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Abstract
Taking the concept of thin clients to the limit, this paper
proposes that desktop machines should just be simple,
stateless I/O devices (display, keyboard, mouse, etc.) that
access a shared pool of computational resources over a
dedicated interconnection fabric — much in the same way
as a building’s telephone services are accessed by a
collection of handset devices. The stateless desktop design
provides a useful mobility model in which users can
transparently resume their work on any desktop console.

This paper examines the fundamental premise in this
system design that modern, off-the-shelf interconnection
technology can support the quality-of-service required by
today’s graphical and multimedia applications. We devised
a methodology for analyzing the interactive performance of
modern systems, and we characterized the I/O properties of
common, real-life applications (e.g. Netscape, streaming
video, and Quake) executing in thin-client environments.
We have conducted a series of experiments on the Sun
Ray™ 1 implementation of this new system architecture,
and our results indicate that it provides an effective means
of delivering computational services to a workgroup.

We have found that response times over a dedicated
network are so low that interactive performance is
indistinguishable from a dedicated workstation. A simple
pixel encoding protocol requires only modest network
resources (as little as a 1Mbps home connection) and is
quite competitive with the X protocol. Tens of users running
interactive applications can share a processor without any
noticeable degradation, and many more can share the
network. The simple protocol over a 100Mbps
interconnection fabric can support streaming video and
Quake at display rates and resolutions which provide a
high-fidelity user experience.

1 Introduction
Since the mid 1980’s, the computing environments of
many institutions have moved from large mainframe,
time-sharing systems to distributed networks of desktop
machines. This trend was motivated by the need to provide
everyone with a bit-mapped display, and it was made
possible by the widespread availability of
high-performance workstations. However, the desktop
computing model is not without its problems, many of
which were raised by the original UNIX designers[14]:

“Because each workstation has private data, each
must be administered separately; maintenance is
difficult to centralize. The machines are replaced
every couple of years to take advantage of
technological improvements, rendering the
hardware obsolete often before it has been paid for.
Most telling, a workstation is a large self-contained
system, not specialised to any particular task, too
slow and I/O-bound for fast compilation, too
expensive to be used just to run a window system.
For our purposes, primarily software development,
it seemed that an approach based on distributed
specialization rather than compromise could better
address issues of cost-effectiveness, maintenance,
performance, reliability, and security.”

Many of the above issues still apply today, despite the
fact that higher-performance personal computers are
readily available at low cost. It has been well-established
that system administration and maintenance costs dominate
the total cost of ownership, especially for networks of
PC’s. In addition, there are many large computational tasks
that require resources (multiprocessors and gigabytes of
memory) that cannot be afforded on every desktop.

A great deal of research went into harvesting the
unused cycles on engineers’ desktop machines[1].
However, the return to time-sharing a centralized pool of
hardware resources is the most effective and direct solution
to this problem. Thin-client computing is the modern
version of the old time-sharing approach, and there have
been numerous projects that focus on thin-client strategies.
For example, the Plan 9 project completely redesigned the
computing system with an emphasis on supporting a
seamless distributed model[14]. The terminal at the
desktop in Plan 9 is still a general-purpose computer
running a complete virtual memory operating system, but it
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is intended to run only programs with low resource
demands.

More recently, thin-client-based system architectures
have been developed, examples of which include X
Terminals, Windows-Based Terminals, JavaStations, and
other Network Computers. In these systems the desktop
unit executes only the graphical interface of applications,
which allows more sharing of computing and memory
resources on the server at the expense of added network
traffic in the form of display protocols, such as X[13],
ICA[3], and RDP[10]. The protocols are highly optimized
for specific software API’s to reduce their bandwidth
requirements. Thus, they typically require a nontrivial
amount of processing resources and memory to maintain
environment state and application data, such as font
libraries and Java applets. Users are still subjected to some
degree of system administration, such as network
management and software upgrades.

Finally, the thinnest possible clients are dumb terminals
which only know how to display raw pixels. The
MaxStation from MaxSpeed Corporation is refreshed via
64Mbps dedicated connections, which can only support a
resolution of 1024x768 with 8-bit pixels[9]. However, a
standard 24-bit, 1280x1024 pixel display with a 76Hz
refresh rate would require roughly 2.23Gbps of bandwidth.
The VNC viewer, on the other hand, allows access to a
user’s desktop environment from any network connection
by having the viewer periodically request the current state
of the frame buffer[16]. While this design allows the
system to scale to various network bandwidth levels, its
interactive performance (even on a low-latency,
high-bandwidth network) is noticeably inferior to that of a
desktop workstation.

1.1 SLIM: a stateless thin-client architecture
The premise of this paper is that commodity networks are
fast enough to use a low-level protocol to remotely serve
graphical displays of common, GUI-based applications
without any noticeable performance degradation. This
leads us to take the notion of thin clients to the limit by
removing all state and computation from the desktop and
designing a low-level hardware- and software-independent
protocol to connect all user-accessible devices to the
system’s computational resources over a low-cost
commodity network. We refer to such thin-client
architectures as SLIM (Stateless, Low-level Interface
Machine) systems, and we illustrate their major
components in Figure 1.

As an extreme design with the thinnest possible
terminals, SLIM maximizes the advantages of thin-client
architectures: resource sharing, centralized administration,
and inexpensive desktop units to minimize cost per seat. In
addition, the SLIM architecture has the following
distinctive characteristics:

• Statelessness. Only transient, cached state (such
as frame buffer content) is permitted in SLIM
consoles; the servers maintain the true state at all
times. Thus, the user is isolated from desktop

failures and may move freely between terminals.
In our implementation, users can simply present
a smart identification card at any desktop, and
the screen is returned to the exact state at which
it was left.

• Low-level interface. The low-level SLIM
protocol is designed to move raw I/O data
between the servers and consoles. Thus, a SLIM
console is merely an I/O multiplexor connected
to a network. The protocol can be implemented
by simply redirecting server I/O to SLIM
consoles over the network at the device driver
level. Thus, applications on the server require no
modification. SLIM consoles are not tied to a
particular display API (e.g. X, Win32, Java
AWT), and so applications running on different
system architectures with different API’s can be
easily integrated onto a single desktop.

• A fixed-function appliance. As it merely
implements a fixed, low-level protocol, a SLIM
console bears more similarity to a
consumer-electronics device than a computer.
There is no software to administer and upgrade;
its simplicity makes it amenable to a low-cost,
single-chip implementation; and finally, a SLIM
console requires no fan and generates no
unwanted noise.

1.2 Contributions of this paper
This paper presents the SLIM design and provides a
quantitative analysis of the two questions critical to the
success of the SLIM architecture: (1) the extent to which
today’s interconnect can support graphical displays of
interactive programs, and (2) the resource sharing
advantage of such a system.

This paper focuses on the workgroup environment
where SLIM consoles are connected to the servers via a
private, commodity network carrying only SLIM protocol
traffic. In particular, our experiments are performed on a
dedicated 100Mbps switched ethernet. SLIM consoles are
intended as replacements for desktop machines, which may
then be moved to the machine room as additional servers.
Installations will still require their usual complement of file
servers and large servers for computational-intensive tasks.
We show that SLIM systems are indistinguishable from
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Figure 1 Major components of the SLIM architecture.
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dedicated desktop units for a wide range of interactive,
GUI-based applications and certain classes of multimedia
programs. However, high-end, display-intensive
applications, such as 3-D modelling, are outside the scope
of the current implementation. Our results indicate that
service to the home over broadband connections would
have acceptable performance, but this approach would not
work well in high-latency, low-bandwidth settings such as
dial-up connections to the internet.

