ount by our signingpro
edure. In what follows, we des
ribe a variation of our signing method that requires the signer toremember just his se
ret key and his most re
ently produ
ed signature, in order to produ
e his nextsignature. The reader may �nd it helpful to refer to Figure 3 while reading this des
ription.The Signing Pro
edure (also
alled SP):We presume that the pro
edure is initialized with the values of the publi
 key PK and the
orre-sponding se
ret key SK in its lo
al private storage, that has already signed messages m0;m1; : : : ;mi�1and kept tra
k of the number of previous messages signed (i.e. the variable i = i0 : : : ib�1 whi
h is ab-long bit string, whi
h may
ontain leading 0's), and the most re
ent signature produ
ed.To
ompute a signature for message mi, the i-th message, user A performs the following steps.(1) (Output f-
hain.) 16

(1.1) (Output f-items in
ommon with previous signature.) If i = 0b this substep is skipped, and
ontrolpasses to step (1.2). Otherwise, for ea
h string j whi
h is a
ommon pre�x of i and i� 1, he outputsthe f -item (tfj ; rfj ; rfj0; rfj1) whi
h was part of the signature for message mi�1, in order of in
reasinglength of j.(1.2) (Output new f-items in f-tree.) For ea
h string j (if any) whi
h is a proper pre�x of i, but not apre�x of i � 1, user A
reates and outputs an f -item T (j), in order of in
reasing length of j. Thef -item T (j) = (tfj ; rfj ; rfj0; rfj1) is
reated as follows: If j = � its root rfj is the rf� from the publi
key; otherwise it is the k-th
hild of the most re
ently output f -item, where k is the last bit of thestring j. The
hildren rfj0 and rfj1 of the f -item with root rfj are
hosen at random from Df . Thetag tfj = f�1hrfj0;rfj1i(rfj) is
omputed using f�10 and f�11 from the se
ret key. Note that the last itemoutput (by either step (1.1) or (1.2)) has rfi as one of its
hildren.(1.3) (Output bridge f-item.) User A next outputs a single f -item with root rfi and whose
hildren are �and rgi , a randomly
hosen element from Dg . The tag tfi for this item is again
omputed using these
ret trap-door information for inverting f0 and f1.(2) (Output g-item.) Finally, user A outputs the g-item Gi = (tgi ; rgi ;mj). The tag tgi for this item is
omputed using the g�1 from the se
ret key.The items output by the above pro
edure
onstitute a signature for mi. Noti
e that there are manypossible signatures (among whi
h A
hooses one at random) for ea
h o

urren
e of ea
h message, butonly one signature is a
tually output.The reader may verify that the above pro
edure for produ
ing a signature will have a total runningtime whi
h is bounded by a polynomial in k and b.Noti
e that if A has signed i messages, the fun
tion T mapping ea
h string j 2 DFS(i) to f -itemT (j) is an f -i-tree as de�ned in se
tion 7.8.5 How to Verify a SignatureGiven A's publi
 key (f; rf� ; g; 2b), anyone
an easily verify that the �rst b+1 elements in the signatureof mi are f -items forming an f -
hain starting at rf� and ending at rgi , and that the g-item in the signaturehas rgi as its root and mi as its only
hild. If these
he
ks are all satis�ed, the given sequen
e of items isa

epted as an authenti
 signature by A of the message mi.It is easy to
on�rm that these operations take time proportional to b times some polynomial in k,the size of the publi
 key.8.6 EÆ
ien
y of the Proposed Signature S
hemeAssume that if f = (df ; f0; f1) is a
law-free pair of size k, then an element of Df is spe
i�ed by ak-bit string. Then the time to
ompute a signature for a message m of length l is is O(bk) f -inversions(i.e. inversions of f0 or f1) and O(l) g-inversions.Another relevant measure of eÆ
ien
y is \amortized" time. That is, the time used for produ
ingall possible 2b signatures divided by 2b. In our s
heme, the amortized \f -inversion"
ost is O(k). Theamortized \g-inversion"
ost is O(l) if the average length of a message is l.The length of the signature for m is O(bk + l), where l is the length of m, as m is in
luded in m'ssignature as the
hild of the g-item. Clearly, if m is known to the signature re
epient, the g-item neednot in
lude m: it suÆ
es to give its root and its tag. This way the length of the signature
an be onlyO(bk) long, whi
h is independent of the length of m and possibly mu
h shorter.The memory required by the signing algorithm is O(bk) sin
e it
onsists of storing (the f -items in)the most re
ently produ
ed signature.9. PROOF OF SECURITYLet us start by establishing a
onvenient terminology.De�nition: We
all signature
orpus the �rst i (for some i > 0) signatures output by our signingpro
edure SP . We shall generally use the symbol S to denote a signature
orpus.We de�ne the following quantities relative to a signature
orpus S,
onsisting of i signatures relativeto a publi
 key PK = (f; rf� ; g; 2b). 17

