Results 1  10
of
108
The University of Florida sparse matrix collection
 NA DIGEST
, 1997
"... The University of Florida Sparse Matrix Collection is a large, widely available, and actively growing set of sparse matrices that arise in real applications. Its matrices cover a wide spectrum of problem domains, both those arising from problems with underlying 2D or 3D geometry (structural enginee ..."
Abstract

Cited by 538 (19 self)
 Add to MetaCart
The University of Florida Sparse Matrix Collection is a large, widely available, and actively growing set of sparse matrices that arise in real applications. Its matrices cover a wide spectrum of problem domains, both those arising from problems with underlying 2D or 3D geometry (structural engineering, computational fluid dynamics, model reduction, electromagnetics, semiconductor devices, thermodynamics, materials, acoustics, computer graphics/vision, robotics/kinematics, and other discretizations) and those that typically do not have such geometry (optimization, circuit simulation, networks and graphs, economic and financial modeling, theoretical and quantum chemistry, chemical process simulation, mathematics and statistics, and power networks). The collection meets a vital need that artificiallygenerated matrices cannot meet, and is widely used by the sparse matrix algorithms community for the development and performance evaluation of sparse matrix algorithms. The collection includes software for accessing and managing the collection, from MATLAB, Fortran, and C.
Building Rome in a Day
"... We present a system that can match and reconstruct 3D scenes from extremely large collections of photographs such as those found by searching for a given city (e.g., Rome) on Internet photo sharing sites. Our system uses a collection of novel parallel distributed matching and reconstruction algorith ..."
Abstract

Cited by 281 (30 self)
 Add to MetaCart
(Show Context)
We present a system that can match and reconstruct 3D scenes from extremely large collections of photographs such as those found by searching for a given city (e.g., Rome) on Internet photo sharing sites. Our system uses a collection of novel parallel distributed matching and reconstruction algorithms, designed to maximize parallelism at each stage in the pipeline and minimize serialization bottlenecks. It is designed to scale gracefully with both the size of the problem and the amount of available computation. We have experimented with a variety of alternative algorithms at each stage of the pipeline and report on which ones work best in a parallel computing environment. Our experimental results demonstrate that it is now possible to reconstruct cities consisting of 150K images in less than a day on a cluster with 500 compute cores. 1.
iSAM2: Incremental Smoothing and Mapping Using the Bayes Tree
"... We present a novel data structure, the Bayes tree, that provides an algorithmic foundation enabling a better understanding of existing graphical model inference algorithms and their connection to sparse matrix factorization methods. Similar to a clique tree, a Bayes tree encodes a factored probabili ..."
Abstract

Cited by 69 (26 self)
 Add to MetaCart
(Show Context)
We present a novel data structure, the Bayes tree, that provides an algorithmic foundation enabling a better understanding of existing graphical model inference algorithms and their connection to sparse matrix factorization methods. Similar to a clique tree, a Bayes tree encodes a factored probability density, but unlike the clique tree it is directed and maps more naturally to the square root information matrix of the simultaneous localization and mapping (SLAM) problem. In this paper, we highlight three insights provided by our new data structure. First, the Bayes tree provides a better understanding of the matrix factorization in terms of probability densities. Second, we show how the fairly abstract updates to a matrix factorization translate to a simple editing of the Bayes tree and its conditional densities. Third, we apply the Bayes tree to obtain a completely novel algorithm for sparse nonlinear incremental optimization, named iSAM2, which achieves improvements in efficiency through incremental variable reordering and fluid relinearization, eliminating the need for periodic batch steps. We analyze various properties of iSAM2 in detail, and show on a range of real and simulated datasets that our algorithm compares favorably with other recent mapping algorithms in both quality and efficiency.
Multicore bundle adjustment
 In IEEE Conference on Computer Vision and Pattern Recognition (CVPR
, 2011
"... We present the design and implementation of new inexact Newton type Bundle Adjustment algorithms that exploit hardware parallelism for efficiently solving large scale 3D scene reconstruction problems. We explore the use of multicore CPU as well as multicore GPUs for this purpose. We show that overco ..."
Abstract