This work was done in cooperation with the research
group at Sun Microsystems Laboratories that developed the
recently announced Sun Ray™ 1 enterprise appliance
product, which is an embodiment of the SLIM architecture.
The prototype of the product was used by the developers
(over 60 engineers, managers, marketing personnel, and
support staff) as their only desktop computing device for
the past year, and they have found their interactive
experience to be indistinguishable from that of working on
high-end, workstation-class machines. This paper attempts
to quantify the interactive performance of the SLIM
architecture scientifically, using the Sun Ray 1 prototype
and product as a basis for the experiments.

While much research went into developing the
methodology and benchmarks for analyzing a system’s
computational aspects (e.g. the SPEC benchmarks), little
has been done in the way of evaluating the interactive
performance of a system. Thus, part of this paper’s
contribution is a methodology for analyzing interactive
systems. The findings of this paper are also useful for
measuring the interactive performance of other systems.

Our methodology is to base the experiments on
modern, highly-interactive applications such as Photoshop
and Netscape, as well as streaming video and 3-D games.
We measure these applications along dimensions that
govern their interactive performance, such as input rates,
display update rates, and bandwidth requirements. Since
interactive jobs require actual users to provide input, we
conducted a set of user studies to collect application
profiles. As such experiments are expensive to run, we
logged all the information related to their network traffic
and resource utilization. In this way, we can investigate
different aspects of the system by post-processing the data,
rather than conducting more user studies. The data
collection requires minimal resources, and thus does not
perturb the results.

A difficult problem we had to address was how to
measure the effect of sharing on interactive performance
and to determine the level of sharing that can be supported
by a system. Our solution is to utilize a yardstick
application, i.e. one with well-defined characteristics. We
quantify the effect of sharing on interactive performance by
measuring the additional latency experienced by the
yardstick application under different loading conditions.

Using this methodology, we evaluated the performance
of the Sun Ray 1 implementation and compared it with the
X protocol. Our results demonstrate that the SLIM protocol
is capable of supporting common, GUI-based applications
with no performance degradation. Surprisingly, the

low-level SLIM protocol does not translate to a greater
bandwidth demand when compared to X. This is because X
was found to only optimize applications with low-end
bandwidth requirements. A Sun Ray 1 console can display
a 720x480 video clip at 20Hz and allows Quake to be
played at a resolution of 480x360. The server, and not the
bandwidth to the console, turns out to be the bottleneck for
these applications. Finally, our experiments show a high
potential for resource sharing. Depending on the
application class, anywhere from 10 to 36 active users can
share a 300MHz processor without any noticeable
degradation of interactive performance. While the network
is often regarded as the major performance bottleneck in
thin-client systems, it can support more active users (by an
order of magnitude) than the processor and memory.

Centralizing all computing resources is not without its
disadvantages, and there are still many opportunities for
further research to combine the best of centralized and
distributed computing. Distributed computing offers users
isolated performance guarantees, higher levels of security
and privacy, user-level customization of the system, higher
tolerance to server and network failures, and off-line
computing. These topics are beyond the scope of this
paper.

The rest of this paper is organized as follows. Section 2
provides an overview of the SLIM architecture. Section 3
describes our experimental methodology, and Sections 4–6
contain the experiments and their results. We begin with a
stand-alone assessment of each architectural component,
followed by a characterization of interactive applications,
including input, display, and communication requirements.
Then, we explore the effects of resource sharing on
interactive performance. Section 7 discusses multimedia
support, and Section 8 compares the SLIM approach with
related systems. We summarize our findings and discuss
future work in Section 9.

2 The SLIM architecture and implementation
In this section we describe the design and rationale for each
of the components in the SLIM architecture: the
interconnect fabric, the SLIM protocol, the consoles, and
finally the servers. In addition, we present the details of the
Sun Ray 1 implementation[12][18] on which our
experiments are based.

2.1 Interconnection fabric
In the SLIM system, raw display updates are transmitted
over the network to display devices. Thus, the SLIM
interconnection fabric (IF) is the centerpiece of the
architecture, and yet it is perhaps the simplest component.
It is defined to be a private communication medium with
dedicated connections between the desktop units and the
servers. Such functionality can easily be provided by
modern, off-the-shelf networking hardware. The Sun Ray 1
supports a 10/100 Base-T ethernet connection, and we used
switched, full-duplex 100Mbps ethernet with Foundry
FastIron Workgroup switches in our experiments.

The IF is defined in this manner so that the system can
make response time guarantees and thereby provide high
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interactive performance, regardless of loading conditions.
Although it is possible to share bandwidth on the IF, care
must be taken to ensure that response time does not suffer
as a result. In addition, there is no need to provide higher
level (e.g., Layer 3 and above) services on the IF, nor the
complex management typically provided on LAN’s.

2.2 The SLIM protocol
The SLIM protocol takes advantage of the fact that the
display tends to change in response to human input, which
is quite slow. Thus, instead of refreshing the monitor across
the IF, we achieve considerable bandwidth savings by
refreshing the display from a local frame buffer and
transmitting only pixel updates. Although the display is
refreshed locally, it represents only soft state which may be
overwritten at any time. The full, persistent contents of the
frame buffer are maintained at the server.

The protocol consists of a small number of messages
for communicating status between desktop and server,
passing keyboard and mouse state, transporting audio data,
and updating the display. The display commands are
outlined in Table 1. They compress pixel data by taking
advantage of the redundancy commonly found in the pixel
values generated by modern applications. For example, the
BITMAP command is useful for encoding text windows.

In contrast, most other remote display protocols (e.g.
X[13] and ICA[3]) send high-level commands (e.g.
“display a character with a given font, using a specific
graphics context”), which require considerable amounts of
state and computation on the desktop unit. By encoding
raw pixel values, the SLIM protocol represents the lowest
common denominator of all rendering API’s. To take
advantage of this protocol, applications can be ported by
simply changing the device drivers in rendering libraries.
For example, we have implemented a virtual device driver
for the X-server, and all X applications can run unchanged.

Although the SLIM protocol is intended to be used
primarily by low-level device drivers, applications may
utilize a software library to transmit display operations in a
domain-specific manner. For example, we have
implemented a video playback utility and a 3-D game by
converting each display frame to YUV format and using
the CSCS command to transmit the data directly to the
console. Although these applications could function as

Command Type Description

SET Set literal pixel values of a rectangular region.

BITMAP

Expand a bitmap to fill a rectangular region with a
(foreground) color where the bitmap contains 1’s
and another (background) color where the bitmap
contains 0’s.

FILL Fill a rectangular region with one pixel value.

COPY
Copy a rectangular region of the frame buffer to
another location.

CSCS
Color-space convert rectangular region from YUV
to RGB with optional bilinear scaling.

Table 1 SLIM protocol display commands.

regular X clients, this approach is more efficient and
produces higher quality results. The library itself contains
packet sequencing commands, methods for obtaining
geometry information and input events, as well as
bandwidth and session management routines.

Another feature of the SLIM protocol is that it does not
require reliable, sequenced packet delivery, whereas other
remote display protocols (e.g. X[13], ICA[3], and
VNC[16]) are typically built on top of a reliable transport
mechanism. All SLIM protocol messages contain unique
identifiers and can be replayed with no ill effects. Since the
preferred IF implementation is a dedicated connection
between console and server, errors and out-of-order packets
are uncommon. Thus, systems using the SLIM protocol can
be highly optimized with respect to error recovery. In the
Sun Ray 1 implementation, SLIM protocol commands are
transmitted via UDP/IP between the servers and consoles,
and its application-specific error recovery scheme allows
for more efficient recovery than packet replay and avoids
“stop and wait” protocols.

