Results 1  10
of
246
Convex multitask feature learning
 MACHINE LEARNING
, 2007
"... We present a method for learning sparse representations shared across multiple tasks. This method is a generalization of the wellknown singletask 1norm regularization. It is based on a novel nonconvex regularizer which controls the number of learned features common across the tasks. We prove th ..."
Abstract

Cited by 252 (25 self)
 Add to MetaCart
(Show Context)
We present a method for learning sparse representations shared across multiple tasks. This method is a generalization of the wellknown singletask 1norm regularization. It is based on a novel nonconvex regularizer which controls the number of learned features common across the tasks. We prove that the method is equivalent to solving a convex optimization problem for which there is an iterative algorithm which converges to an optimal solution. The algorithm has a simple interpretation: it alternately performs a supervised and an unsupervised step, where in the former step it learns taskspecific functions and in the latter step it learns commonacrosstasks sparse representations for these functions. We also provide an extension of the algorithm which learns sparse nonlinear representations using kernels. We report experiments on simulated and real data sets which demonstrate that the proposed method can both improve the performance relative to learning each task independently and lead to a few learned features common across related tasks. Our algorithm can also be used, as a special case, to simply select – not learn – a few common variables across the tasks.
Fast maximum margin matrix factorization for collaborative prediction
 In Proceedings of the 22nd International Conference on Machine Learning (ICML
, 2005
"... Maximum Margin Matrix Factorization (MMMF) was recently suggested (Srebro et al., 2005) as a convex, infinite dimensional alternative to lowrank approximations and standard factor models. MMMF can be formulated as a semidefinite programming (SDP) and learned using standard SDP solvers. However, cu ..."
Abstract

Cited by 239 (6 self)
 Add to MetaCart
(Show Context)
Maximum Margin Matrix Factorization (MMMF) was recently suggested (Srebro et al., 2005) as a convex, infinite dimensional alternative to lowrank approximations and standard factor models. MMMF can be formulated as a semidefinite programming (SDP) and learned using standard SDP solvers. However, current SDP solvers can only handle MMMF problems on matrices of dimensionality up to a few hundred. Here, we investigate a direct gradientbased optimization method for MMMF and demonstrate it on large collaborative prediction problems. We compare against results obtained by Marlin (2004) and find that MMMF substantially outperforms all nine methods he tested. 1.
Multitask feature learning
 Advances in Neural Information Processing Systems 19
, 2007
"... We present a method for learning a lowdimensional representation which is shared across a set of multiple related tasks. The method builds upon the wellknown 1norm regularization problem using a new regularizer which controls the number of learned features common for all the tasks. We show that th ..."
Abstract

Cited by 234 (8 self)
 Add to MetaCart
(Show Context)
We present a method for learning a lowdimensional representation which is shared across a set of multiple related tasks. The method builds upon the wellknown 1norm regularization problem using a new regularizer which controls the number of learned features common for all the tasks. We show that this problem is equivalent to a convex optimization problem and develop an iterative algorithm for solving it. The algorithm has a simple interpretation: it alternately performs a supervised and an unsupervised step, where in the latter step we learn commonacrosstasks representations and in the former step we learn taskspecific functions using these representations. We report experiments on a simulated and a real data set which demonstrate that the proposed method dramatically improves the performance relative to learning each task independently. Our algorithm can also be used, as a special case, to simply select – not learn – a few common features across the tasks.
Restricted Boltzmann machines for collaborative filtering
 In Machine Learning, Proceedings of the Twentyfourth International Conference (ICML 2004). ACM
, 2007
"... Most of the existing approaches to collaborative filtering cannot handle very large data sets. In this paper we show how a class of twolayer undirected graphical models, called Restricted Boltzmann Machines (RBM’s), can be used to model tabular data, such as user’s ratings of movies. We present eff ..."
Abstract

Cited by 213 (12 self)
 Add to MetaCart
(Show Context)
Most of the existing approaches to collaborative filtering cannot handle very large data sets. In this paper we show how a class of twolayer undirected graphical models, called Restricted Boltzmann Machines (RBM’s), can be used to model tabular data, such as user’s ratings of movies. We present efficient learning and inference procedures for this class of models and demonstrate that RBM’s can be successfully applied to the Netflix data set, containing over 100 million user/movie ratings. We also show that RBM’s slightly outperform carefullytuned SVD models. When the predictions of multiple RBM models and multiple SVD models are linearly combined, we achieve an error rate that is well over 6 % better than the score of Netflix’s own system. 1.
A Survey of Collaborative Filtering Techniques
, 2009
"... As one of the most successful approaches to building recommender systems, collaborative filtering (CF) uses the known preferences of a group of users to make recommendations or predictions of the unknown preferences for other users. In this paper, we first introduce CF tasks and their main challenge ..."
Abstract

