Results 1 - 10
of
113
Graph Cuts and Efficient N-D Image Segmentation
, 2006
"... Combinatorial graph cut algorithms have been successfully applied to a wide range of problems in vision and graphics. This paper focusses on possibly the simplest application of graph-cuts: segmentation of objects in image data. Despite its simplicity, this application epitomizes the best features ..."
Abstract
-
Cited by 304 (7 self)
- Add to MetaCart
Combinatorial graph cut algorithms have been successfully applied to a wide range of problems in vision and graphics. This paper focusses on possibly the simplest application of graph-cuts: segmentation of objects in image data. Despite its simplicity, this application epitomizes the best features of combinatorial graph cuts methods in vision: global optima, practical efficiency, numerical robustness, ability to fuse a wide range of visual cues and constraints, unrestricted topological properties of segments, and applicability to N-D problems. Graph cuts based approaches to object extraction have also been shown to have interesting connections with earlier segmentation methods such as snakes, geodesic active contours, and level-sets. The segmentation energies optimized by graph cuts combine boundary regularization with region-based properties in the same fashion as Mumford-Shah style functionals. We present motivation and detailed technical description of the basic combinatorial optimization framework for image segmentation via s/t graph cuts. After the general concept of using binary graph cut algorithms for object segmentation was first proposed and tested in Boykov and Jolly (2001), this idea was widely studied in computer vision and graphics communities. We provide links to a large number of known extensions based on iterative parameter re-estimation and learning, multi-scale or hierarchical approaches, narrow bands, and other techniques for demanding photo, video, and medical applications.
A review of statistical approaches to level set segmentation: Integrating color, texture, motion and shape
- International Journal of Computer Vision
, 2007
"... Abstract. Since their introduction as a means of front propagation and their first application to edge-based segmentation in the early 90’s, level set methods have become increasingly popular as a general framework for image segmentation. In this paper, we present a survey of a specific class of reg ..."
Abstract
-
Cited by 163 (4 self)
- Add to MetaCart
(Show Context)
Abstract. Since their introduction as a means of front propagation and their first application to edge-based segmentation in the early 90’s, level set methods have become increasingly popular as a general framework for image segmentation. In this paper, we present a survey of a specific class of region-based level set segmentation methods and clarify how they can all be derived from a common statistical framework. Region-based segmentation schemes aim at partitioning the image domain by progressively fitting statistical models to the intensity, color, texture or motion in each of a set of regions. In contrast to edge-based schemes such as the classical Snakes, region-based methods tend to be less sensitive to noise. For typical images, the respective cost functionals tend to have less local minima which makes them particularly well-suited for local optimization methods such as the level set method. We detail a general statistical formulation for level set segmentation. Subsequently, we clarify how the integration of various low level criteria leads to a set of cost functionals and point out relations between the different segmentation schemes. In experimental results, we demonstrate how the level set function is driven to partition the image plane into domains of coherent color, texture, dynamic texture or motion. Moreover, the Bayesian formulation allows to introduce prior shape knowledge into the level set method. We briefly review a number of advances in this domain.
Dynamical statistical shape priors for level set based tracking
- IEEE Transactions on Pattern Analysis and Machine Intelligence
, 2006
"... Abstract. In recent years, researchers have proposed to introduce statistical shape knowledge into the level set method in order to cope with insufficient low-level information. While these priors were shown to drastically improve the segmentation of images or image sequences, so far the focus has b ..."
Abstract
-
Cited by 101 (8 self)
- Add to MetaCart
(Show Context)
Abstract. In recent years, researchers have proposed to introduce statistical shape knowledge into the level set method in order to cope with insufficient low-level information. While these priors were shown to drastically improve the segmentation of images or image sequences, so far the focus has been on statistical shape priors that are time-invariant. Yet, in the context of tracking deformable objects, it is clear that certain silhouettes may become more or less likely over time. In this paper, we tackle the challenge of learning dynamical statistical models for implicitly represented shapes. We show how these can be integrated into a segmentation process in a Bayesian framework for image sequence segmentation. Experiments demonstrate that such shape priors with memory can drastically improve the segmentation of image sequences. 1 Level Set Based Image Segmentation In 1988, Osher and Sethian [16] introduced the level set method 1 as a means to implicitly propagate boundaries C(t) in the image plane Ω ⊂ R 2 by evolving an
Geos: Geodesic image segmentation
- ECCV '08 PROCEEDINGS OF THE 10TH EUROPEAN CONFERENCE ON COMPUTER VISION: PART I
, 2008
"... Abstract. This paper presents GeoS, a new algorithm for the efficient segmentation of n-dimensional image and video data. The segmentation problem is cast as approximate energy minimization in a conditional random field. A new, parallel filtering operator built upon efficient geodesic distance compu ..."
