Results 11 - 20
of
1,862
Estimating the Support of a High-Dimensional Distribution
, 1999
"... Suppose you are given some dataset drawn from an underlying probability distribution P and you want to estimate a "simple" subset S of input space such that the probability that a test point drawn from P lies outside of S is bounded by some a priori specified between 0 and 1. We propo ..."
Abstract
-
Cited by 783 (29 self)
- Add to MetaCart
Suppose you are given some dataset drawn from an underlying probability distribution P and you want to estimate a "simple" subset S of input space such that the probability that a test point drawn from P lies outside of S is bounded by some a priori specified between 0 and 1. We propose a method to approach this problem by trying to estimate a function f which is positive on S and negative on the complement. The functional form of f is given by a kernel expansion in terms of a potentially small subset of the training data; it is regularized by controlling the length of the weight vector in an associated feature space. The expansion coefficients are found by solving a quadratic programming problem, which we do by carrying out sequential optimization over pairs of input patterns. We also provide a preliminary theoretical analysis of the statistical performance of our algorithm. The algorithm is a natural extension of the support vector algorithm to the case of unlabelled d...
The 2005 pascal visual object classes challenge
, 2006
"... Abstract. The PASCAL Visual Object Classes Challenge ran from February to March 2005. The goal of the challenge was to recognize objects from a number of visual object classes in realistic scenes (i.e. not pre-segmented objects). Four object classes were selected: motorbikes, bicycles, cars and peop ..."
Abstract
-
Cited by 649 (23 self)
- Add to MetaCart
(Show Context)
Abstract. The PASCAL Visual Object Classes Challenge ran from February to March 2005. The goal of the challenge was to recognize objects from a number of visual object classes in realistic scenes (i.e. not pre-segmented objects). Four object classes were selected: motorbikes, bicycles, cars and people. Twelve teams entered the challenge. In this chapter we provide details of the datasets, algorithms used by the teams, evaluation criteria, and results achieved. 1
An introduction to kernel-based learning algorithms
- IEEE TRANSACTIONS ON NEURAL NETWORKS
, 2001
"... This paper provides an introduction to support vector machines (SVMs), kernel Fisher discriminant analysis, and ..."
Abstract
-
Cited by 598 (55 self)
- Add to MetaCart
This paper provides an introduction to support vector machines (SVMs), kernel Fisher discriminant analysis, and
A discriminatively trained, multiscale, deformable part model
- In IEEE Conference on Computer Vision and Pattern Recognition (CVPR-2008
, 2008
"... This paper describes a discriminatively trained, multiscale, deformable part model for object detection. Our system achieves a two-fold improvement in average precision over the best performance in the 2006 PASCAL person detection challenge. It also outperforms the best results in the 2007 challenge ..."
Abstract
-
Cited by 555 (11 self)
- Add to MetaCart
(Show Context)
This paper describes a discriminatively trained, multiscale, deformable part model for object detection. Our system achieves a two-fold improvement in average precision over the best performance in the 2006 PASCAL person detection challenge. It also outperforms the best results in the 2007 challenge in ten out of twenty categories. The system relies heavily on deformable parts. While deformable part models have become quite popular, their value had not been demonstrated on difficult benchmarks such as the PASCAL challenge. Our system also relies heavily on new methods for discriminative training. We combine a margin-sensitive approach for data mining hard negative examples with a formalism we call latent SVM. A latent SVM, like a hidden CRF, leads to a non-convex training problem. However, a latent SVM is semi-convex and the training problem becomes convex once latent information is specified for the positive examples. We believe that our training methods will eventually make possible the effective use of more latent information such as hierarchical (grammar) models and models involving latent three dimensional pose. 1.
Text Classification using String Kernels
"... We propose a novel approach for categorizing text documents based on the use of a special kernel. The kernel is an inner product in the feature space generated by all subsequences of length k. A subsequence is any ordered sequence of k characters occurring in the text though not necessarily contiguo ..."
Abstract
-
Cited by 495 (7 self)
- Add to MetaCart
(Show Context)
We propose a novel approach for categorizing text documents based on the use of a special kernel. The kernel is an inner product in the feature space generated by all subsequences of length k. A subsequence is any ordered sequence of k characters occurring in the text though not necessarily contiguously. The subsequences are weighted by anexponentially decaying factor of their full length in the text, hence emphasising those occurrences that are close to contiguous. A direct computation of this feature vector would involve a prohibitive amount of computation even for modest values of k, since the dimension of the feature space grows exponentially with k. The paper describes how despite this fact the inner product can be e ciently evaluated by a dynamic programming technique. Experimental comparisons of the performance of the kernel compared with a standard word feature space kernel Joachims (1998) show positive results on modestly sized datasets. The case of contiguous subsequences is also considered for comparison with the subsequences kernel with di erent decay factors. For larger documents and datasets the paper introduces an approximation technique that is shown to deliver good approximations e ciently for large datasets.
Duplicate Record Detection: A Survey
, 2007
"... Often, in the real world, entities have two or more representations in databases. Duplicate records do not share a common key and/or they contain errors that make duplicate matching a difficult task. Errors are introduced as the result of transcription errors, incomplete information, lack of standa ..."