Cited by 205 (0 self)
 Add to MetaCart
As one of the most successful approaches to building recommender systems, collaborative filtering (CF) uses the known preferences of a group of users to make recommendations or predictions of the unknown preferences for other users. In this paper, we first introduce CF tasks and their main challenges, such as data sparsity, scalability, synonymy, gray sheep, shilling attacks, privacy protection, etc., and their possible solutions. We then present three main categories of CF techniques: memorybased, modelbased, and hybrid CF algorithms (that combine CF with other recommendation techniques), with examples for representative algorithms of each category, and analysis of their predictive performance and their ability to address the challenges. From basic techniques to the stateoftheart, we attempt to present a comprehensive survey for CF techniques, which can be served as a roadmap for research and practice in this area.
Hogwild!: A lockfree approach to parallelizing stochastic gradient descent
, 2011
"... Stochastic Gradient Descent (SGD) is a popular algorithm that can achieve stateoftheart performance on a variety of machine learning tasks. Several researchers have recently proposed schemes to parallelize SGD, but all require performancedestroying memory locking and synchronization. This work a ..."
Abstract

Cited by 146 (8 self)
 Add to MetaCart
(Show Context)
Stochastic Gradient Descent (SGD) is a popular algorithm that can achieve stateoftheart performance on a variety of machine learning tasks. Several researchers have recently proposed schemes to parallelize SGD, but all require performancedestroying memory locking and synchronization. This work aims to show using novel theoretical analysis, algorithms, and implementation that SGD can be implemented without any locking. We present an update scheme called HOGWILD! which allows processors access to shared memory with the possibility of overwriting each other’s work. We show that when the associated optimization problem is sparse, meaning most gradient updates only modify small parts of the decision variable, then HOGWILD! achieves a nearly optimal rate of convergence. We demonstrate experimentally that HOGWILD! outperforms alternative schemes that use locking by an order of magnitude. 1
Relational Learning via Collective Matrix Factorization
, 2008
"... Relational learning is concerned with predicting unknown values of a relation, given a database of entities and observed relations among entities. An example of relational learning is movie rating prediction, where entities could include users, movies, genres, and actors. Relations would then encode ..."
Abstract

Cited by 127 (4 self)
 Add to MetaCart
(Show Context)
Relational learning is concerned with predicting unknown values of a relation, given a database of entities and observed relations among entities. An example of relational learning is movie rating prediction, where entities could include users, movies, genres, and actors. Relations would then encode users ’ ratings of movies, movies ’ genres, and actors ’ roles in movies. A common prediction technique given one pairwise relation, for example a #users × #movies ratings matrix, is lowrank matrix factorization. In domains with multiple relations, represented as multiple matrices, we may improve predictive accuracy by exploiting information from one relation while predicting another. To this end, we propose a collective matrix factorization model: we simultaneously factor several matrices, sharing parameters among factors when an entity participates in multiple relations. Each relation can have a different value type and error distribution; so, we allow nonlinear relationships between the parameters and outputs, using Bregman divergences to measure error. We extend standard alternating projection algorithms to our model, and derive an efficient Newton update for the projection. Furthermore, we propose stochastic optimization methods to deal with large, sparse matrices. Our model generalizes several existing matrix factorization methods, and therefore yields new largescale optimization algorithms for these problems. Our model can handle any pairwise relational schema and a
Matrix completion from noisy entries
 Journal of Machine Learning Research
"... Abstract Given a matrix M of lowrank, we consider the problem of reconstructing it from noisy observations of a small, random subset of its entries. The problem arises in a variety of applications, from collaborative filtering (the 'Netflix problem') to structurefrommotion and position ..."
Abstract

Cited by 116 (6 self)
 Add to MetaCart
Abstract Given a matrix M of lowrank, we consider the problem of reconstructing it from noisy observations of a small, random subset of its entries. The problem arises in a variety of applications, from collaborative filtering (the 'Netflix problem') to structurefrommotion and positioning. We study a low complexity algorithm introduced in [1], based on a combination of spectral techniques and manifold optimization, that we call here OPTSPACE. We prove performance guarantees that are orderoptimal in a number of circumstances.
Convex and SemiNonnegative Matrix Factorizations
, 2008
"... We present several new variations on the theme of nonnegative matrix factorization (NMF). Considering factorizations of the form X = F GT, we focus on algorithms in which G is restricted to contain nonnegative entries, but allow the data matrix X to have mixed signs, thus extending the applicable ra ..."
Abstract

Cited by 108 (10 self)
 Add to MetaCart
(Show Context)
We present several new variations on the theme of nonnegative matrix factorization (NMF). Considering factorizations of the form X = F GT, we focus on algorithms in which G is restricted to contain nonnegative entries, but allow the data matrix X to have mixed signs, thus extending the applicable range of NMF methods. We also consider algorithms in which the basis vectors of F are constrained to be convex combinations of the data points. This is used for a kernel extension of NMF. We provide algorithms for computing these new factorizations and we provide supporting theoretical analysis. We also analyze the relationships between our algorithms and clustering algorithms, and consider the implications for sparseness of solutions. Finally, we present experimental results that explore the properties of these new methods.