2.3 SLIM consoles
A SLIM console is simply a dumb frame buffer. It receives
display primitives, decodes them and hands off the pixels
to the graphics controller. This allows us to make the
desktop unit a cheap, interchangeable, fixed-function
device. It is completely stateless and runs neither an
operating system nor any applications, and the performance
a user experiences is decoupled from the desktop hardware.

The Sun Ray 1 enterprise appliance includes four major
hardware components: CPU, network interface, frame
buffer, and peripheral I/O. It utilizes a low-cost, 100MHz
microSPARC-IIep processor with 8MB of memory, of
which only 2MB are used. The network interface is a
standard 10/100Mbps ethernet controller, and the frame
buffer controller is implemented with the ATI Rage 128
chip (with support for resolutions up to 1280x1024 at a
76Hz refresh rate and 24-bit pixels). A four-port USB hub
is included for attaching peripherals, including keyboard
and mouse. The firmware on the console simply
coordinates the activity between the components, i.e. it
moves data between the network and appropriate devices.

2.4 SLIM servers
In the SLIM architecture, all processing is performed on a
set of server machines which may include a variety of
architectures running any operating system with any
application software. These servers neither replace nor
remove the standard set of servers common today, e.g. file
servers, print servers. They merely consolidate and reduce
the computing resources that were previously on desktops.

We only need to add to these servers a small set of
system services: daemons for authentication, session
management, and remote device management. The
authentication manager is responsible for verifying the
identity of desktop users; the session manager redirects the
I/O for a user’s session to the appropriate console; and the
remote device manager handles peripherals attached to the
system via a SLIM console.
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3 Evaluation methodology
In this section we present our evaluation methodology and
compare it with some related techniques.

3.1 Our approach
Our performance analysis of the system consists of four
steps: (1) establish the basic performance of each
component (the IF, server, and consoles) of the SLIM
system using stand-alone tests, (2) characterize GUI-based
applications by their communication requirements, evaluate
how well the SLIM architecture and protocol support such
applications, and compare the result with that of the X
protocol, (3) evaluate the opportunity for sharing offered
by the SLIM architecture by measuring its interactive
performance under shared load and also by obtaining load
profiles of actual installations of the system, and (4)
measure the limit of SLIM by evaluating its performance
on multimedia applications.

To ensure that our results would have the widest
applicability, we have chosen a set of commonly-used,
GUI-based applications, as listed in Table 2. The set covers
a wide range of resource and display demands. We
instrumented the SLIM protocol driver used by these
applications so as to measure the I/O properties of their
human interface. Measurements were taken by having a
group of 50 people separately run the applications for at
least ten minutes on the Sun Ray 1 prototypes with a very
lightly loaded server. The resulting profiles are thus
indicative of real-world use, and they reflect performance
for individual users in isolation. Depending on the nature
of the experiments and machine availability, we employed
a variety of test configurations during our study, and we
summarize them in Table 3.

To characterize interactive performance under shared
load, we use an indirect method. We create a highly
interactive application with a fixed and regular resource
requirement, and instrument it to measure the response
time its user experiences. We run this application with
different system loads and use its measured latency to
gauge the system’s responsiveness. To simulate multiple
active users we use load generators to “play back” the
resource profiles that were recorded during the user studies.
This approach has the advantage of providing a consistent
metric across systems and applications.

Category Application

Image Processing Adobe Photoshop 3.0

Web Browsing Netscape Communicator 4.02

Word Processing Adobe Frame Maker 5.5

PIM
Personal Information Management tools (e.g.
e-mail, calendar, report forms)

Streaming Video MPEG-II decoder and live video player

3-D Games Quake from id Software

Table 2 Benchmark applications.

3.2 Related techniques
Endoet al. have also attempted to measure the interactive
performance of a general system[7]. They argue for the use
of interactive event latency (i.e. response time) metrics to
evaluate system performance, which is similar to our own
measurement goals. They instrumented Windows NT
versions 3.51 and 4.0 as well as Windows 95 and recorded
processing latency for each input event for a set of
stand-alone applications. The main difficulty they
experienced is that it is impossible to know exactly how
much processing time is needed to service an event without
instrumenting each application. So, they had to rely on
heuristics, which prevented them from studying more than
one simultaneously active application. Our indirect
benchmark technique addresses this problem. In addition,
their approach is aimed at quantifying the interactive
performance of stand-alone desktop systems, such as a PC,
whereas we are interested in evaluating remote display
systems which include a network component.

Another related evaluation technique is capacity
planning to determine the number of users a server can
support[4][19][21]. Such studies are useful for making
resource allocation decisions, but they do not adequately
assess interactive performance. The major problem with
this technique is that it tends to take a long-term,
coarse-grained view of system activity, thereby losing
information on interactive performance. In addition, user
activity is modelled in one of three ways, all of which have
their drawbacks. First, canned scripts or macros are
frequently used, but they have no interactive delays and
thus merely measure throughput. Second, recorded scripts
with interactive delays are used to emulate users, but
timing dependencies between the client (e.g. application)
and server (e.g. the X-server) make such emulations only
valid when the system is in underload. Finally, queueing
theory is used to model users based on average resource
profiles. While this approach has the advantage of being
able to leverage well-known mathematics techniques to
make precise predictions, it cannot model the system in

Experiment
Desktop

Unit

Server

Model Processor(s) RAM Swap OS

IF response
time

Sun Ray 1
prototype

Ultra 2
workstation

1 296MHz
UltraSPARC-II

512MB 1GB Solaris 2.6

x11perf Sun Ray 1
Enterprise
E4500

8 336MHz
UltraSPARC-II

6GB 13GB Solaris 2.7

User studies
Sun Ray 1
prototype

Ultra 2
workstation

2 296MHz
UltraSPARC-II

512MB 1GB Solaris 2.6

Processor
sharing

Simulated
Enterprise
E4500

10 296MHz
UltraSPARC-II

4GB 4.5GB Solaris 2.7

IF sharing
Same as
server

Ultra 2
workstation

2 296MHz
UltraSPARC-II

512MB 1GB Solaris 2.7

Multimedia
tests

Sun Ray 1
Enterprise
E4500

8 336MHz
UltraSPARC-II

6GB 13GB Solaris 2.7

Table 3 Hardware configurations for empirical studies. In
all cases the interconnection fabric was 100Mbps ethernet
with Foundry FastIron Workgroup switches. All machine
hardware is manufactured by Sun Microsystems, Inc.



37

overload. In all cases, our indirect benchmark approach
provides a better assessment.

4 Performance of SLIM components
We begin our analysis of the SLIM system with a
stand-alone characterization of each major component in
the Sun Ray 1 implementation. The results are summarized
in Table 4 and Table 5.

4.1 Response time over the IF
Response time is a major concern for any remote display
architecture. Other approaches, such as X terminals and
WinTerms, process input events locally on the desktop. A
SLIM system, however, must transmit all input events to a
server and then wait for it to send back the results. Humans
begin to notice delays when latency enters the 50–150ms
range[17]. To provide a high-quality interactive experience,
it is crucial that response time remain within these bounds.

Typical local area networks are shared and carry a
variety of traffic. Depending on the current load, latency
can be highly variable, and it is difficult to make response
time guarantees in such an environment. We ensure that
latency remains within the prescribed limits by using a
switched, private network for the interconnection fabric. In
the SLIM architecture each desktop unit has a direct
connection to the servers, and only SLIM protocol traffic is
carried over it. Since there is no interference or other
outside effects, the added latency is exactly the round-trip
delay over the interconnect.

To demonstrate the effectiveness of the SLIM
approach, we wrote a simple server application which
accepts keystrokes from a SLIM console and responds by
sending characters to the console. We measured the total
elapsed time from the instant a keystroke is generated at
the SLIM console to the point at which rendering is
complete and the pixels are guaranteed to be on the display.

