Results 1 
3 of
3
Particle swarm optimization aided orthogonal forward regression for unified data modelling
 IEEE TRANS. EVOLUTION. COMPUT
, 2010
"... We propose a unified data modeling approach that is equally applicable to supervised regression and classification applications, as well as to unsupervised probability density function estimation. A particle swarm optimization (PSO) aided orthogonal forward regression (OFR) algorithm based on leave ..."
Abstract

Cited by 8 (4 self)
 Add to MetaCart
(Show Context)
We propose a unified data modeling approach that is equally applicable to supervised regression and classification applications, as well as to unsupervised probability density function estimation. A particle swarm optimization (PSO) aided orthogonal forward regression (OFR) algorithm based on leaveoneout (LOO) criteria is developed to construct parsimonious radial basis function (RBF) networks with tunable nodes. Each stage of the construction process determines the center vector and diagonal covariance matrix of one RBF node by minimizing the LOO statistics. For regression applications, the LOO criterion is chosen to be the LOO mean square error, while the LOO misclassification rate is adopted in twoclass classification applications. By adopting the Parzen window estimate as the desired response, the unsupervised density estimation problem is transformed into a constrained regression problem. This PSO aided OFR algorithm for tunablenode RBF networks is capable of constructing very parsimonious RBF models that generalize well, and our analysis and experimental results demonstrate that the algorithm is computationally even simpler than the efficient regularization assisted orthogonal least square algorithm based on LOO criteria for selecting fixednode RBF models. Another significant advantage of the proposed learning procedure is that it does not have learning hyperparameters that have to be tuned using costly cross validation. The effectiveness of the proposed PSO aided OFR construction procedure is illustrated using several examples taken from regression and classification, as well as density estimation applications.
A Comparative Study of Gaussian Mixture Model and Radial Basis Function for Voice Recognition
"... Abstract—A comparative study of the application of Gaussian Mixture Model (GMM) and Radial Basis Function (RBF) in biometric recognition of voice has been carried out and presented. The application of machine learning techniques to biometric authentication and recognition problems has gained a wides ..."
Abstract

Cited by 1 (0 self)
 Add to MetaCart
(Show Context)
Abstract—A comparative study of the application of Gaussian Mixture Model (GMM) and Radial Basis Function (RBF) in biometric recognition of voice has been carried out and presented. The application of machine learning techniques to biometric authentication and recognition problems has gained a widespread acceptance. In this research, a GMM model was trained, using Expectation Maximization (EM) algorithm, on a dataset containing 10 classes of vowels and the model was used to predict the appropriate classes using a validation dataset. For experimental validity, the model was compared to the performance of two different versions of RBF model using the same learning and validation datasets. The results showed very close recognition accuracy between the GMM and the standard RBF model, but with GMM performing better than the standard RBF by less than 1 % and the two models outperformed similar models reported in literature. The DTREG version of RBF outperformed the other two models by producing 94.8% recognition accuracy. In terms of recognition time, the standard RBF was found to be the fastest among the three models.
OrthogonalLeastSquares Forward Selection for Parsimonious Modelling from Data
, 2009
"... The objective of modelling from data is not that the model simply fits the training data well. Rather, the goodness of a model is characterized by its generalization capability, interpretability and ease for knowledge extraction. All these desired properties depend crucially on the ability to constr ..."
Abstract
 Add to MetaCart
(Show Context)
The objective of modelling from data is not that the model simply fits the training data well. Rather, the goodness of a model is characterized by its generalization capability, interpretability and ease for knowledge extraction. All these desired properties depend crucially on the ability to construct appropriate parsimonious models by the modelling process, and a basic principle in practical nonlinear data modelling is the parsimonious principle of ensuring the smallest possible model that explains the training data. There exists a vast amount of works in the area of sparse modelling, and a widely adopted approach is based on the linearintheparameters data modelling that include the radial basis function network, the neurofuzzy network and all the sparse kernel modelling techniques. A well tested strategy for parsimonious modelling from data is the orthogonal least squares (OLS) algorithm for forward selection modelling, which is capable of constructing sparse models that generalise well. This contribution continues this theme and provides a unified framework for sparse modelling from data that includes regression and classification, which belong to supervised learning, and probability density function estimation, which is an unsupervised learning problem. The OLS forward selection method based on the leaveoneout test criteria is presented within this unified datamodelling framework. Examples from regression, classification and density estimation applications are used to illustrate the effectiveness of this generic parsimonious modelling approach from data.