(1) The set of items of S, denoted by I(S), is the set of the items in the signatures of S.(2) The set of f-items of S, denoted by f(S), is the set of f -items in I(S).(3) The set of g-items of S, denoted by g(S), is the set of g-items in I(S).(4) The set of messages of S, denoted M(S), is the set of messages signed by S, i.e. the set of
hildrenof the g-items of S.(5) The f-tree of S, denoted by T f (S), is the f -i-tree having root rf� and, as path to leaf j (j = 0; :::; i),the f -
hain of the j-th signature of S.(6) The set of internal nodes of S, denoted by IN (S), is the set of the internal nodes of T f (S).(7) The set of non-roots of S, denoted by NR(S), is the set of those internal nodes of T f (S) that arenot the root of any f -item of S. We may think of these nodes as \hooks" from whi
h additionalf -items will be grown as new signatures are
reated.(8) The set of leaves of S, denoted L(S), is the set of leaves of T f (S).Noti
e that all the above sets are unambiguously de�ned. For instan
e, an item in f(S) has exa
tlytwo
hildren while an item in g(S) only one, the bridge elements of I(S) have exa
tly one empty
hildand thus are distinguishable from other items in f(S), and so on.Some of these de�nitions
an be observed in �gure 3. For example, the leaves of the f -101-tree in�gure 3 are rf000; rf001; rf010; rf011; rf100 and its non-roots are rf101, and rf11.Let us now see how the signature of a message never signed before relates to a given signature
orpus.Lemma 2: Let S be a signature
orpus relative to a publi
 key PK = (f; rf� ; g; 2b) and let � be asignature (relative to the same publi
 key) of a message m not belonging to M(S). Denote by I(�) theset of items in �. Then I(�) � I(S) (the set of new items)
ontains either(1) a g-item with root r 2 L(S) or(2) an f -item with root r 2 IN (S).Proof: First noti
e that I(�) � I(S) is not empty as it
ontains G, the g-item of �. In fa
t, G
annotbelong to f(S), as it is a g-item, and
annot belong to g(S), as m is its only
hild and all items in g(S)have elements of M(S) as their
hildren. Assume I(�)�I(S) also
ontains an f -item. Then this f -itembelongs to F , the f -
hain of � whose �rst item has rf� as root, one of the internal nodes of S. Thus, forsome item in F , (2) holds. Assume now that I(�) � I(S) = G. Then the root of G is the non-empty
hild of B, the bridge f -item of �. By hypothesis B is in I(S), thus the root of G belongs to L(S) and(1) holds.Re
all lemma 1 from se
tion 6.4.Lemma 1: Let f = (d; f0; f1) be a
law-free pair, x and y be elements of d and i; j two di�erent tuplesof binary strings su
h that there exists a string z su
h that z = fhii(x) = fhji(y). Then there exists anf -
law (x1; x2; x3) where x3 = f�1
 (z) for some pre�x
 of hii.We
an now prove Lemma 3.Lemma 3: There exists a polynomial-time algorithm A that, on input a
orpus S relative to a publi
key PK = (f; rf� ; g; 2b) and the signature � of a message not belonging to M(S), �nds either(1) a g-
law or(2a) an f -
law or(2b) an f -item whose root belongs to NR(S).Proof: (the
ases are numbered a

ording to the
orresponding
ases in Lemma 2)If
ase (1) of Lemma 2 holds for S and �, then we have two g-items with the same root r in L(S).Namely, an i; j; x and y su
h that ghii(x) = ghji(y) = r and we get a g-
law by Lemma 1. Otherwise, if
ase (2) of lemma 2 holds, let F be the f -item that satis�es
ondition (2) of Lemma 2. If F has the sameroot as some F 0 2 f(S), then again by Lemma 1, we get an f -
law, otherwise we get an f -item whoseroot belongs to NR(S).Remark 1: Noti
e that if � is generated by the legal signer (i.e. the SP pro
edure) then, with veryhigh probability,
ase (2b) will hold in lemma 3. 18