Abstract
-
Cited by 448 (11 self)
- Add to MetaCart
(Show Context)
Often, in the real world, entities have two or more representations in databases. Duplicate records do not share a common key and/or they contain errors that make duplicate matching a difficult task. Errors are introduced as the result of transcription errors, incomplete information, lack of standard formats, or any combination of these factors. In this paper, we present a thorough analysis of the literature on duplicate record detection. We cover similarity metrics that are commonly used to detect similar field entries, and we present an extensive set of duplicate detection algorithms that can detect approximately duplicate records in a database. We also cover multiple techniques for improving the efficiency and scalability of approximate duplicate detection algorithms. We conclude with coverage of existing tools and with a brief discussion of the big open problems in the area.
Adaptive Duplicate Detection Using Learnable String Similarity Measures
- In Proceedings of the Ninth ACM SIGKDD International Conference on Knowledge Discovery and Data Mining (KDD-2003
, 2003
"... The problem of identifying approximately duplicate records in databases is an essential step for data cleaning and data integration processes. Most existing approaches have relied on generic or manually tuned distance metrics for estimating the similarity of potential duplicates. In this paper, we p ..."
Abstract
-
Cited by 344 (14 self)
- Add to MetaCart
(Show Context)
The problem of identifying approximately duplicate records in databases is an essential step for data cleaning and data integration processes. Most existing approaches have relied on generic or manually tuned distance metrics for estimating the similarity of potential duplicates. In this paper, we present a framework for improving duplicate detection using trainable measures of textual similarity. We propose to employ learnable text distance functions for each database field, and show that such measures are capable of adapting to the specific notion of similarity that is appropriate for the field's domain. We present two learnable text similarity measures suitable for this task: an extended variant of learnable string edit distance, and a novel vector-space based measure that employs a Support Vector Machine (SVM) for training. Experimental results on a range of datasets show that our framework can improve duplicate detection accuracy over traditional techniques.
Large scale multiple kernel learning
- JOURNAL OF MACHINE LEARNING RESEARCH
, 2006
"... While classical kernel-based learning algorithms are based on a single kernel, in practice it is often desirable to use multiple kernels. Lanckriet et al. (2004) considered conic combinations of kernel matrices for classification, leading to a convex quadratically constrained quadratic program. We s ..."
Abstract
-
Cited by 340 (20 self)
- Add to MetaCart
While classical kernel-based learning algorithms are based on a single kernel, in practice it is often desirable to use multiple kernels. Lanckriet et al. (2004) considered conic combinations of kernel matrices for classification, leading to a convex quadratically constrained quadratic program. We show that it can be rewritten as a semi-infinite linear program that can be efficiently solved by recycling the standard SVM implementations. Moreover, we generalize the formulation and our method to a larger class of problems, including regression and one-class classification. Experimental results show that the proposed algorithm works for hundred thousands of examples or hundreds of kernels to be combined, and helps for automatic model selection, improving the interpretability of the learning result. In a second part we discuss general speed up mechanism for SVMs, especially when used with sparse feature maps as appear for string kernels, allowing us to train a string kernel SVM on a 10 million real-world splice data set from computational biology. We integrated multiple kernel learning in our machine learning toolbox SHOGUN for which the source code is publicly available at
In defense of one-vs-all classification
- Journal of Machine Learning Research
, 2004
"... Editor: John Shawe-Taylor We consider the problem of multiclass classification. Our main thesis is that a simple “one-vs-all ” scheme is as accurate as any other approach, assuming that the underlying binary classifiers are well-tuned regularized classifiers such as support vector machines. This the ..."
Abstract
-
Cited by 318 (0 self)
- Add to MetaCart
(Show Context)
Editor: John Shawe-Taylor We consider the problem of multiclass classification. Our main thesis is that a simple “one-vs-all ” scheme is as accurate as any other approach, assuming that the underlying binary classifiers are well-tuned regularized classifiers such as support vector machines. This thesis is interesting in that it disagrees with a large body of recent published work on multiclass classification. We support our position by means of a critical review of the existing literature, a substantial collection of carefully controlled experimental work, and theoretical arguments.
Seeing stars: Exploiting class relationships for sentiment categorization with respect to rating scales
- In Proc. 43st ACL
, 2005
"... We address the rating-inference problem, wherein rather than simply decide whether a review is “thumbs up ” or “thumbs down”, as in previous sentiment analysis work, one must determine an author’s evaluation with respect to a multi-point scale (e.g., one to five “stars”). This task represents an int ..."
Abstract
-
Cited by 298 (2 self)
- Add to MetaCart
We address the rating-inference problem, wherein rather than simply decide whether a review is “thumbs up ” or “thumbs down”, as in previous sentiment analysis work, one must determine an author’s evaluation with respect to a multi-point scale (e.g., one to five “stars”). This task represents an interesting twist on standard multi-class text categorization because there are several different degrees of similarity between class labels; for example, “three stars ” is intuitively closer to “four stars ” than to “one star”. We first evaluate human performance at the task. Then, we apply a metaalgorithm, based on a metric labeling formulation of the problem, that alters a given-ary classifier’s output in an explicit attempt to ensure that similar items receive similar labels. We show that the meta-algorithm can provide significant improvements over both multi-class and regression versions of SVMs when we employ a novel similarity measure appropriate to the problem. 1