Cited by 64 (4 self)
 Add to MetaCart
(Show Context)
We present the design and implementation of new inexact Newton type Bundle Adjustment algorithms that exploit hardware parallelism for efficiently solving large scale 3D scene reconstruction problems. We explore the use of multicore CPU as well as multicore GPUs for this purpose. We show that overcoming the severe memory and bandwidth limitations of current generation GPUs not only leads to more space efficient algorithms, but also to surprising savings in runtime. Our CPU based system is up to ten times and our GPU based system is up to thirty times faster than the current state of the art methods [1], while maintaining comparable convergence behavior. The code and additional results are available at
DOLFIN: Automated finite element computing
, 2009
"... We describe here a library aimed at automating the solution of partial differential equations using the finite element method. By employing novel techniques for automated code generation, the library combines a high level of expressiveness with efficient computation. Finite element variational forms ..."
Abstract

Cited by 56 (6 self)
 Add to MetaCart
(Show Context)
We describe here a library aimed at automating the solution of partial differential equations using the finite element method. By employing novel techniques for automated code generation, the library combines a high level of expressiveness with efficient computation. Finite element variational forms may be expressed in near mathematical notation, from which lowlevel code is automatically generated, compiled and seamlessly integrated with efficient implementations of computational meshes and highperformance linear algebra. Easytouse objectoriented interfaces to the library are provided in the form of a C++ library and a Python module. This paper discusses the mathematical abstractions and methods used in the design of the library and its implementation. A number of examples are presented to demonstrate the use of the library in application code.
Informationbased compact Pose SLAM
 IEEE Trans. Robot
, 2010
"... Abstract—Pose SLAM is the variant of simultaneous localization and map building (SLAM) is the variant of SLAM, in which only the robot trajectory is estimated and where landmarks are only used to produce relative constraints between robot poses. To reduce the computational cost of the information fi ..."
Abstract

Cited by 39 (17 self)
 Add to MetaCart
(Show Context)
Abstract—Pose SLAM is the variant of simultaneous localization and map building (SLAM) is the variant of SLAM, in which only the robot trajectory is estimated and where landmarks are only used to produce relative constraints between robot poses. To reduce the computational cost of the information filter form of Pose SLAM and, at the same time, to delay inconsistency as much as possible, we introduce an approach that takes into account only highly informative loopclosure links and nonredundant poses. This approach includes constant time procedures to compute the distance between poses, the expected information gain for each potential link, and the exact marginal covariances while moving in open loop, as well as a procedure to recover the state after a loop closure that, in practical situations, scales linearly in terms of both time and memory. Using these procedures, the robot operates most of the time in open loop, and the cost of the loop closure is amortized over long trajectories. This way, the computational bottleneck shifts to data association, which is the search over the set of previously visited poses to determine good candidates for sensor registration. To speed up data association, we introduce a method to search for neighboring poses whose complexity ranges from logarithmic in the usual case to linear in degenerate situations. The method is based on organizing the pose information in a balanced tree whose internal levels are defined using interval arithmetic. The proposed PoseSLAM approach is validated through simulations, real mapping sessions, and experiments using standard SLAM data sets. Index Terms—Information filter, information gain, interval arithmetic, Pose SLAM, state recovery, treebased data association. I.
Dynamic supernodes in sparse Cholesky update/downdate and triangular solves
 ACM Trans. Math. Software
, 2006
"... The supernodal method for sparse Cholesky factorization represents the factor L as a set of supernodes, each consisting of a contiguous set of columns of L with identical nonzero pattern. A conventional supernode is stored as a dense submatrix. While this is suitable for sparse Cholesky factorizatio ..."
Abstract