In the proof of the main theorem we will assume that there exists a su

essful adaptive
hosen-message atta
k, and derive a
ontradi
tion by showing that this atta
k would enable an enemy to easily
reate either an f -
law or a g-
law with suÆ
iently high probability. Re
all that in an adaptive
hosen-message atta
k the enemy
an repeatedly use the real signer as an \ora
le" before attempting to forge anew signature. The next lemma, (lemma 4), essentially states that the signing pro
ess
an be simulatedperfe
tly by an eÆ
ient algorithm that knows the publi
 key and only half of the se
ret key: the inversesof the �rst
law-free pair. (i.e. in some sense, this algorithm is a forger.)To state lemma 4, additional notation regarding \intera
tive" probabilisti
 algorithms, needs to beintrodu
ed. The notion of an adaptive,
hosen-message atta
k involves the intera
tion of two algorithms:SS (the signer) and SR (the signature requestor). These algorithms \take turns": SR requests asignature of a given message, SS signs it, SR requests a se
ond signature, SS
omputes it, and so on.We might view the two routines as \
o-routines" that pass
ontrol ba
k and forth while preserving theirown state. We formalize this intera
tion by means of the
ombining algorithm C that de�nes a
ompositealgorithm from two auxiliary ones. The
ombining algorithm C will invoke repeatedly SS and SR inalternation,
orresponding to their taking turns. The algorithms SS and SR have private state variables(denoted VSS and VSR) that are preserved from invo
ation to invo
ation. Algorithm SS (whi
h produ
essignatures) takes as input a publi
 key PK, an auxilary input X (whi
h for the moment is unsepe
i�edbut will later denote either the
orresponding se
ret key SK or part of it), a new message to sign, andits private state variable. It produ
es as output a signature for the new message and an updated versionof its private state variable. Similarly, SR is a probabilisti
 algorithm whi
h takes as input a publi
 key,a sequen
e of previous signatures relative to that publi
 key, and its private state variable, and produ
esas output a message to be signed and an updated version of its private state variable.The following algorithm makes spe
i�
 the pro
ess of
ombining SS and SR:Algorithm C(SS ;SR;PK;X; i)Set S0 �.Set VSR and VSS to �.for j = 0 to i do:(mj ; VSR) SR(PK; fS1; : : : ;Sj�1g; VSR) (Request signature for message mj.)(Sj ; VSS) SS(PK;mj ; VSS ; X). (Produ
e signature for message mj .)Output Sj .Here Sj denotes the signature of the j-th message.We extend our notation of probabilisti
 algorithm in a natural way by letting C(SS ;SR;PK;X; i)represent the probability spa
e that assigns the sequen
e � the probability that C outputs � after invokingalternatively (for i times) SS (with initial input PK and X) and SR (with initial inputs PK).We
an now state lemma 4, stating that the signing pro
ess
an be simulated e�e
tively if the fi'sinverses are known but the gi inverses are not.Lemma 4: There exists an algorithm A in RA su
h that for all requestors SR 2 RA, for all publi
keys PK = (f; rf� ; g; 2b) and for all non-negative integers i < 2b,C(A;SR;PK; ff�1g; i) = C(SP ;SR;PK;SK; i)(Where SP is the legal signing pro
ess of se
tion 8, and SK is the
orresponding se
ret key to PK).Proof. Consider the following algorithm A. We indu
tively assume thatC(A;SR;PK; ff�1g; i� 1) = C(SP ;SR;PK;SK; i� 1)Thus the f -
hains in the �rst i� 1 signatures output by C uniquely de�ne an f -(i� 1)-tree T . AlgorithmA stores i� 1 and the f -
hain of the last produ
ed signature and exe
utes the following instru
tions tosign mi, the i-th message, where i=i0 � � � ib.(1) (Authenti
ate mj with a g-item.) Pi
k an element tgj at random in Dg and
ompute rgj = ghmji(tgj)so to generate the g-item (tgj ; rgj ;mj)(2) (Build the f-
hain from rf� to rfj to the extent that it is not already done.) Compute i0i1 � � � ij , thelongest proper pre�x of i that is also a pre�x of i� 1. For x = 1 to b� j, generate T (i0 � � � ij+x), an19

f -item whose root is the ij+x-th
hild of T (io � � � ij+x�1), and whose two
hildren are independentlyand randomly sele
ted elements of Df . (Algorithm A easily
omputes the tag of this new f -item byusing f�1.)(3) (Create the bridge item authenti
ating rgj .) Using f�10 and f�11 ,
reate a f -item with
hildren � andrgi and having as root the ib-th
hild of T (i0 � � � ib�1).(4) (Output signature of mi) Output T (�); T (i0); : : : T (i0 � � � ib�1), the new bridge item T (i0; :::; ib) andthe new g-item.In lemma 6 we show a similar result: the signing pro
ess
an be simulated if g�1 is known, but f�1is not. The proof of lemma 6 makes essential use of the fa
t that there is a known upper bound on thenumber of signatures to be produ
ed. (The bound provides a limit on the amount of a prepro
essing stepthat is the subje
t of lemma 5.)There is, however, a very important di�eren
e between the signing simulation pro
edure des
ribedin lemma 4 (whi
h uses f�1 but not g�1) and that of lemma 6 (whi
h uses g�1 but not f�1). The proofof lemma 4 works with any �xed root rf� , whi
h
an be �xed arbitrarily before the simulation pro
edureis invoked.By
ontrast, the signing simulation pro
edure of lemmas 5 and 6 a
tually produ
es the ne
essaryroot rf� to be part of the publi
 key in its prepro
essing step. The root produ
ed is uniformily distributedover Df . Thus, from the point of view of an observer that monitors the behaviour of the signer when hepublishes his publi
 key, the prepro
essing step is undistinguishable from a genuine key generation step.Moreover, by monitoring the signing pro
ess, the observer
an not tell whether the signer really knowsf�1 or he has �rst applied the prepro
essing pro
edure of lemma 5 to produ
e his publi
 �le and onlythen applied the simulation pro
edure of lemma 6.De�nition: For all strings m1; :::;mi, let sequen
e(m1; :::;mi) denote the trivial intera
tive algorithmthat, no matter what inputs it gets, when invoked for the j-th time (j = 1; :::; i) outputs the string mj .Let us de�ne two probability spa
es over the f -i-trees whi
h are
ru
ial to our analysis.De�nition: Let PK = (f; rf� ; g; 2b) and SK = (f�1; g�1) be a pair of mat
hing publi
 and se
ret key,where f = (df ; f0; f1). Re
all that C is the
ombining algorithm. De�ne two probability spa
es, Ti;PKand Ti;f;g;2b , as follows:Ti;PK is generated by randomly sele
ting S in C(SP ; sequen
e(m1; :::;mi);PK;SK; i) and then
omputingT f (S). (Note that Ti;PK does not depend on the values of the messages m1; : : : ;mi but it does dependon i, the number of messages.)Ti;f;g;2b is generated by randomly sele
ting S in C(SP ; sequen
e(m1; :::;mi); (f; df (); g; 2b); SK; i) andthen
omputing T f (S).Informally, Ti;PK is the probability spa
e obtained from Ti;f;g;2b by randomly pi
king rf� 2 Df and �xingit in PK.Noti
e that both probability spa
es are easily generated if the se
ret key SK = (f�1; g�1) is amongthe available inputs. However, both probability spa
es remain easy to generate on a more restri
ted set ofinputs. It has been impli
itly proved in lemma 2 that Ti;PK
an be generated in probabilisti
 polynomial-time on inputs i; PK and f�1 alone. The following lemma shows that Ti;f;g;2b is easily generated on inputsi; f; g; 2b alone.Lemma 5: There exists T 2 RA su
h that for all
law-free pairs f = (df ; f0; f1) and g = (dg ; g0; g1)and for all integers i < 2b, T (i; f; g; 2b) = Ti;f;g;2b :Proof: Consider the following algorithm T that
onstru
ts an f -i-tree T in \reverse order"; that is, it
onstru
ts f -item T (x) before f -item T (y) if y < x. (This is ne
essary sin
e T does not have a

