Results 1  10
of
543
Full Abstraction for PCF
 INFORMATION AND COMPUTATION
, 1996
"... An intensional model for the programming language PCF is described, in which the types of PCF are interpreted by games, and the terms by certain "historyfree" strategies. This model is shown to capture definability in PCF. More precisely, every compact strategy in the model is definable i ..."
Abstract

Cited by 254 (16 self)
 Add to MetaCart
(Show Context)
An intensional model for the programming language PCF is described, in which the types of PCF are interpreted by games, and the terms by certain "historyfree" strategies. This model is shown to capture definability in PCF. More precisely, every compact strategy in the model is definable in a certain simple extension of PCF. We then introduce an intrinsic preorder on strategies, and show that it satisfies some remarkable properties, such that the intrinsic preorder on function types coincides with the pointwise preorder. We then obtain an orderextensional fully abstract model of PCF by quotienting the intensional model by the intrinsic preorder. This is the first syntaxindependent description of the fully abstract model for PCF. (Hyland and Ong have obtained very similar results by a somewhat different route, independently and at the same time.) We then consider the effective version of our model, and prove a Universality Theorem: every element of the effective extensional model is definable in PCF. Equivalently, every recursive strategy is definable up to observational equivalence.
Linearity, Sharing and State: a fully abstract game semantics for Idealized Algol with active expressions
 ALGOLLIKE LANGUAGES
, 1997
"... The manipulation of objects with state which changes over time is allpervasive in computing. Perhaps the simplest example of such objects are the program variables of classical imperative languages. An important strand of work within the study of such languages, pioneered by John Reynolds, focusses ..."
Abstract

Cited by 129 (21 self)
 Add to MetaCart
The manipulation of objects with state which changes over time is allpervasive in computing. Perhaps the simplest example of such objects are the program variables of classical imperative languages. An important strand of work within the study of such languages, pioneered by John Reynolds, focusses on "Idealized Algol", an elegant synthesis of imperative and functional features. We present a novel semantics for Idealized Algol using games, which is quite unlike traditional denotational models of state. The model takes into account the irreversibility of changes in state, and makes explicit the difference between copying and sharing of entities. As a formal measure of the accuracy of our model, we obtain a full abstraction theorem for Idealized Algol with active expressions.
Constructive Design of a Hierarchy of Semantics of a Transition System by Abstract Interpretation
, 2002
"... We construct a hierarchy of semantics by successive abstract interpretations. Starting from the maximal trace semantics of a transition system, we derive the bigstep semantics, termination and nontermination semantics, Plotkin’s natural, Smyth’s demoniac and Hoare’s angelic relational semantics and ..."
Abstract

Cited by 124 (19 self)
 Add to MetaCart
We construct a hierarchy of semantics by successive abstract interpretations. Starting from the maximal trace semantics of a transition system, we derive the bigstep semantics, termination and nontermination semantics, Plotkin’s natural, Smyth’s demoniac and Hoare’s angelic relational semantics and equivalent nondeterministic denotational semantics (with alternative powerdomains to the EgliMilner and Smyth constructions), D. Scott’s deterministic denotational semantics, the generalized and Dijkstra’s conservative/liberal predicate transformer semantics, the generalized/total and Hoare’s partial correctness axiomatic semantics and the corresponding proof methods. All the semantics are presented in a uniform fixpoint form and the correspondences between these semantics are established through composable Galois connections, each semantics being formally calculated by abstract interpretation of a more concrete one using Kleene and/or Tarski
On probabilistic model checking
, 1996
"... Abstract. This tutorial presents an overview of model checking for both discrete and continuoustime Markov chains (DTMCs and CTMCs). Model checking algorithms are given for verifying DTMCs and CTMCs against specifications written in probabilistic extensions of temporal logic, including quantitative ..."
Abstract

Cited by 107 (25 self)
 Add to MetaCart
(Show Context)
Abstract. This tutorial presents an overview of model checking for both discrete and continuoustime Markov chains (DTMCs and CTMCs). Model checking algorithms are given for verifying DTMCs and CTMCs against specifications written in probabilistic extensions of temporal logic, including quantitative properties with rewards. Example properties include the probability that a fault occurs and the expected number of faults in a given time period. We also describe the practical application of stochastic model checking with the probabilistic model checker PRISM by outlining the main features supported by PRISM and three realworld case studies: a probabilistic security protocol, dynamic power management and a biological pathway. 1
Making Abstract Interpretations Complete
, 1997
"... Completeness in abstract interpretation is an ideal situation where the abstract semantics is able to take full advantage of the power of representation of the underlying abstract domain. Thus, complete abstract interpretations can be rightfully considered as optimal. In this article, we develop a g ..."
Abstract