Abstract
-
Cited by 48 (4 self)
- Add to MetaCart
(Show Context)
Abstract. This paper presents GeoS, a new algorithm for the efficient segmentation of n-dimensional image and video data. The segmentation problem is cast as approximate energy minimization in a conditional random field. A new, parallel filtering operator built upon efficient geodesic distance computation is used to propose a set of spatially smooth, contrast-sensitive segmentation hypotheses. An economical search algorithm finds the solution with minimum energy within a sensible and highly restricted subset of all possible labellings. Advantages include: i) computational efficiency with high segmentation accuracy; ii) the ability to estimate an approximation to the posterior over segmentations; iii) the ability to handle generally complex energy models. Comparison with max-flow indicates up to 60 times greater computational efficiency as well as greater memory efficiency. GeoS is validated quantitatively and qualitatively by thorough comparative experiments on existing and novel ground-truth data. Numerous results on interactive and automatic segmentation of photographs, video and volumetric medical image data are presented. 1
Efficient Kernel Density Estimation of Shape and Intensity Priors for Level Set Segmentation
- in MICCAI
, 2005
"... Abstract. We propose a nonlinear statistical shape model for level set segmentation which can be efficiently implemented. Given a set of training shapes, we perform a kernel density estimation in the low dimensional subspace spanned by the training shapes. In this way, we are able to combine an accu ..."
Abstract
-
Cited by 45 (11 self)
- Add to MetaCart
(Show Context)
Abstract. We propose a nonlinear statistical shape model for level set segmentation which can be efficiently implemented. Given a set of training shapes, we perform a kernel density estimation in the low dimensional subspace spanned by the training shapes. In this way, we are able to combine an accurate model of the statistical shape distribution with efficient optimization in a finite-dimensional subspace. In a Bayesian inference framework, we integrate the nonlinear shape model with a nonparametric intensity model and a set of pose parameters which are estimated in a more direct data-driven manner than in previously proposed level set methods. Quantitative results show superior performance (regarding runtime and segmentation accuracy) of the proposed nonparametric shape prior over existing approaches. 1
Integral invariants for shape matching
- PAMI
, 2006
"... Abstract—For shapes represented as closed planar contours, we introduce a class of functionals which are invariant with respect to the Euclidean group and which are obtained by performing integral operations. While such integral invariants enjoy some of the desirable properties of their differential ..."
Abstract
-
Cited by 42 (2 self)
- Add to MetaCart
(Show Context)
Abstract—For shapes represented as closed planar contours, we introduce a class of functionals which are invariant with respect to the Euclidean group and which are obtained by performing integral operations. While such integral invariants enjoy some of the desirable properties of their differential counterparts, such as locality of computation (which allows matching under occlusions) and uniqueness of representation (asymptotically), they do not exhibit the noise sensitivity associated with differential quantities and, therefore, do not require presmoothing of the input shape. Our formulation allows the analysis of shapes at multiple scales. Based on integral invariants, we define a notion of distance between shapes. The proposed distance measure can be computed efficiently and allows warping the shape boundaries onto each other; its computation results in optimal point correspondence as an intermediate step. Numerical results on shape matching demonstrate that this framework can match shapes despite the deformation of subparts, missing parts and noise. As a quantitative analysis, we report matching scores for shape retrieval from a database. Index Terms—Integral invariants, shape, shape matching, shape distance, shape retrieval. Ç 1
Prior knowledge, level set representations & visual grouping
- Int. J. Comput. Vision
, 2008
"... In this paper, we propose a level set method for shape-driven object extraction. We introduce a voxel-wise probabilistic level set formulation to account for prior knowledge. To this end, objects are represented in an implicit form. Constraints on the segmentation process are imposed by seeking a pr ..."