ess tof�1.) The
onstru
tion goes as follows.If string j 2 DFS(i) has length b, T sele
ts the non-empty
hild of T (j) at random in Dg . Otherwise(if j has length shorter than b), T sele
ts, as 0-th
hild of T (j), the root of T (j0) and, as 1st
hild, theroot of T (j1). In
ase j1 does not belong to DFS(i), T sele
ts the se
ond
hild of T (j) at random in Df .20

Having sele
ted the two
hildren
o and
1 of T (j), T sele
ts its tag t at random in Df . Then it
omputes the pre�x-free en
oding h(
0;
1)i and sele
ts as the root of T (j) the element fh
i(t), whi
h Teasily
omputes using f0 and f1.Noti
e that ea
h T (j) so
omputed is a proper f -item and that the resulting T is a proper f -i-treebelonging to [Ti;f;g;2b ℄. Let's now analyse the probability distribution a

ording to whi
h T has beensele
ted.First noti
e that the leaves of T (that is the non-empty
hildren of the items of depth b) have thesame distribution of the leaves of a f -i-tree randomly sele
ted in Ti;f;g;2b . In fa
t, in both
ases, all leavesare uniformily and independently sele
ted elements of Dg. Then noti
e that the roots of the items of T ofdepth k (that is the
hildren of the items of T of depth k � 1) are sele
ted uniformly and independentlyin Df . In fa
t, the root of ea
h item is obtained by applying fhxi, a permutation of Df randomly sele
tedfrom some probability spa
e, to an element t (the tag) independently and uniformily sele
ted in Df .From this it easily follows that T sele
ts T at random in Ti;f;g;2b . It is easily seen that T 2 RA and thussatis�es all the required properties of our lemma.Lemma 6: There exists an algorithm A 2 RA su
h that for all signature requestors SR 2 RA, for all
law-free pairs f = (df ; f0; f1) and g = (dg ; g0; g1), and for all non-negative integers i < 2b,C(A;SR; (f; df (); g; 2b); fg�1g; i) = C(SP ;SR; (f; df (); g; 2b); ff�1; g�1g; i):Proof: Consider the following algorithm A. In a prepro
essing step, A runs algorithm T of Lemma 5to randomly sele
t an f -i-tree T from Ti;f;g;2b . Let rf� be the root of T . This root is used to
onstru
tthe publi
 �le PK = (f; rf� ; g; 2b), with respe
t to whi
h all subsequent signatures will be produ
ed asfollows. A starts the signature requestor SR on input PK. Then it simulates the signing pro
edure withinitial inputs PK and the
orresponding se
ret key SK = (f�1; g�1) without using f�1 in the followingway. When SR outputs mj , the j-th message to be signed, A retrieves the f -
hain Tj , the path from theroot of T to leaf j. Then A
omputes the ne
essary g-item by using g�1.Before stating and proving our main theorem, let us single out a simple lemma stating that one
annot invert a
law-free pair on a randomly sele
ted input of its domain.Lemma 7: Let G be a
law-free permutation pair generator. Then, for any inverting algorithm I 2 RA,any
 > 0 and suÆ
iently large k,P(h0(z) = x or h1(z) = xj(d; h0; h�10 ; h1; h�11) G(1k);x dh(); z I(1k; d; h0; h1)) < k�
:Proof: Otherwise the following algorithm would �nd a
law with too high a probability: randomly sele
ty in dh, randomly sele
t i between 1 and 2,
ompute x = hi(y) and run I to get z su
h that hj(z) = xfor j 6= i.We are now ready to formally state and prove our main theorem. We start by strengthening thede�nition of existentially forgeable to in
lude probabilisti
 su

ess on the part of the forger.De�nition: We say that a signature s
heme is �-existentially forgeable if it is existentially foregeable withprobability � where the probability spa
e in
ludes the random
hoi
es of the adaptive
hosen-messageatta
k, the random
hoi
es made by the legal signer in the
reation of the publi
 key, and the random
hoi
e made by the legal signer in produ
ing signatures.It is very important to note that the random
hoi
es made in
reating the publi
 key are in
ludedin the probability spa
e; our proof depends
riti
ally on this de�nition. The main theorem of this paperis the following.Main Theorem. Assuming that
law-free permutation pair generators exist, the signature s
hemedes
ribed in se
tion 8 is not even 1Q(k) -existentially forgeable under an adaptive
hosen-message atta
k,for all polynomials Q and for all suÆ
iently large k.21

