Results

**1 - 2**of**2**### Hawkes Processes with Stochastic Excitations

"... Abstract We propose an extension to Hawkes processes by treating the levels of self-excitation as a stochastic differential equation. Our new point process allows better approximation in application domains where events and intensities accelerate each other with correlated levels of contagion. We g ..."

Abstract
- Add to MetaCart

(Show Context)
Abstract We propose an extension to Hawkes processes by treating the levels of self-excitation as a stochastic differential equation. Our new point process allows better approximation in application domains where events and intensities accelerate each other with correlated levels of contagion. We generalize a recent algorithm for simulating draws from Hawkes processes whose levels of excitation are stochastic processes, and propose a hybrid Markov chain Monte Carlo approach for model fitting. Our sampling procedure scales linearly with the number of required events and does not require stationarity of the point process. A modular inference procedure consisting of a combination between Gibbs and Metropolis Hastings steps is put forward. We recover expectation maximization as a special case. Our general approach is illustrated for contagion following geometric Brownian motion and exponential Langevin dynamics.

### Learning and Forecasting Opinion Dynamics in Social Networks

"... Abstract Social media and social networking sites have become a global pinboard for exposition and discussion of news, topics, and ideas, where social media users often update their opinions about a particular topic by learning from the opinions shared by their friends. In this context, can we lear ..."

Abstract
- Add to MetaCart

(Show Context)
Abstract Social media and social networking sites have become a global pinboard for exposition and discussion of news, topics, and ideas, where social media users often update their opinions about a particular topic by learning from the opinions shared by their friends. In this context, can we learn a data-driven model of opinion dynamics that is able to accurately forecast users' opinions? In this paper, we introduce SLANT, a probabilistic modeling framework of opinion dynamics, which represents users' opinions over time by means of marked jump diffusion stochastic differential equations, and allows for efficient model simulation and parameter estimation from historical fine grained event data. We then leverage our framework to derive a set of efficient predictive formulas for opinion forecasting and identify conditions under which opinions converge to a steady state. Experiments on data gathered from Twitter show that our model provides a good fit to the data and our formulas achieve more accurate forecasting than alternatives.