With the test setup shown in Table 3, the elapsed time
was found to be 550µs. In contrast, if we type the
characters in an Emacs editor, as opposed to our simple
application, the delay is found to be 3.83ms. Clearly, in
such an environment the communication medium is a
negligible source of latency, and the end result is that the
response time which users experience is effectively
dependent on the processing time on the server. Users are,
therefore, unable to distinguish between the response times
observed from a remote SLIM console and a monitor
connected directly to the server itself.

It is interesting to note that on a stand-alone
workstation, the service time is much higher at 30ms[11].
This is most likely due to buffering of input in the
keyboard device driver so that block data transfers can be

Benchmark Result

Response time over a 100Mbps switched IF 550µs

x11perf / Xmark93 3.834

x11perf / Xmark93 — no display data sent on IF 7.505

Table 4 Stand-alone benchmarks for the Sun Ray 1.

used. Such an optimization is not required for network I/O
since it can be memory-mapped directly into a user’s
address space. Thus, the SLIM implementation can actually
be more responsive than a dedicated workstation.

4.2 Server graphics performance
A key factor in the display performance of any thin-client
system is how well the server can generate the protocol. In
the Sun Ray 1 implementation of the SLIM architecture,
the X-server is responsible for translating between the X
and SLIM protocols and transmitting display update
commands over the IF. To analyze the graphics
performance of a SLIM server, we ran the SPEC GPC
x11perf benchmark.

The x11perf benchmark is older and no longer used,
but it provides a useful indication of performance. We ran
the benchmark on the system shown in Table 3, and we
used the Xmark93 script to generate a single figure of merit
from the results. The X-server achieved a rating of 3.834.
Although the X-server must interpret the commands and
transmit display data to the console, its Xmark value is
quite comparable to values for X terminals, which receive
commands and interpret them locally. For example, the
NEC HMX reported a value of 4.20 to SPEC. If we
eliminate the actual transmission of SLIM protocol
commands, the Xmark performance rating of the X-server
improves to 7.505, indicating that network operations
represent a significant performance factor for this
benchmark.

4.3 Protocol processing on the desktop
The performance-limiting factor on a SLIM console is the
highest sustained rate at which it can process protocol
commands. To determine this limit, we created a server
application which transmits sequences of protocol
commands to a Sun Ray 1 console up to the point where
the terminal cannot process the transmitted commands and
begins to drop them. Once these sustained rates were
determined for various command types and sizes, we
calculated the protocol processing cost in terms of a
constant overhead per command as well as an incremental
cost per pixel. The results are presented in Table 5.

The SET command has a fairly high incremental cost
because pixels must be expanded from packed 3-byte

Protocol Command Startup Cost Cost per Pixel

SET 5000 ns 270 ns

BITMAP 11080 ns 22 ns

FILL 5000 ns 2 ns

COPY 5000 ns 10 ns

CSCS (16 bits/pixel) 24000 ns 205 ns

CSCS (12 bits/pixel) 24000 ns 193 ns

CSCS (8 bits/pixel) 24000 ns 178 ns

CSCS (5 bits/pixel) 24000 ns 150 ns

Table 5 Sun Ray 1 protocol processing costs.
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format to 4-byte quantities suitable for the frame buffer. On
the other hand, the FILL and COPY commands are very
inexpensive. The BITMAP command has a high start-up
cost in order to set the state of the graphics card and must
be amortized over a large number of pixels to be of the
most benefit. The color space convert and scale (CSCS)
command not only has a high start-up cost in order to
configure the graphics controller, but it also has a fairly
high cost per pixel. Still, it is more efficient than the SET
command when fairly large numbers of pixels are sent,
which is usually the case for applications that utilize image
or video data. Also, it provides a significant reduction in
bandwidth, making it worthwhile despite the high
processing overhead.

5 Characterization of interactive applications
The SLIM architecture is based partly on the observation
that the display is typically updated in response to user
activity. We expect humans to have a relatively slow rate of
interaction, and so the display should be quiescent much of
the time, thus requiring modest resources to provide good
performance. To verify this observation, we analyzed the
interaction and display patterns of modern applications
during active use and demonstrate that SLIM can meet
their demands. Most of the results in this section apply to
any architecture, not just SLIM.

To characterize I/O requirements of interactive
programs, we use the GUI-based benchmark applications
listed in Table 2, i.e. Photoshop, Netscape, Frame Maker,
and PIM. As mentioned in Section 3.1, we employ user
trials to gather data during real-world use of the
applications. The data were collected on two identical
systems, as listed in Table 3. Each server had a 1Gbps
uplink from its IF and ten terminals attached to it. The
servers were completely underloaded at all times, and users
had the impression that they were working on a dedicated
workstation. Thus, the gathered traces are indicative of
stand-alone operation.

To obtain these results, we instrumented the SLIM
protocol driver in our implementation of the X-server. All
X and SLIM protocol events were recorded and
timestamped. The logging overhead is not measurably
significant and therefore does not perturb the results. These
logs enable us to determine input and display
characteristics as well as network traffic requirements.

This section is organized as follows. We begin by
analyzing the rates of human interaction, followed by a
characterization of the sizes of display updates induced by
that interaction. Next, we assess the compression efficiency
of the SLIM protocol as well as its ability to scale down to
lower bandwidths. We continue with an analysis of the
protocol processing costs on both the console and server,
and we conclude with a comparison of the overall
bandwidth requirements of the benchmark applications
under the SLIM and X protocols.

5.1 Human input rates
Based on the data gathered in the user studies, we first
analyzed typical rates of human interaction. We defined

input events to be keystrokes and mouse clicks. All input
events are transmitted to the server for processing, and
mouse motion events do cause some display updates for
these applications (e.g. rubberbanding). However, such
motion events are demarcated by a button press and
release, which serve to toggle the drawing mode. In these
cases the motion-induced display updates are more
naturally regarded as a single update caused by the initial
button press. For each of the GUI-based benchmark
application sessions, we calculated the frequency of input
events, and Figure 2 presents the results.

The most important thing to note in this graph is that
human input rates are typically much lower than monitor
refresh rates (which are at least 60Hz). In particular, we see
that for each application, less than 1% of input events
occur with frequency greater than 28Hz. This is important
because it indicates an application-independent “upper
bound” on the rate at which humans generate input. Also,
roughly 70% of all events occur at low frequencies, i.e. less
than 10Hz (or more than 100ms between events). Despite
the diversity of these applications, the interaction patterns
are quite similar. Even so, Netscape and Photoshop tend to
be much less interactive than Frame Maker or PIM, as
indicated by their substantially larger percentage of events
occurring at least one second apart.

5.2 Pixel update rates
Next, we consider the pixel changes induced by human
input. Correlating input events to display updates can only
be done by instrumenting all applications. However, source
code is frequently unavailable, and adding correct
instrumentation to a complex program, such as Netscape, is
prone to errors. Therefore, we use the following heuristic
to estimate the correlation between input events and
display updates: all pixel changes that occur between two
input events are considered to be induced by the first event.
Although this is not true in all cases, it provides a close
enough approximation for the applications in this
experiment over the course of the ten-minute user sessions.

Figure 2 Cumulative distributions of user input event
frequency. Input events are defined as keystrokes and
mouse clicks. Histogram bucket size is 0.005 events/sec.
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To obtain these values, we sum the number of pixels
affected by SLIM display primitives recorded between the
events, and we present the results in Figure 3.