Proof of the Main Theorem. The proof pro
eeds by
ontradi
tion. We assume, for
ontradi
tionsake, that for some polynomial Q and for in�nitely many k our signature s
heme is 1Q(k) -existentiallyforgeable under an adaptive
hosen message atta
k by an algorithm F in RA.By de�nition, the forging algorithm F
onsists of two algorithms in RA: a signature requestor FR,whi
h is a
tive in a �rst phase when it adaptively asks and re
eives signatures of messages of its
hoi
e,and a signature �nder FF , whi
h is a
tive in a se
ond phase when it attempts to forge a signature of amessage not asked about by FR.Let PK = (f; rf� ; g; 2b) and SK be a publi
/se
ret-key pair of size k, randomly sele
ted by ourkey generator using a
law-free permutation pair generator G. In the �rst phase a signature
orpusS C(SP ;FR;PK;SK; i) is generated, where i < 2b. Then FF is run on input S and PK. Let�k denote the probability that FF outputs �, a legal signature, with respe
t to PK, for a messagem 62M(S). (This probability is taken over all the
oin tosses of G, FR, FF and SP).What we have assumed is that, for in�nitely many k,�k � 1Q(k) :By Lemma 3, given S and �, it is now easy to
ompute either(1) a g-
law (i.e. a
law for the se
ond
law-free pair in PK) or(2) an f -
law (i.e. a
law for the �rst
law-free pair in PK) or(3) an f -item whose root belongs to NR(S).Denote the probability that
ase (1), (2) or (3) hold respe
tivey by Æ1; Æ2 and Æ3. Then, for in�nitelymany k, we have Æ1(k) + Æ2(k) + Æ3(k) � �k > 1Q(k) :Thus either(1') there is an in�nite set K1 so that for k 2 K1 Æ1(k) > 13Q(k) , or(2') there is an in�nite set K2 so that for k 2 K2 Æ2(k) > 13Q(k) , or(3') there is an in�nite set K3 so that for k 2 K3 k 2 K3 Æ3(k) > 13Q(k) .We will show that either
ase leads to
ontradi
tion.Assume
ase (1') holds. Then
onsider the following algorithm in RA that, on input 1k and a
law-free pair h = (dh; h0; h1) of size k randomly sele
ted by G, �nds an h-
law with suÆ
iently highprobability.Algorithm 1: Run G on input 1k to randomly sele
t a quintuple (df ; f0; f�10 ; f1; f�11). Sele
t rf� 2Df at random and
onstru
t the publi
 key PK = (df ; f0; f1; rf� ; dh; h0; h1; 2b). (Noti
e that PK isa random publi
 key of size k of our signature s
heme.) Randomly sele
t the signature
orpus S C(SP ;FR;PK;SK; i). Though PK's mat
hing se
ret key SK is not totally known, this random sele
tion
an be eÆ
iently done as, by Lemma 4, there exists an A 2 RA su
h that C(SP ;FR;PK;SK; i) =C(A;FR;PK; f�1; i). Now run FF on input S and PK to sign a new message. From this last signatureand S, try to
ompute an h-
law.Noti
e that, for k 2 K1, Algorithm 1 will su

essfully
ompute an h-
law with probability Æ1(k) >13Q(k) . This
ontradi
ts the
law-freeness of G.Assume now that either (2') or (3') hold. Consider the following algorithm in RA, whose input is 1k anda
law-free pair h = (dh; h0; h1) of size k randomly sele
ted by G.Algorithm 2: Run G on input 1k to randomly sele
t a quintuple (dg ; g0; g�10 ; g1; g�11). Randomly sele
tthe signature
orpus S C(SP ;SR; (h; dh(); g; 2b); fh�1; g�1g; i)whi
h
an be done as by lemma 6 there exists an algorithm A 2 RA su
h thatC(SP ;SR; (h; dh(); g; 2b); fh�1; g�1g; i) = C(A;SR; (h; dh(); g; 2b); g�1; i). Then run FF on input S and PK. 22