Cited by 106 (36 self)
 Add to MetaCart
Completeness in abstract interpretation is an ideal situation where the abstract semantics is able to take full advantage of the power of representation of the underlying abstract domain. Thus, complete abstract interpretations can be rightfully considered as optimal. In this article, we develop a general theory of completeness in abstract interpretation, also dealing with the most frequent case of least fixpoint semantics. We show that both completeness and least fixpoint completeness are properties that only depend on the underlying abstract domain. In this context, we demonstrate that there always exist both the greatest complete and least fixpoint complete restrictions of any abstract d...
FreshML: Programming with Binders Made Simple
, 2003
"... FreshML extends ML with elegant and practical constructs for declaring and manipulating syntactical data involving binding operations. Userdeclared FreshML datatypes involving binders are concrete, in the sense that values of these types can be deconstructed by matching against patterns naming boun ..."
Abstract

Cited by 99 (30 self)
 Add to MetaCart
FreshML extends ML with elegant and practical constructs for declaring and manipulating syntactical data involving binding operations. Userdeclared FreshML datatypes involving binders are concrete, in the sense that values of these types can be deconstructed by matching against patterns naming bound variables explicitly. Such matching may have a computational effect in which bound names get swapped with freshly generated names. Previous work on FreshML used a complicated static type system inferring information about the `freshness' of names for expressions in order to tame such effects. The main contribution of this paper is to show (perhaps surprisingly) that a much simpler type system without freshness inference, coupled with name swapping and a conventional treatment of fresh name generation, suffices for FreshML's crucial correctness propertynamely that values of datatypes involving binders are operationally equivalent if and only if they represent #equivalent pieces of objectlevel syntax. This correctness result is established via a novel denotational semantics. FreshML without static freshness inference is no more impure than ML and our experiences programming in it show that it supports a programming style pleasingly close to informal practice when it comes to dealing with syntax modulo #equivalence.
Structural Induction and Coinduction in a Fibrational Setting
 Information and Computation
, 1997
"... . We present a categorical logic formulation of induction and coinduction principles for reasoning about inductively and coinductively defined types. Our main results provide sufficient criteria for the validity of such principles: in the presence of comprehension, the induction principle for in ..."
Abstract

Cited by 85 (16 self)
 Add to MetaCart
. We present a categorical logic formulation of induction and coinduction principles for reasoning about inductively and coinductively defined types. Our main results provide sufficient criteria for the validity of such principles: in the presence of comprehension, the induction principle for initial algebras is admissible, and dually, in the presence of quotient types, the coinduction principle for terminal coalgebras is admissible. After giving an alternative formulation of induction in terms of binary relations, we combine both principles and obtain a mixed induction/coinduction principle which allows us to reason about minimal solutions X = oe(X) where X may occur both positively and negatively in the type constructor oe. We further strengthen these logical principles to deal with contexts and prove that such strengthening is valid when the (abstract) logic we consider is contextually/functionally complete. All the main results follow from a basic result about adjunc...
Dynamical systems, Measures and Fractals via Domain Theory
 Information and Computation
, 1995
"... We introduce domain theory in dynamical systems, iterated function systems (fractals) and measure theory. For a discrete dynamical system given by the action of a continuous map f:X X on a metric space X, we study the extended dynamical systems (l/X,l/f), (UX, U f) and (LX, Lf) where 1/, U and L ar ..."
Abstract

Cited by 73 (22 self)
 Add to MetaCart
We introduce domain theory in dynamical systems, iterated function systems (fractals) and measure theory. For a discrete dynamical system given by the action of a continuous map f:X X on a metric space X, we study the extended dynamical systems (l/X,l/f), (UX, U f) and (LX, Lf) where 1/, U and L are respectively the Vietoris hyperspace, the upper hyperspace and the lower hyperspace functors. We show that if (X, f) is chaotic, then so is (UX, U f). When X is locally compact UX, is a continuous bounded complete dcpo. If X is second countable as well, then UX will be omegacontinuous and can be given an effective structure. We show how strange attractors, attractors of iterated function systems (fractals) and Julia sets are obtained effectively as fixed points of deterministic functions on UX or fixed points of nondeterministic functions on CUX where C is the convex (Plotkin) power domain. We also show that the set, M(X), of finite Borel measures on X can be embedded in PUX, where P is the probabilistic power domain. This provides an effective framework for measure theory. We then prove that the invariant measure of an hyperbolic iterated function system with probabilities can be obtained as the unique fixed point of an associated continuous function on PUX.
Logic Programs and Connectionist Networks
 Journal of Applied Logic
, 2004
"... One facet of the question of integration of Logic and Connectionist Systems, and how these can complement each other, concerns the points of contact, in terms of semantics, between neural networks and logic programs. In this paper, we show that certain semantic operators for propositional logic p ..."
Abstract

Cited by 62 (22 self)
 Add to MetaCart
(Show Context)
One facet of the question of integration of Logic and Connectionist Systems, and how these can complement each other, concerns the points of contact, in terms of semantics, between neural networks and logic programs. In this paper, we show that certain semantic operators for propositional logic programs can be computed by feedforward connectionist networks, and that the same semantic operators for firstorder normal logic programs can be approximated by feedforward connectionist networks. Turning the networks into recurrent ones allows one also to approximate the models associated with the semantic operators. Our methods depend on a wellknown theorem of Funahashi, and necessitate the study of when Funahasi's theorem can be applied, and also the study of what means of approximation are appropriate and significant.