Results 11  20
of
779
Nearoptimal nonmyopic value of information in graphical models
 In Annual Conference on Uncertainty in Artificial Intelligence
"... A fundamental issue in realworld systems, such as sensor networks, is the selection of observations which most effectively reduce uncertainty. More specifically, we address the long standing problem of nonmyopically selecting the most informative subset of variables in a graphical model. We present ..."
Abstract

Cited by 142 (25 self)
 Add to MetaCart
(Show Context)
A fundamental issue in realworld systems, such as sensor networks, is the selection of observations which most effectively reduce uncertainty. More specifically, we address the long standing problem of nonmyopically selecting the most informative subset of variables in a graphical model. We present the first efficient randomized algorithm providing a constant factor (1 − 1/e − ε) approximation guarantee for any ε> 0 with high confidence. The algorithm leverages the theory of submodular functions, in combination with a polynomial bound on sample complexity. We furthermore prove that no polynomial time algorithm can provide a constant factor approximation better than (1 − 1/e) unless P = NP. Finally, we provide extensive evidence of the effectiveness of our method on two complex realworld datasets. 1
THE PRIMALDUAL METHOD FOR APPROXIMATION ALGORITHMS AND ITS APPLICATION TO NETWORK DESIGN PROBLEMS
"... The primaldual method is a standard tool in the design of algorithms for combinatorial optimization problems. This chapter shows how the primaldual method can be modified to provide good approximation algorithms for a wide variety of NPhard problems. We concentrate on results from recent researc ..."
Abstract

Cited by 142 (5 self)
 Add to MetaCart
The primaldual method is a standard tool in the design of algorithms for combinatorial optimization problems. This chapter shows how the primaldual method can be modified to provide good approximation algorithms for a wide variety of NPhard problems. We concentrate on results from recent research applying the primaldual method to problems in network design.
What Cannot Be Computed Locally!
 In Proceedings of the 23 rd ACM Symposium on the Principles of Distributed Computing (PODC
, 2004
"... We give time lower bounds for the distributed approximation of minimum vertex cover (MVC) and related problems such as minimum dominating set (MDS). In k communication rounds, MVC and MDS can only be approximated by factors# /k) and # /k) for some constant c, where n and # denote the number ..."
Abstract

Cited by 139 (28 self)
 Add to MetaCart
We give time lower bounds for the distributed approximation of minimum vertex cover (MVC) and related problems such as minimum dominating set (MDS). In k communication rounds, MVC and MDS can only be approximated by factors# /k) and # /k) for some constant c, where n and # denote the number of nodes and the largest degree in the graph. The number of rounds required in order to achieve a constant or even only a polylogarithmic approximation ratio is at log n/ log log n) and#1 #/ log log #). By a simple reduction, the latter lower bounds also hold for the construction of maximal matchings and maximal independent sets.
ConstantTime Distributed Dominating Set Approximation
 In Proc. of the 22 nd ACM Symposium on the Principles of Distributed Computing (PODC
, 2003
"... Finding a small dominating set is one of the most fundamental problems of traditional graph theory. In this paper, we present a new fully distributed approximation algorithm based on LP relaxation techniques. For an arbitrary parameter k and maximum degree #, our algorithm computes a dominating set ..."
Abstract

Cited by 138 (25 self)
 Add to MetaCart
(Show Context)
Finding a small dominating set is one of the most fundamental problems of traditional graph theory. In this paper, we present a new fully distributed approximation algorithm based on LP relaxation techniques. For an arbitrary parameter k and maximum degree #, our algorithm computes a dominating set of expected size O k# log #DSOPT rounds where each node has to send O k messages of size O(log #). This is the first algorithm which achieves a nontrivial approximation ratio in a constant number of rounds.
Approximation algorithms for combinatorial auctions with complementfree bidders
 In Proceedings of the 37th Annual ACM Symposium on Theory of Computing (STOC
, 2005
"... We exhibit three approximation algorithms for the allocation problem in combinatorial auctions with complement free bidders. The running time of these algorithms is polynomial in the number of items m and in the number of bidders n, even though the “input size ” is exponential in m. The first algori ..."
Abstract