Cited by 30 (10 self)
 Add to MetaCart
The supernodal method for sparse Cholesky factorization represents the factor L as a set of supernodes, each consisting of a contiguous set of columns of L with identical nonzero pattern. A conventional supernode is stored as a dense submatrix. While this is suitable for sparse Cholesky factorization where the nonzero pattern of L does not change, it is not suitable for methods that modify a sparse Cholesky factorization after a lowrank change to A (an update/downdate, A = A±WW T). Supernodes merge and split apart during an update/downdate. Dynamic supernodes are introduced, which allow a sparse Cholesky update/downdate to obtain performance competitive with conventional supernodal methods. A dynamic supernodal solver is shown to exceed the performance of the conventional (BLASbased) supernodal method for solving triangular systems. These methods are incorporated into CHOLMOD, a sparse Cholesky factorization and update/downdate package, which forms the basis of x=A\b in MATLAB when A is sparse and symmetric positive definite. 1
A Riemannian optimization approach for computing lowrank solutions of Lyapunov equations
, 2009
"... We propose a new framework based on optimization on manifolds to approximate the solution of a Lyapunov matrix equation by a lowrank matrix. The method minimizes the error on the Riemannian manifold of symmetric positive semidefinite matrices of fixed rank. We detail how objects from differential ..."
Abstract

Cited by 27 (4 self)
 Add to MetaCart
We propose a new framework based on optimization on manifolds to approximate the solution of a Lyapunov matrix equation by a lowrank matrix. The method minimizes the error on the Riemannian manifold of symmetric positive semidefinite matrices of fixed rank. We detail how objects from differential geometry, like the Riemannian gradient and Hessian, can be efficiently computed for this manifold. As minimization algorithm we use the Riemannian TrustRegion method of [Found. Comput. Math., 7 (2007), pp. 303–330] based on a secondorder model of the objective function on the manifold. Together with an efficient preconditioner this method can find lowrank solutions with very little memory. We illustrate our results with numerical examples.
Multifrontal multithreaded rankrevealing sparse QR factorization
"... SuiteSparseQR is a sparse QR factorization package based on the multifrontal method. Within each frontal matrix, LAPACK and the multithreaded BLAS enable the method to obtain high performance on multicore architectures. Parallelism across different frontal matrices is handled with Intel’s Threading ..."
Abstract

Cited by 16 (2 self)
 Add to MetaCart
(Show Context)
SuiteSparseQR is a sparse QR factorization package based on the multifrontal method. Within each frontal matrix, LAPACK and the multithreaded BLAS enable the method to obtain high performance on multicore architectures. Parallelism across different frontal matrices is handled with Intel’s Threading Building Blocks library. The symbolic analysis and ordering phase preeliminates singletons by permuting the input matrix into the form [R11 R12; 0 A22] where R11 is upper triangular with diagonal entries above a given tolerance. Next, the fillreducing ordering, column elimination tree, and frontal matrix structures are found without requiring the formation of the pattern of A T A. Rankdetection is performed within each frontal matrix using Heath’s method, which does not require column pivoting. The resulting sparse QR factorization obtains a substantial fraction of the theoretical peak performance of a multicore computer.
Geodesic Patterns
"... Geodesic curves in surfaces are not only minimizers of distance, but they are also the curves of zero geodesic (sideways) curvature. It turns out that this property makes patterns of geodesics the basic geometric entity when dealing with the cladding of a freeform surface with wooden panels which d ..."
Abstract

Cited by 16 (6 self)
 Add to MetaCart
Geodesic curves in surfaces are not only minimizers of distance, but they are also the curves of zero geodesic (sideways) curvature. It turns out that this property makes patterns of geodesics the basic geometric entity when dealing with the cladding of a freeform surface with wooden panels which do not bend sideways. Likewise a geodesic is the favored shape of timber support elements in freeform architecture, for reasons of manufacturing and statics. Both problem areas are fundamental in freeform architecture, but so far only experimental solutions have been available. This paper provides a systematic treatment and shows how to design geodesic patterns in different ways: The evolution of geodesic curves is good for local studies and simple patterns; the level set formulation can deal with the global layout of multiple patterns of geodesics; finally geodesic vector fields allow us to interactively model geodesic patterns and perform surface segmentation into panelizable parts.