This graph depicts the cumulative distributions of
pixels altered per event. All displays used in these
experiments had a resolution of 1280 by 1024 pixels (i.e.
1.25Mpixels). The important thing to note is that display
updates typically affect only a small fraction of the full
display area. For example, nearly 50% of all input events
for any application cause less than 10Kpixels to be
modified. Further, only 20% of Frame Maker or PIM
events affect more than 10Kpixels, and only 30% of
Netscape or Photoshop events affect more than 50Kpixels.
Also, note that Netscape is more demanding than
Photoshop, but as we will later see, its compressed
bandwidth requirement is much lower.

This result, coupled with the rates of human interaction,
indicate that (for this class of applications) the contents of
the display change only slowly and moderately over time.
This is important because it has a significant effect on the
SLIM architecture, namely that even as display
requirements increase over time, human input rates (and
therefore required update rates) are unlikely to change.
Thus, it is unlikely that SLIM consoles would need to be
upgraded for users of these types of applications.

5.3 Compressed pixel update rates
To assess the effectiveness of the SLIM pixel encoding
techniques, we analyze the compression factor afforded by
each of the SLIM display commands. In addition, we
examine the sizes and network transmission delays of
display updates once they have been compressed with the
SLIM protocol.

In Figure 4 we present the data reduction afforded by
each of the SLIM protocol display commands for the
GUI-based benchmark applications. The important
observation to make is that the protocol provides a factor of
2 compression for Photoshop and a factor of 10 or more for
all other applications. The FILL command is extremely

Figure 3 Cumulative distributions of pixels changed per
user input event. Input events are defined as keystrokes
and mouse clicks. Histogram bucket size is 1 pixel.
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effective, reducing bandwidth by 40%–75% across the
applications. The BITMAP and COPY commands are
utilized to different extents, but they also provide
substantial compression. PIM and Frame Maker enjoy
particularly large savings because they employ a great deal
of bicolor text and scrolling. The SET command represents
pixel data which cannot be compressed via the SLIM
protocol, but only Photoshop has a substantial portion of
such commands. Thus, we can see that the protocol has
done a good job of compressing the pixel data where
possible.

In Figure 5 we present the cumulative distributions of
the amount of SLIM protocol data transmitted per user
input event for the GUI-based benchmark applications.
From this graph we can see that (over a 100Mbps
interconnection fabric) the transmission delays will be
quite small. For example, even a large update of 50KB
incurs only 3.8ms of transmission delay. More specifically,
only 25% of Photoshop and Netscape events require more
than 10KB to encode the display update, and only 5%
require more than 50KB. Frame Maker and PIM have even
lower requirements; only 17% of events require more than
1KB for display updates, and only 2% require more than
10KB.

5.4 Scalability of the SLIM protocol
Although the SLIM protocol can comfortably
accommodate the GUI-based benchmark applications with
a low-latency, 100Mbps interconnection fabric, it is useful
to consider how well it would operate over lower
bandwidth connections. To obtain a sense of how
interactive performance would be affected, we modified the
X-server to restrict the bandwidth it could utilize, and then
we ran our normal window sessions in the constrained
setting.

At 10Mbps users could not distinguish any difference
from operating at 100Mbps. To simulate a high-speed
home connection, such as a cable modem or DSL, we
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Figure 4 Efficiency of SLIM protocol display commands.
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and the right-hand bar depicts use of the SLIM protocol.
CSCS is not used in these benchmark applications.
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tested the system with 1–2Mbps bandwidth limits.
Performance was quite good, with only occasional hiccups
when large regions had to be displayed. Finally, to simulate
low-speed home connections such as ISDN or telephone
modems, we tested the system with 56–128Kbps
bandwidth limits. We found performance to be extremely
poor. It is possible to accomplish tasks such as reading
e-mail or editing text, but the experience is painful. Of
course, the SLIM protocol was not designed for such
low-bandwidth connections, and optimizations like header
compression and batching of command packets could have
a dramatic effect.

To quantify this experience, we used the protocol logs
from the resource profiles mentioned above and simulated
transmitting the packets over lower bandwidth connections.
We chose Netscape as a representative example and
recorded the packet transmission delays in excess of the
delays experienced at 100Mbps. Figure 6 depicts the
cumulative distributions for a variety of bandwidth levels.

At 10Mbps the added packet delays are always less
than 5ms, which is well below the 50–150ms threshold of
human tolerance. The added packet delays at 1–2Mbps
approach 50ms, entering the realm where humans would
notice but consider acceptable. However, at 56–128Kbps
we see a sharp increase in packet delays beyond 100ms,
indicating that response time would be unacceptably high.

5.5 SLIM protocol processing costs
A key goal of SLIM is to minimize the resources on the
desktop. However, reading protocol commands from the
network and decoding them for display incurs processing
overhead. The CPU is mostly idle until a display command
arrives, followed by a burst of activity which entirely
consumes the processor. To analyze this cost, we monitored
the service time on the Sun Ray 1 prototype console for the
SLIM protocol commands sent as part of each display
update during the user studies described above. In Figure 7

Figure 5 Cumulative distributions of SLIM protocol data
transmitted per user input event. Input events are defined
as keystrokes and mouse clicks, and the histogram bucket
size is 1 byte.
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we report the cumulative distributions of these display
latencies.

The important thing to note in this graph is that
response time is almost always below the threshold of
perception, i.e. in 80% of all cases service time is below
50ms. A small fraction of service times exceed 100ms and
may be noticeable, but note from Figure 3 that there are
correspondingly large display updates, for which human
tolerance is typically higher.

The total service time for a display update is the
combination of these console service times and the network
transmission delays discussed in Section 5.3. As we can
see, the network adds little extra cost, and the total service
time is quite short. Thus, we conclude that the simple,
low-performance microSPARC-IIep is more than adequate
to meet the demands of these applications. In fact, an even
lighter weight implementation could possibly be used, and
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Figure 6 Cumulative distributions of added packet delays
for Netscape traces of SLIM protocol commands captured
at 100Mbps and retransmitted on simulated networks with
lower bandwidths. Bandwidth is averaged over 50ms
intervals, and the histogram bucket size is 0.01ms.
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Figure 7 Cumulative distributions of display update
service times on the Sun Ray 1 prototype console.
Histogram bucket size is 0.1ms.
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a combined processor and memory implementation of the
SLIM console could provide exceptional performance at an
extremely low cost point.

Finally, although we have focussed on the cost of
decoding protocol messages on the desktop, the server also
incurs overhead due to encoding pixel values and
generating protocol messages. However, this overhead is
extremely low, accounting for a mere 1.7% of the
X-server’s total execution time when servicing the
benchmark applications. Thus, we conclude that the added
cost of protocol processing to send the pixel updates is
marginal compared to the savings in bandwidth it affords.

5.6 Average bandwidth requirements
To summarize the results from this section and put them in
perspective in relation to other thin-client architectures, we
calculated the network bandwidth requirements for our set
of benchmark applications under three protocols. In Figure
8 we present the average network bandwidth for each
application using the X protocol, the SLIM protocol, and a
simple protocol in which all the changed pixels are
transmitted (labelled “Raw Pixels” in the chart).

There are two important points to observe in this graph.
First, it is quite interesting to note that the X and SLIM
protocols have similar bandwidth requirements. X performs
slightly better on the Frame Maker and PIM applications
which were, in fact, the classes of programs for which X
was optimized. However, this is insignificant because the
bandwidth requirements of these programs are so low. On
the other hand, Photoshop and Netscape represent a new
class of applications in which image display is the common
operation, and they require an order of magnitude more
bandwidth. In these cases, SLIM outperforms X, and the
absolute size of the bandwidth differential is substantially
larger than for the other applications. We thus conclude that
the SLIM protocol is at least competitive with X in terms
of bandwidth requirements while providing a much
simpler, lower-level interface which requires substantially
less computing resources.

