Results 1 
8 of
8
FURSTENBERG ENTROPY REALIZATIONS FOR VIRTUALLY FREE GROUPS AND LAMPLIGHTER GROUPS
"... Abstract. Let (G, µ) be a discrete group with a generating probability measure. Nevo shows that if G has property (T) then there exists an ε> 0 such that the Furstenberg entropy of any (G, µ)stationary space is either zero or larger than ε. Virtually free groups, such as SL2(Z), do not have prop ..."
Abstract

Cited by 7 (6 self)
 Add to MetaCart
(Show Context)
Abstract. Let (G, µ) be a discrete group with a generating probability measure. Nevo shows that if G has property (T) then there exists an ε> 0 such that the Furstenberg entropy of any (G, µ)stationary space is either zero or larger than ε. Virtually free groups, such as SL2(Z), do not have property (T). For these groups, we construct stationary actions with arbitrarily small, positive entropy. This construction involves building and lifting spaces of lamplighter groups. For some classical lamplighters, these spaces realize a dense set of entropies
INVARIANT RANDOM SUBGROUPS OF STRICTLY DIAGONAL LIMITS OF FINITE SYMMETRIC GROUPS
"... Abstract. We classify the ergodic invariant random subgroups of strictly diagonal limits of finite symmetric groups. 1. ..."
Abstract

Cited by 3 (0 self)
 Add to MetaCart
(Show Context)
Abstract. We classify the ergodic invariant random subgroups of strictly diagonal limits of finite symmetric groups. 1.
FURSTENBERG ENTROPY REALIZATIONS FOR VIRTUALLY FREE GROUPS AND LAMPLIGHTER GROUPS
, 1210
"... Abstract. Let (G,µ) be a discrete group with a generating probability measure. Nevo shows that if G has property (T) then there exists an ε> 0 such that the Furstenberg entropy of any (G,µ)stationary space is either zero or larger than ε. Virtually free groups, such as SL2(Z), do not have proper ..."
Abstract
 Add to MetaCart
(Show Context)
Abstract. Let (G,µ) be a discrete group with a generating probability measure. Nevo shows that if G has property (T) then there exists an ε> 0 such that the Furstenberg entropy of any (G,µ)stationary space is either zero or larger than ε. Virtually free groups, such as SL2(Z), do not have property (T). For these groups, we construct stationary actions with arbitrarilysmall, positive entropy. This construction involves building and lifting spaces of lamplighter groups. For some classical lamplighters, these spaces realize a dense set of entropies
4 INVARIANT RANDOM SUBGROUPS OF STRICTLY DIAGONAL LIMITS OF FINITE SYMMETRIC GROUPS
"... ar ..."
(Show Context)