Cited by 137 (27 self)
 Add to MetaCart
(Show Context)
We exhibit three approximation algorithms for the allocation problem in combinatorial auctions with complement free bidders. The running time of these algorithms is polynomial in the number of items m and in the number of bidders n, even though the “input size ” is exponential in m. The first algorithm provides an O(log m) approximation. The second algorithm provides an O ( √ m) approximation in the weaker model of value oracles. This algorithm is also incentive compatible. The third algorithm provides an improved 2approximation for the more restricted case of “XOS bidders”, a class which strictly contains submodular bidders. We also prove lower bounds on the possible approximations achievable for these classes of bidders. These bounds are not tight and we leave the gaps as open problems. 1
A Tight Analysis of the Greedy Algorithm for Set Cover
, 1995
"... We establish significantly improved bounds on the performance of the greedy algorithm for approximating set cover. In particular, we provide the first substantial improvement of the 20 year old classical harmonic upper bound, H(m), of Johnson, Lovasz, and Chv'atal, by showing that the performan ..."
Abstract

Cited by 123 (0 self)
 Add to MetaCart
We establish significantly improved bounds on the performance of the greedy algorithm for approximating set cover. In particular, we provide the first substantial improvement of the 20 year old classical harmonic upper bound, H(m), of Johnson, Lovasz, and Chv'atal, by showing that the performance ratio of the greedy algorithm is, in fact, exactly ln m \Gamma ln ln m+ \Theta(1), where m is the size of the ground set. The difference between the upper and lower bounds turns out to be less than 1:1. This provides the first tight analysis of the greedy algorithm, as well as the first upper bound that lies below H(m) by a function going to infinity with m. We also show that the approximation guarantee for the greedy algorithm is better than the guarantee recently established by Srinivasan for the randomized rounding technique, thus improving the bounds on the integrality gap. Our improvements result from a new approach which might be generally useful for attacking other similar problems. ...
PatternHunter II: Highly Sensitive and Fast Homology Search
, 2003
"... Extending the single optimized spaced seed of PatternHunter [20] to multiple ones, PatternHunter II simultaneously remedies the lack of sensitivity of Blastn and the lack of speed of SmithWaterman, for homology search. At Blastn speed, PatternHunter II approaches SmithWaterman sensitivity, bring ..."
Abstract

Cited by 122 (12 self)
 Add to MetaCart
Extending the single optimized spaced seed of PatternHunter [20] to multiple ones, PatternHunter II simultaneously remedies the lack of sensitivity of Blastn and the lack of speed of SmithWaterman, for homology search. At Blastn speed, PatternHunter II approaches SmithWaterman sensitivity, bringing homology search technology back to a full circle.
Hardness Of Approximations
, 1996
"... This chapter is a selfcontained survey of recent results about the hardness of approximating NPhard optimization problems. ..."
Abstract

Cited by 120 (5 self)
 Add to MetaCart
This chapter is a selfcontained survey of recent results about the hardness of approximating NPhard optimization problems.
Fixed Parameter Algorithms for Dominating Set and Related Problems on Planar Graphs
, 2002
"... We present an algorithm that constructively produces a solution to the kdominating set problem for planar graphs in time O(c . To obtain this result, we show that the treewidth of a planar graph with domination number (G) is O( (G)), and that such a tree decomposition can be found in O( (G)n) time. ..."
Abstract

Cited by 118 (22 self)
 Add to MetaCart
We present an algorithm that constructively produces a solution to the kdominating set problem for planar graphs in time O(c . To obtain this result, we show that the treewidth of a planar graph with domination number (G) is O( (G)), and that such a tree decomposition can be found in O( (G)n) time. The same technique can be used to show that the kface cover problem ( find a size k set of faces that cover all vertices of a given plane graph) can be solved in O(c n) time, where c 1 = 3 and k is the size of the face cover set. Similar results can be obtained in the planar case for some variants of kdominating set, e.g., kindependent dominating set and kweighted dominating set.