Figure 8 Average bandwidth consumed by the interactive
benchmark applications under the X, SLIM, and raw pixel
update protocols.
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The second item to note is that the overall bandwidth
requirements are quite small. We have already seen that
network-induced delays do not adversely affect interactive
performance, and this result demonstrates that network
occupancy is also low. This implies that there is substantial
opportunity to share the interconnection fabric which we
discuss in the following section.

6 Interactive performance for multiple users
The key advantage of SLIM and other thin-client
architectures is the savings provided by sharing
computational resources. In this section we explore how
interactive performance changes when there is interference
from other simultaneously active users.

Many engineering workgroups have servers configured
to support the requirements of their demanding
computational activities, and we will continue to have
these compute servers for executing long-running jobs in a
SLIM system. Here we are interested mainly in the sharing
of machines for running those applications typically
executed on our desktops.

6.1 Sharing the server processor
We want to determine how many active users a server can
support while still providing good interactive performance.
As discussed in Section 3, this is difficult to determine and
is a subjective assessment that may be different for each
individual. Because human perception is relatively slow,
users can tolerate fairly large response times. Thus, a
processor can be oversubscribed while still providing good
interactive performance. To account for this type of
scenario, we must model the system in overload. However,
large-scale user studies are impractical, and script-based
techniques will fail due to timing constraints that cannot be
met.

Our approach is to use a load generator to simulate
active users. In addition to the traffic logs mentioned
above, we supply the load generator with detailed
per-process resource usage information, including CPU and
memory utilization. These resource profiles were collected
during the user studies with a tool that samples the number
of CPU cycles consumed and physical memory occupied
by each process at five-second intervals. This tool is similar
to that presented in [20], and its overhead per analyzed
process was measured and found to be insignificant. The
load generator reads a resource usage profile and mimics
its consumption of CPU, memory, network, disk and other
resources over time. It does not replay the recorded X
commands, SLIM commands, or other high-level
operations. It merely utilizes the same quantity of resources
in each time interval as the original application did. In this
way, we can produce the correct level of background load
even when the resources are oversubscribed.

While the simulated user loads are running, we use an
application with well-known properties and requirements
as a yardstick to gauge interactive performance. This
application repeatedly consumes 30ms of dedicated CPU
time to simulate event processing, followed by 150ms of
“think time.” We defined the application in this way so that
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it would be more demanding than any other interactive
application. In particular, it requires nearly 17% of the
server, which is greater than the average CPU requirement
for Photoshop (14%), Netscape (13%), Frame Maker (8%),
and PIM (3%). Also, the interrupt rate is equivalent to a
fast typist and is well beyond the sustained rates for any of
our benchmarks. When the system becomes overutilized,
the amount of real time needed to process the simulated
event will exceed 30ms. We measure the value of this
added delay as we increase the number of simulated active
users.

The experimental setup is listed in Table 3, and the
server had a single processor enabled. We modelled both
CPU and memory loads for the active users, and the results
are presented in Figure 9. To put them in perspective, we
ran the GUI-based, benchmark applications ourselves
under the experimental conditions and found that when the
added delay on the yardstick application reached around
100ms, interactive performance was noticeably poor. As
we can see from the average CPU requirements listed
above, the processor on the server is significantly
oversubscribed at this point. This is important because it
demonstrates that a system can provide good performance
for interactive applications even when the processor is fully
utilized. In particular, we could tolerate up to about 10-12
simultaneously active Photoshop users, 12–14 Netscape
users, 16–18 Frame Maker users, or 34–36 PIM users on
the server (in addition to the yardstick application). Of
course, other people will have different tolerance limits and
application mixes, but this experiment helps quantify how
well a system will perform in a multi-user environment.

Another issue we wanted to investigate was how well
the system would scale as processors were added to the
server. As the number of CPU’s increases, contention for
shared caches and memory bus bandwidth also increases,
potentially reducing the scalability of the system. So, we
chose Netscape as a representative application and used the
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Figure 9 Average latency added to 30ms processing time
for events occurring at 150ms intervals as the number of
active users increases (1 active CPU). User processor
loads are generated with a trace-driven simulator which
“plays back” previously recorded resource usage profiles.

same setup described above. We varied the number of
active CPU’s in the system from 1 to 8, with a
corresponding increase in the number of active users.
Figure 10 presents the results, which we normalized by
reporting the number of active users per processor.

We can see from the graph that the system scales quite
well with no obvious contention effects. In addition, note
that when the system has a relatively smaller number of
active users per CPU, configurations with more processors
outperform those with less. The reason is that a
multiprocessor system is better able to find a free CPU
when one is required.

6.2 Sharing the interconnection fabric
Although the preferred embodiment of the SLIM
interconnection fabric is a dedicated private network,
significant reductions in cost are possible by sharing
bandwidth on the IF. To analyze the cost of sharing the
SLIM interconnection fabric, we again used the load
generator discussed above to play back the network portion
of the resource profiles in order to simulate active users on
the IF. While the background traffic is being generated, we
used an application with well-known properties as a
yardstick to gauge interactive performance. This
application simulates a highly interactive user with sizeable
display updates by repeatedly sending a 64B command
packet to the server followed by a 1200B response and then
150ms of “think time.” We measure the average round-trip
packet delay as the number of active users is increased.

The experimental configuration is listed in Table 3. We
used three workstations: one to act as a SLIM console, one
to serve as a sink for background SLIM traffic, and one to
act as a server. The machine which played the role of an
active console executed the application described above
and recorded round-trip packet delays for the network
traffic. The machine acting as a server used the load
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Figure 10 Average latency added to 30ms processing time
for events occurring at 150ms intervals as the number of
active Netscape users increases (1–8 active CPU’s). User
processor loads are generated with a trace-driven simulator
which “plays back” previously recorded resource usage
profiles.
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generator to send background SLIM traffic to the sink host
and responded to incoming packets from the simulated
console. All workstations were connected to a network
switch. In this way, the link to the server was shared by
both the measured and background traffic, making it the
point of contention in the system. Figure 11 presents the
results for our benchmark applications.

To put these results in perspective, we again ran the
benchmark applications for ourselves under the
experimental conditions. We found the system to be quite
usable until packet delays for the test application hit about
30ms, at which point response time suffered greatly and
packet loss became a problem. Thus, we could tolerate up
to about 130–140 simultaneously active Photoshop or
Netscape users, or about 400–450 Frame Maker or PIM
users on a shared network. This is interesting because it
demonstrates that the network is a less critical resource
than the processor, memory, or swap space on the server.

6.3 Case studies
Since the Sun Ray 1 is a commercial product, we have had
the opportunity to monitor its use in real-world settings. At
two installations we used standard resource monitoring
tools (e.g. ps, netstat, vmstat) to collect performance data
continuously over the course of several days. Snapshots of
aggregate CPU load, aggregate network bandwidth usage,
and number of active users were taken every 10 seconds
throughout the day. For each site, Figure 12 presents the
day-long profile which has the highest average processor
load and the highest number of active users. We report the
maximum value recorded in each five-minute period.

The first graph presents a load profile from a university
lab which was previously supported by a collection of X
terminals. Students work on programming assignments and
other normal computing tasks, and major applications
include MatLab, StarOffice, Netscape, e-mail and
compilers. The server is a Sun Enterprise E250 with two
400MHz UltraSPARC-II CPU’s, 2GB of RAM, a 1Gbps
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Figure 11 Network round-trip latency for 64B upstream
packet followed by 1200B downstream packet. User traffic
loads are generated with a trace-driven simulator which
“plays back” previously recorded resource usage profiles.

link to the IF, 13GB of swap space, and the Solaris 2.7
operating system. There are 50 terminals attached to the
server, and at the busiest part of the day many are in use
(Total Users in the graph). However, far fewer users are
actively running jobs on the system (Active Users in the
graph). Both processors reach full utilization during peak
periods. However, aggregate network load is below 5Mbps,
making the 1Gbps uplink massive overkill.