Assume that
ase (2') holds. Then, for k 2 K2, from the output of Algorithm 2 an h-
law
an be
omputed with suÆ
iently high probability to violate the
law-freeness of G.Finally, assume that
ase (3') holds and k 2 K3. Then, given a random x dh(), the followingalgorithm I will invert h on x with non-negligible probability (
ontradi
ting Lemma 7). I runs Algorithm2 ex
ept that, when
onstru
ting T h(S) as in Lemma 5, makes x the value of a randomly sele
ted non-root of S. Noti
e that this operation does not
hange the probability distribution of S. (Re
all thatthe pre-pro
essing pro
edure of Lemma 5 just pi
ks at random all the internal nodes of S.) Thus S is arandom signature
orpus with respe
t to a randomly sele
ted publi
 key of size k. Thus, from the outputof Algorithm 2, I
omputes an h-item with root r 2 NR(S) with probability Æ3(k) > 13Q(k) . When thishappens, with probability 1jNR(S)j we have r = x. Now, given the h-item
omputed, I
an easily
omputeeither h�10 (x) or h�11 (x), and lemma 7 is
ontradi
ted. This
ompletes the proof of the main theorem.10. VARIATIONS AND IMPROVEMENTSIn this se
tion we des
ribe ways to improve the eÆ
ien
y of the proposed signature s
heme withouta�e
ting its se
urity.10.1 Using gi's to sign rather than g�1i 's.This variation is of interest if it is substantially easier to
ompute g0 or g1 than to
ompute theirinverses. In this
ase steps (3) and (4) in the signing pro
edure
an be repla
ed by:(3) (Output g-item.) User A sele
ts a random tgi 2 Dg , and (using g0 and g1)
omputes the root rgi ofthe g-item (tgi ; rgi ;mi), and outputs this item.(4) (Output bridge f-item.) Using his knowledge of f�10 and f�11 , user A outputs an f -item with rootrfi and an only
hild rgi .Now ea
h usage of g�10 or g�11 has been repla
ed by a usage of g0 or g1.Although one might be tempted to use this variation using one-way permutations instead of trap-door permutations for the gi's, this temptation should be resisted, sin
e our proof of se
urity does nothold if this
hange is made.10.2 Fast iterated square rootsAs we saw in se
tion 6.3, if fa
toring is
omputationally hard, a parti
ular family of trap-doorpermutations is
law-free. By using these permutations in a straightforward manner, one obtains aparti
ular instan
e of our signature s
heme. Let us dis
uss its eÆ
ien
y of this instan
e. The
omputationof f�10 (x)
onsists of
omputing the square-root whi
h has Ja
obi symbol 1 and is less than n=2, moduloa Blum-integer n. We
an
ompute f�11 (x) as f�10 (x=4). Computing g�10 (x) and g�11 (x) is the same,ex
ept for using the appropriate n. If n is k-bits long, this
an be done in O(k3) steps. Thus the signatureof a k-bit message
an be
omputed in time O(b � k4), or in O(k4) amortized time.This parti
ular instan
e of our s
heme
an be improved in a manner suggested in dis
ussions withOded Goldrei
h (see [Go86℄ { we appre
iate his permission to quote these results here). The improvementrelates to the
omputation of f�1hyi(x) (or g�1hyi(x)).We note �rst of all that taking square roots modulo n is equivalent to taking u-th powers modulo n,where u �2 � 1 (mod �(n)), and where �(n) is Euler's phi fun
tion. More generally, to �nd a 2m-th rootw of x modulo n one
an raise x to the v-th power modulo n, where v � um (mod �(n)). Computing wby �rst
omputing v and then raising x to the v-th power is substantially faster than repeatedly takingsquare roots.To apply this observation, we note that the fun
tions f de�ned in se
tion 6.3. satisfyf�1hyi(x) = �(x4rev(hyi))2�m ;where \rev" is the operation whi
h reverses strings and interprets the result as an integer, where m isthe length of hyi, where all operations are performed modulo n, and where the �nal sign is
hosen tomake the result less than n=2. The only
omputationally diÆ
ult portion here is
omputing a 2m-th root.Using the observation of the previous paragraph, the
omputation of su
h an f -inverse
an be performed23

in time proportional to the
ube of the length of n, in the
ase that messages have the same length k asn. Using these ideas, the signature of a k-bit message
an be
omputed in time O(b � k3), or in O(k3)amortized time.10.3 \Memoryless" Version of the Proposed Signature S
hemeThe
on
ept of a random fun
tion was introdu
ed by Goldrei
h, Goldwasser and Mi
ali in [GGM84℄.Let Ik denote the set of k-bit integers. Let Wk denote the set of all fun
tions from Ik to Ik, and letFk �Wk be a set of fun
tions from Ik to Ik. We say that F = Sk Fk is a poly-random
olle
tion if:(1) Ea
h fun
tion in Fk has a unique k bit index asso
iated with it. Furthermore, pi
king su
h an indexat random (thereby pi
king an f 2 Fk at random) is easy.(2) There exists a deterministi
 polynomial time algorithm that given as input an index of a fun
tionf 2 Fk and an argument x,
omputes f(x).(3) No probabilisti
 polynomial in k time algorithm
an \distinguish" between Wk and Fk. Formally,let T be a probabilisti
 polynomial time algorithm, that on input k and a

ess to an ora
le Of for afun
tion f : Ik ! Ik outputs 0 or 1. Then, for all T , for all polynomials Q, for all suÆ
iently largek, the di�eren
e between the probability that T outputs 1 on a

ess to an ora
le Of when f wasrandomly pi
ked in Fk and the probability that T outputs 1 on a

