Results 1 
2 of
2
Graphical models, exponential families, and variational inference
, 2008
"... The formalism of probabilistic graphical models provides a unifying framework for capturing complex dependencies among random variables, and building largescale multivariate statistical models. Graphical models have become a focus of research in many statistical, computational and mathematical fiel ..."
Abstract

Cited by 817 (28 self)
 Add to MetaCart
The formalism of probabilistic graphical models provides a unifying framework for capturing complex dependencies among random variables, and building largescale multivariate statistical models. Graphical models have become a focus of research in many statistical, computational and mathematical fields, including bioinformatics, communication theory, statistical physics, combinatorial optimization, signal and image processing, information retrieval and statistical machine learning. Many problems that arise in specific instances — including the key problems of computing marginals and modes of probability distributions — are best studied in the general setting. Working with exponential family representations, and exploiting the conjugate duality between the cumulant function and the entropy for exponential families, we develop general variational representations of the problems of computing likelihoods, marginal probabilities and most probable configurations. We describe how a wide varietyof algorithms — among them sumproduct, cluster variational methods, expectationpropagation, mean field methods, maxproduct and linear programming relaxation, as well as conic programming relaxations — can all be understood in terms of exact or approximate forms of these variational representations. The variational approach provides a complementary alternative to Markov chain Monte Carlo as a general source of approximation methods for inference in largescale statistical models.
Linear Response Formula and Generalized Belief Propagation for Probabilistic Inference
"... Linear response formulas for the generalized belief propagation in approximate inference are derived by using a cluster variation method. The linear response formulas can give us the marginal probability between every pair of nodes and we obtain good accuracy in some examples of practical probabilis ..."
Abstract
 Add to MetaCart
Linear response formulas for the generalized belief propagation in approximate inference are derived by using a cluster variation method. The linear response formulas can give us the marginal probability between every pair of nodes and we obtain good accuracy in some examples of practical probabilistic inferences. 1