The second graph presents a load profile from our
computer product development team. Engineers and other
staff use CAD tools for hardware design, text editors and
compilers for software development, as well as Netscape,
StarOffice, Citrix MetaFrame, e-mail, calendar, etc. for
office productivity. The server is a Sun Enterprise E4500
with eight 336MHz UltraSPARC-II CPU’s, 6GB of RAM,
a 1Gbps link to the IF, 13GB of swap space., and the
Solaris 2.7 operating system. Across two buildings, there
are over 100 terminals attached to the server, and many are
in constant use (with a smaller fraction in active use).
Users in this group leave their sessions active and
frequently utilize the mobility feature via the smart card.
Again, aggregate network load is below 5Mbps. The server
processors are never fully occupied, and there is certainly
sufficient headroom to scale down the server. A major

Figure 12 Day-long plot of aggregate CPU utilization,
network bandwidth, and active users for real-world
installations of the Sun Ray 1 system.
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benefit of this system is the reduction of administration
cost from the more than 100 workstations previously used
by this group to the single, shared server.

7 Multimedia applications
Real-time applications, such as video or 3D-rendered
games, represent an important class of applications that
place high demands on system resources in order to
provide desired performance. As such, these kinds of
applications have traditionally been viewed as totally
unsuitable for remote display systems; their bandwidth and
processing requirements are expected to be prohibitive. In
addition, these kinds of applications differ from the ones
studied previously because they have updates that occur at
high rates, affect many pixels, and are not tied to human
interaction. Thus, they represent the worst-case scenario for
a SLIM system.

Multimedia applications typically render directly to the
frame buffer in order to maximize performance. To achieve
the same effect in a SLIM system, the application must
utilize the SLIM protocol directly. This means that there is
a porting cost and implementation overhead, and as we will
see below, the added overhead can be quite high. However,
it is fair to point out that reducing the resolution of the
media streams and scaling them locally on the SLIM
console reduces this extra cost to a manageable level,
thereby enabling applications to achieve display rates well
beyond human tolerance limits with little or no noticeable
degradation.

Also, because SLIM desktop units have so little
resources, we must ensure that multimedia applications do
not starve other applications for protocol processing service
on the console. Therefore, we implemented a simple
network bandwidth allocation mechanism on the Sun Ray 1
console. Under this scheme applications (e.g. the X-server
or Quake) executing on possibly different servers make
bandwidth requests to the display console based on their
past needs. These requests are transparent to the application
programmer, as they are made by the X-server on behalf of
X applications and by the video library (see Section 2.2) on
behalf of multimedia programs. The console sorts the
requests in ascending order and grants them one at a time
until a request exceeds the available bandwidth, at which
point all remaining requests are granted a fair share of the
unallocated bandwidth. In this way, high-demand
multimedia applications can run while other traditional
applications still receive good interactive service from the
console.

To analyze SLIM’s suitability for these applications, we
experimented with three multimedia applications: an
MPEG-II player, an NTSC video player, and Quake, an
interactive 3-D game from id Software. Using the software
library mentioned in Section 2.2, we enhanced these
applications with the ability to display directly on Sun Ray
1 consoles via the SLIM protocol. The applications
transmit synchronized audio, and they have similar
real-time quality of service demands. More specifically,
humans require a frame rate of at least 24Hz to achieve

smooth display and proper motion rendition. Quake has the
additional requirement of timely user interaction.

Although Quake is a 3-D game, it does not use standard
3-D interfaces, such as OpenGL. Thus, we use it more to
assess interactive game performance than to analyze
rendering performance for 3-D graphics. Since Sun Ray 1
consoles have no hardware acceleration for 3-D operations,
3-D graphics performance is directly related to the speed of
the server processor anyway.

Using the test configuration listed in Table 3, we
demonstrate that despite substantial resource requirements,
even high-demand applications are supported by the SLIM
architecture. In particular, the bandwidth and processing
capabilities of the consoles are more than sufficient to meet
the demands of these applications, and it turns out that
server performance is the primary bottleneck. Of course, it
is important to note that in all these cases, a 10Mbps
interconnection fabric would not be able to provide
adequate performance.

7.1 MPEG-II player
Support was added to Sun’s ShowMeTV video player to
utilize the SLIM protocol, and we use it for stored video
playback. In this experiment, we selected an MPEG-II clip
with a resolution of 720x480 and used the CSCS command
with 6 bits/pixel compression. We extract frames from the
MPEG-II codec at the point where they are in YUV format,
and the SLIM video library is then used to transmit them to
the desktop.

This application nearly consumes an entire CPU. Disk
I/O and video decompression on the server are the
performance-limiting factors. The displayed frame rate was
fairly uniform at 20Hz (roughly 40Mbps), which is quite
good, given the resources available on the desktop. Still,
full frame rate (30Hz for this clip) can be achieved by
sending every other line and scaling at the desktop.
Degradation is not noticeable for the most part, and the
bandwidth is reduced by half.

7.2 Live NTSC video
To test live video, we used a custom application which
obtains JPEG-compressed NTSC fields from a video
capture card, decompresses them up to the point where
YUV data are available, and transmits them to the desktop
via the CSCS command. Since NTSC is interlaced, we can
capture only 640x240 fields and scale up to full size
(640x480).

The decompression operation fully consumes the
processor, and this application is not multi-threaded. Thus,
the server CPU is the performance-limiting factor, and the
displayed frame rate ranges from 16Hz to 20Hz (roughly
19–23Mbps), depending on characteristics of the video. To
create a situation in which protocol processing on the
console is the bottleneck, we simulate 4-way
application-level parallelism by simultaneously executing
four half-size (320x240) players. In this case, we observe a
display frame rate of 25–28Hz (59–66Mbps). Thus, if we
were to multi-thread this application, it would display
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full-size video which is quite watchable (at the cost of four
heavily-utilized CPU’s).

7.3 Quake
We use Quake as a representative example of 3D-rendered
games. Running it under X produces poor results, and the
key to increasing performance would be to use the YUV
color space directly in the application. However, we only
had access to the code which puts pixels on the display,
and that would be a costly porting operation anyway. So,
the next best option is to add a translation layer which
converts frames to a format suitable for use by the SLIM
CSCS protocol command.

When the game engine renders a frame, it produces
8-bit, indexed-color pixels. Our translation calculates a
YUV lookup table based on the RGB colormap. To display
a frame, we convert the 8-bit pixel values to 5-bit YUV
data via table lookup and color component subsampling.
Then, the frame is transmitted to a Sun Ray 1 console.

When we run Quake at a resolution of 640x480, the
display rate ranges from 18Hz to 21Hz (roughly
22–26Mbp), depending on scene complexity. Although this
is good performance, we found the interactive experience
to be somewhat lacking. However, if we run Quake at 3/4
resolution (480x360), display rate improves to 28–34Hz
(roughly 20–24Mbps), which we found to be playable
despite occasional hiccups. The performance-limiting
factor in these cases was the CPU, due almost exclusively
to the high cost of translation. For example, at the 640x480
resolution it took roughly 30ms/frame to do the YUV
conversion and 13ms/frame to transmit the data, which
means that the upper bound on display rate was only about
23Hz.

To further improve performance, we could parallelize
the application. Because we had limited access to source
code, we simulated the effect of parallelizing an instance of
the game at full resolution (640x480) by running four
instances at 320x240 resolution, thereby creating a
situation in which the limiting factor was the protocol
processing performance of the desktop unit. With this setup
we achieved frame rates ranging from 37Hz to 40Hz
(roughly 46–50Mbps), which we found to be smooth and
responsive with no hiccups or other noticeable effects.