ess to an ora
le Of when f wasrandomly pi
ked in Wk is less than 1=Q(k).In [GGM84℄ it was shown how to
ontru
t a poly-random
olle
tion assuming the existen
e of one-way fun
tions. The existen
e of
law-free permutation pairs is a stronger assumption, and thus impliesthe existen
e of a poly-random
olle
tion. See se
tion 5.4 for an implementation of a
law-free family offun
tions based on fa
toring and [GGM84℄ for details on how to
ontru
t a poly-random
olle
tion.Leonid Levin suggested the following use of a poly-random
olle
tion in order to redu
e the amountof storage that a signer must keep from O(bk) to O(b) bits. His suggestion also eliminates the need togenerate new random numbers (e.g. rgi) during the signing pro
ess.Let k denote the se
urity parameter. In the se
ret key generation phase, in addition to
omputingthe se
ret trap-door pairs (f�10 ; f�11), (g�10 ; g�11) user A also pi
ks a random fun
tion h in a poly-random
olle
tion Fk , and keeps h se
ret. (We assume that k > b.) During the signing pro
ess, A keeps a
ounteri to denote the number of times the signing algorithm has been invoked. To sign message mi, A signs asbefore, ex
ept that (using m to denote the length of j):� Instead of pi
king values rfj at random from Df , he
omputes them as rfj = h(0k�mj).� Instead of pi
king values rgj at random from Dg, he
omputes them as rgj = h(1k�mj).We
laim that the \memoryless" version of the signature s
heme des
ribed above enjoys the samese
urity properties as our original s
heme. The proof (whi
h we shall not give in detail) is based on theobservation that if the memoryless s
heme was vulnerable to an adaptive
hosen-message atta
k, then itwould be possible to eÆ
iently distinguish pseudo-random fun
tions from truly random fun
tions.A further improvement (due to Oded Goldrei
h [Go86℄) removes even the ne
essity of rememberingthe number of previous signatures, by pi
king the index i for a message M as a random b-bit string. Tomake this work, the maximum number of signatures that
an be produ
ed by an instan
e of this s
hemeis limited to 2pb, so that it is extremely unlikely that two messages would have the same index
hosen forthem. The se
urity proof
an be modi�ed to a

omodate these
hanges. (Note that in the prepro
essingstep that builds an f -tree, we would now only build a portion of it
onsisting of 2pb randomly
hosenpaths of length b.)11. OPEN PROBLEMS� It is an open question whether the RSA s
heme is universally forgeable under an adaptive
hosen-message atta
k.� Can an en
ryption s
heme be developed for whi
h de
ryption is provably equivalent to fa
toring yetfor whi
h an adaptive
hosen
iphertext atta
k is of no help to the enemy?24

12. ACKNOWLEDGEMENTSWe are most grateful for Leonid Levin for his suggestion of how to use random fun
tions in ours
heme, in order to (almost)
ompletely eliminate the need of storage in our signature s
heme.We are also very grateful to Oded Goldrei
h for many valuable suggestions
on
erning the presenta-tion of these results, and for suggesting the speed-up des
ribed in se
tion 10.3.We are also thankful to Avi Wigderson for helpful suggestions on the presentation of this resear
h.Spe
ial thanks to an anonymous referee for his very
areful reading of our paper and suggestedimprovements.13. REFERENCES[BGMR85℄ Ben-Or, M., O. Goldrei
h, S. Mi
ali, and R.L. Rivest, \A Fair Proto
ol for SigningContra
ts," Pro
. 12-th ICALP Conferen
e (Nap
ion, Gree
e, July 1985), 43{52.[Bl82℄ Blum, M. \Coin Flipping by Telephone," Pro
. IEEE Spring COMPCOM (1982),133-137.[Bl83℄ Blum, M. \How to Ex
hange (Se
ret) Keys" ACM Trans. Comp. Sys. 1 (1983),175{193.[BD85℄ Bri
kell, E., and J. DeLaurentis, \An Atta
k on a Signature S
heme Proposed byOkamoto and Shiraishi," Pro
. CRYPTO 85 (Springer 1986).[Ch82℄ Chaum, D. \Blind Signatures and Untra
eable Payments," Advan
e in Cryptography{ Pro
eedings of CRYPTO 82, (Edited by Chaum, D., R. Rivest, and A. Sherman),(Plenum Press, New York 1983).[De82℄ Denning, D. CRYPTOGRAPHY AND DATA SECURITY, (Addison-Wesley, Read-ing, Mass., 1982).[DH76℄ DiÆe, W. and M. E. Hellman, \New Dire
tions in Cryptography", IEEE Trans.Info. Theory IT-22 (Nov. 1976), 644-654.[EAKMM85℄ Estes, D., L. Adleman, K. Kompella, K. M
Curley, and G. Miller, \Breaking theOng-S
hnorr-Shamir Signature S
heme for Quadrati
 Number Fields," Pro
. CRYPTO85, to appear.[EG84℄ El-Gamal, T., \A Publi
 Key Cryptosystem and a Signature S
heme Based on Dis-
rete Logarithms", Pro
eedings of Crypto 84 (Springer 1985), 10{18.[EGL82℄ Even, S., O. Goldrei
h, and A. Lempel, \A Randomized Proto
ol for Signing Con-tra
ts", Advan
es in Cryptology { Pro
eedings of Crypto 82, (Plenum Press, NewYork, 1983), 205-210.[GGM84℄ Goldrei
h, O., Goldwasser, S., and S. Mi
ali, \How to Contru
t Random Fun
tions,"Pro
. 25th Annual IEEE Symposium on Foundations of Computer S
ien
e, (Florida,November 1984.)[Go86℄ Goldrei
h, Oded, \Two Remarks Con
erning the GMR Signature S
heme," (Manus
riptin preparation).[GK86℄ Goldwasser, S., and J. Kilian, \Almost All Primes Can be Qui
kly Certi�ed," Pro
.18-th ACM STOC Conferen
e (Berkely, 1986).[GM82℄ Goldwasser, S., and S. Mi
ali, \Probabilisti
 En
ryption," JCSS 28 (April 1984),270-299.[GMR84℄ Goldwasswer, S., S. Mi
ali, and R. L. Rivest, \A `Paradoxi
al' Solution to the Signa-ture Problem," Pro
. 25-th IEEE FOCS Conferen
e (Singer Island, 1984), 441-448.[GMY83℄ Goldwasser, S., S. Mi
ali, and A. Yao, \Strong Signature S
hemes," Pro
. 15thAnnual ACM Symposium on Theory of Computing, (Boston Massa
husetts, April1983), 431-439.[La79℄ Lamport, L. \Constru
ting Digital Signatures from a One-Way Fun
tion," SRI Intl.CSL-98. (O
t. 1979) 25