Abstract
-
Cited by 42 (9 self)
- Add to MetaCart
In this paper, we propose a level set method for shape-driven object extraction. We introduce a voxel-wise probabilistic level set formulation to account for prior knowledge. To this end, objects are represented in an implicit form. Constraints on the segmentation process are imposed by seeking a projection to the image plane of the prior model modulo a similarity transformation. The optimization of a statistical metric between the evolving contour and the model leads to motion equations that evolve the contour toward the desired image properties while recovering the pose of the object in the new image. Upon convergence, a solution that is similarity invariant with respect to the model and the corresponding transformation are recovered. Promising experimental results demonstrate the potential of such an approach.
A shape-based approach to robust image segmentation
- IEEE Computer Society Conference on Computer Vision and Pattern Recognition, volume 4141 of LNCS
, 2006
"... Segmentation involves separating an object from the background. In this work, we propose a novel segmentation method combining image information with prior shape knowledge, within the level-set framework. Following the work of Leventon et al., we revisit the use of principal component analysis (PCA) ..."
Abstract
-
Cited by 36 (8 self)
- Add to MetaCart
(Show Context)
Segmentation involves separating an object from the background. In this work, we propose a novel segmentation method combining image information with prior shape knowledge, within the level-set framework. Following the work of Leventon et al., we revisit the use of principal component analysis (PCA) to introduce prior knowledge about shapes in a more robust manner. To this end, we utilize Kernel PCA and show that this method of learning shapes outperforms linear PCA, by allowing only shapes that are close enough to the training data. In the proposed segmentation algorithm, shape knowledge and image information are encoded into two energy functionals entirely described in terms of shapes. This consistent description allows to fully take advantage of the Kernel PCA methodology and leads to promising segmentation results. In particular, our shape-driven segmentation technique allows for the simultaneous encoding of multiple types of shapes, and offers a convincing level of robustness with respect to noise, clutter, partial occlusions, or smearing. 1.
Simultaneous segmentation and pose estimation of humans using dynamic graph cuts
- Int. J. Comput. Vision
"... Abstract This paper presents a novel algorithm for performing integrated segmentation and 3D pose estimation of a human body from multiple views. Unlike other state of the art methods which focus on either segmentation or pose estimation individually, our approach tackles these two tasks together. O ..."
Abstract
-
Cited by 34 (0 self)
- Add to MetaCart
(Show Context)
Abstract This paper presents a novel algorithm for performing integrated segmentation and 3D pose estimation of a human body from multiple views. Unlike other state of the art methods which focus on either segmentation or pose estimation individually, our approach tackles these two tasks together. Our method works by optimizing a cost function based on a Conditional Random Field (CRF). This has the advantage that all information in the image (edges, background and foreground appearances), as well as the prior information on the shape and pose of the subject can be combined and used in a Bayesian framework. Optimizing such a cost function would have been computationally infeasible. However, our recent research in dynamic graph cuts allows this to be done much more efficiently than before. We demonstrate the efficacy of our approach on challenging motion sequences. Although we target the human pose inference problem in the paper, our method is completely generic and can be used to segment and infer the pose of any rigid, deformable or articulated object.
Object segmentation by alignment of poselet activations to image contours
- In CVPR11. 2
"... In this paper, we propose techniques to make use of two complementary bottom-up features, image edges and texture patches, to guide top-down object segmentation towards higher precision. We build upon the part-based poselet detector, which can predict masks for numerous parts of an object. For this ..."
Abstract
-
Cited by 32 (4 self)
- Add to MetaCart
(Show Context)
In this paper, we propose techniques to make use of two complementary bottom-up features, image edges and texture patches, to guide top-down object segmentation towards higher precision. We build upon the part-based poselet detector, which can predict masks for numerous parts of an object. For this purpose we extend poselets to 19 other categories apart from person. We non-rigidly align these part detections to potential object contours in the image, both to increase the precision of the predicted object mask and to sort out false positives. We spatially aggregate object information via a variational smoothing technique while ensuring that object regions do not overlap. Finally, we propose to refine the segmentation based on self-similarity defined on small image patches. We obtain competitive results on the challenging Pascal VOC benchmark. On four classes we achieve the best numbers to-date. 1.