8 Related work
There are a wide range of lightweight computing devices
that have been developed, including network computers,
JavaStations, the Plan 9 Gnot, and network PC’s. These
machines all differ from the SLIM desktop unit in a
significant manner. Although they are low-resource
implementations, they are full-fledged computers executing
an operating system and windowing software. In this
section, we compare SLIM to other thin-client systems and
discuss how they differ.

8.1 X window system
Because we use X-based applications in our studies, we are
able to make the most direct comparison with the X
window system. The X protocol[13] was designed to be

fairly high-level, with the goal of minimizing bandwidth by
expending computing resources locally. SLIM, on the other
hand, is designed to minimize local processing, at the cost
of a potentially higher bandwidth overhead. Our results in
Figure 8, however, show that both approaches are highly
competitive. That is, while the SLIM protocol is much
simpler and can be serviced by a low-cost processor, it
requires roughly the same bandwidth as X for most
applications. For higher-bandwidth, image-based
applications, SLIM has a significant advantage over X.

In addition, X terminals are not well-suited to running
multimedia applications. Under the X protocol, each frame
would have to be transmitted using anXPutImage
command with no compression possible, i.e. a full 24 bits
must be transmitted for each pixel. The situation is
different for SLIM. In the worst case, it is the same as X,
but typically, some form of compression is possible. If the
SLIM CSCS command is not being used, there is still
opportunity for finding redundancy among pixels which
can reduce bandwidth somewhat. Using the CSCS
command, at most 16 bits are required per pixel (a 33%
bandwidth reduction) and compression up to 5 bits per
pixel (an 88% bandwidth reduction) is possible by altering
the color-space conversion parameters. If video is scaled to
a higher resolution, the server must perform the operation
prior to sending the image to an X terminal, whereas the
Sun Ray 1 console can do it locally at substantial savings
in bandwidth. For example, transmitting a half-size video
stream to a SLIM console and scaling it to full-size would
require roughly 18Mbps of bandwidth. However, over
105Mbps of bandwidth would be needed under X. Thus,
SLIM and X are extremely competitive at low bandwidth,
while SLIM provides substantial savings on higher
bandwidth operations, where its impact is much more
significant on overall performance.

8.2 Windows-based terminals
Windows-based terminals (WinTerms) employ the Citrix
ICA protocol[3] or the Microsoft RDP protocol[5][10] to
communicate with a server running Windows NT, Terminal
Server Edition. These protocols are quite similar in nature
to X but are tied to the Windows GUI API. On the other
hand, the low-level SLIM protocol has no such bias and
can be used by a system with any rendering API. Another
difference between them and the SLIM protocol is that they
are highly optimized for low-bandwidth connections. This
is accomplished via a variety of techniques, including
Windows object-specific compression strategies (e.g.
run-length coding of bitmaps), caching of Windows objects
and state at the terminal, and maintaining backing store at
the terminal. Because the resources included in the
terminals directly determine the performance and
bandwidth savings possible, these types of systems can
have expensive terminals which constantly require
upgrades to improve performance. In addition, multimedia
capabilities are limited, but because the protocols are
extendable, extra support could be added.
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8.3 VNC
Like SLIM, the Virtual Network Computing[15][16]
(VNC) architecture from Olivetti Research uses a protocol
which is independent of any operating system, windowing
system, and application. The protocol commands are
similar to SLIM, but VNC is designed to access the user’s
desktop environment from any network connection through
a variety of viewers, including a web browser over the
internet. The Sun Ray 1 implementation, however, is
limited to operating in a workgroup setting with a direct
connection to the server.

The key difference between the two approaches,
though, is the manner in which the display is updated. With
the Sun Ray 1, updates are transmitted from the server to
the consoles as they occur in response to application
activity. VNC, on the other hand, uses a client-demand
approach. Depending on available bandwidth, the VNC
viewer periodically requests the current state of the frame
buffer. The server responds by transmitting all the pixels
that have changed since the last request. This helps the
system scale to various bandwidth levels, but has the
drawback of larger demands on the server in the form of
either maintaining complex state or calculating a large
delta between frame buffer states. In either case, our
experience with the system is that even in low-latency,
high-bandwidth environments, VNC is fairly sluggish. In
addition, VNC includes no support for multimedia
applications but leaves open the possibility of including
specialized compression techniques in the future.

8.4 Other remote-display approaches
The MaxStation[9] from MaxSpeed Corporation is a
terminal-based system which uses peripheral cards
installed in a PC server machine to transmit video directly
to attached consoles. Monitors are refreshed over a 64Mbps
connection, but the bandwidth limit restricts the maximum
resolution that can be supported to 1024x768 8-bit pixels.
The use of expansion cards to create dedicated connections
is much less flexible and more difficult to maintain than a
commodity switched network, like the Sun Ray 1 uses for
the IF.

The Desk Area Network[2][8] (DAN) is a multimedia
workstation architecture which uses a high-speed ATM
network as the internal interconnect. The frame buffer is a
network-attached device which reads and displays pixel
tiles. The frame buffer is similar to a Sun Ray 1 desktop
unit, but the DAN architecture was designed as a
dedicated, stand-alone workstation with sufficient internal
bandwidth to transmit high-volume multimedia data (such
as video streams) between system components.

9 Conclusions and future work
The SLIM system is a new thin-client architecture. The
desktop unit is a stateless, low-cost, fixed-function device
that is not much more intelligent than a frame buffer. It
requires no system administration and no software or
hardware updates. Different applications and operating
systems can be ported to display on a SLIM console by

simply adding a virtual device driver for the SLIM protocol
to their rendering API’s. In addition, the communication
requirements are modest and can be supported by
commodity interconnection technology.

This paper makes three important contributions. First,
we developed an evaluation methodology to characterize
interactive performance of modern systems. Second, we
characterized the I/O properties of real-world, interactive
applications executing in a thin-client environment. Finally,
via a set of experiments on an actual implementation of the
SLIM system, we have shown that it is feasible to create an
implementation which provides excellent quality of
service. More specifically, we demonstrated the following:

• Using a dedicated network ensures that added
round-trip latency (less than 550µs) between the
desktop and the remote server is so low that it
cannot be distinguished from sitting directly at
the console local to the server.

• By only transmitting encoded pixel updates,
network traffic requirements of common,
interactive programs are well within the
capabilities of modern 100Mbps technology. In
fact, 10Mbps is more than adequate, and even
1Mbps provides reasonable performance.

• The low-level SLIM protocol is surprisingly
effective, requiring a factor of 2–10 less
bandwidth to encode display updates than
sending the raw pixel data. Further, its
bandwidth demands are not much different from
the X protocol’s, i.e. the simplicity of the
protocol did not result in the expected increase in
bandwidth cost.

• Yardstick applications quantified multi-user
interactive performance and showed that
substantial amounts of sharing are possible, e.g.
the yardstick application and10 to 36 other active
users can share a processor with no noticeable
degradation. Network sharing is an order of
magnitude larger than processor sharing.

• The consoles are more than adequate to support
even high-demand multimedia applications, and
server performance turns out to be the main
bottleneck. High-resolution streaming video and
Quake can be played at rates which offer a high
fidelity user experience.

Still, many research topics remain to be addressed
before we can realize the full potential of an ultra-thin
architecture like SLIM. Further research is necessary to
provide interactive performance guarantees in a shared
environment. As we move to a model where there are a
large number of users sharing a large number of servers,
we may need to rethink the design of the operating system
to create a truly scalable, secure, heterogeneous system that
fully exploits the mobility and resource sharing ability in
the architecture.
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