[Li81℄ Lieberherr, K. \Uniform Complexity and Digital Signatures," Theoreti
al ComputerS
ien
e 16,1 (O
t. 1981), 99-110.[LM78℄ Lipton, S., and S. Matyas, \Making the Digital Signature Legal { and Safeguarded,"Data Communi
ations (Feb. 1978), 41-52.[Ma79℄ Matyas, S. \Digital Signatures { An Overview," Computer Networks 3 (April 1979)87-94.[MH78℄ Merkle, R., and M. Hellman, \Hiding Information and Signatures in Trap-DoorKnapsa
ks," IEEE Trans. Infor. Theory IT-24 (Sept. 1978), 525-530.[Me79℄ Merkle, Ralph \Se
re
y, Authenti
ation, and Publi
-Key Systems," Stanford Ele
-tri
al Engineering Ph.D. Thesis ISL SEL 79-017.[MM82℄ Meyer, C. and S. Matyas, CRYPTOGRAPHY: A NEW DIMENSION IN DATASECURITY (Wiley, New York, 1982)[MGR85℄ Mi
ali, S., S. Goldwasser, and C. Ra
ko�, \The Knowledge Complexity of Intera
tiveProof Systems," Pro
. 17th Annual ACM Symposium on Theory of Computing,(Providen
e, R.I., May 1985), 291-304.[OS85℄ Okamoto, T., and A. Shiraishi, \A Fast Signature S
heme Based on Quadrati
 In-equalities," Pro
. 1985 Symp. on Se
urity and Priva
y (Oakland, April 1985).[OSS84a℄ Ong, H., C. S
hnorr, and A. Shamir, \An EÆ
ient Signature S
heme Based onQuadrati
 Equations," Pro
. 16th Annual ACM Symposium on Theory of Comput-ing, (Washington, D.C., April 1984), 208-217.[OSS84b℄ Ong, H., C. S
hnorr, and A. Shamir, \An EÆ
ient Signature S
heme Based onPolynomial Equations," Pro
. CRYPTO 84 (Springer 1985), 37{46.[Po84℄ Pollard, J. \How to Break The `OSS' Signature S
heme", Private Communi
ation(1984).[Ra78℄ Rabin, Mi
hael, \Digitalized Signatures," In FOUNDATIONS OF SECURE COM-PUTATION, (Edited by R. A. DeMillo, D. Dobkin, A. Jones, and R. Lipton), (A
a-demi
 Press, New York, 1978), 133-153.[Ra79℄ Rabin, Mi
hael. \Digitalized Signatures as Intra
table as Fa
torization," MIT Lab-oratory for Computer S
ien
e Te
hni
al Report MIT/LCS/TR-212 (Jan. 1979).[Ra80℄ Rabin, Mi
hael. \Probabilisti
 Algorithms for Testing Primality," J. Number The-ory, 12 (1980), 128-138.[RV83℄ Reif, J. and L. Valiant, \A logarithmi
 time sort for linear size networks," Pro
eedings15th Annual ACM Symposium on Theory of Computing, (Boston Massa
husetts,April 1983), 10-16.[RSA78℄ Rivest, R., A. Shamir, and L. Adleman, \A Method for Obtaining Digital Signaturesand Publi
-Key Cryptosystems," Comm. of the ACM (Feb. 1978), 120-126.[Sh78℄ Shamir, A., \A Fast Signature S
heme," MIT Laboratory for Computer S
ien
eTe
hni
al Memo MIT/LCS/TM-107 (July 1978).[Sh82℄ Shamir, A., \A Polynomial Time Algorithm for Breaking the Basi
 Merkle-HellmanCryptosystem," Pro
. 23rd Annual IEEE FOCS Conferen
e (Nov. 1982), 145-152.[SS77℄ Solovay, R., and V. Strassen, \A Fast Monte-Carlo Test for Primality," SIAM J.Computing , 6 (1977), 84-85.[Tu84℄ Tulpan, Y., \Fast Cryptanalysis of a Fast Signature System," Master's Thesis inApplied Mathemati
s, Weizmann Institute. (1984)[Wi80℄ Williams, H. C., \A Modi�
ation of the RSA Publi
-Key Cryptosystem," IEEETrans. Info. Theory IT-26 (Nov. 1980), 726-729.[Yu79℄ Yuval, G., \How to Swindle Rabin," Cryptologia 3 (July 1979), 187-189.26

