Results 1  10
of
106
DecisionTheoretic Planning: Structural Assumptions and Computational Leverage
 JOURNAL OF ARTIFICIAL INTELLIGENCE RESEARCH
, 1999
"... Planning under uncertainty is a central problem in the study of automated sequential decision making, and has been addressed by researchers in many different fields, including AI planning, decision analysis, operations research, control theory and economics. While the assumptions and perspectives ..."
Abstract

Cited by 510 (4 self)
 Add to MetaCart
Planning under uncertainty is a central problem in the study of automated sequential decision making, and has been addressed by researchers in many different fields, including AI planning, decision analysis, operations research, control theory and economics. While the assumptions and perspectives adopted in these areas often differ in substantial ways, many planning problems of interest to researchers in these fields can be modeled as Markov decision processes (MDPs) and analyzed using the techniques of decision theory. This paper presents an overview and synthesis of MDPrelated methods, showing how they provide a unifying framework for modeling many classes of planning problems studied in AI. It also describes structural properties of MDPs that, when exhibited by particular classes of problems, can be exploited in the construction of optimal or approximately optimal policies or plans. Planning problems commonly possess structure in the reward and value functions used to de...
The Complexity of Decentralized Control of Markov Decision Processes
 Mathematics of Operations Research
, 2000
"... We consider decentralized control of Markov decision processes and give complexity bounds on the worstcase running time for algorithms that find optimal solutions. Generalizations of both the fullyobservable case and the partiallyobservable case that allow for decentralized control are described. ..."
Abstract

Cited by 403 (47 self)
 Add to MetaCart
We consider decentralized control of Markov decision processes and give complexity bounds on the worstcase running time for algorithms that find optimal solutions. Generalizations of both the fullyobservable case and the partiallyobservable case that allow for decentralized control are described. For even two agents, the finitehorizon problems corresponding to both of these models are hard for nondeterministic exponential time. These complexity results illustrate a fundamental difference between centralized and decentralized control of Markov decision processes. In contrast to the problems involving centralized control, the problems we consider provably do not admit polynomialtime algorithms. Furthermore, assuming EXP NEXP, the problems require superexponential time to solve in the worst case.
Perseus: Randomized pointbased value iteration for POMDPs
 Journal of Artificial Intelligence Research
, 2005
"... Partially observable Markov decision processes (POMDPs) form an attractive and principled framework for agent planning under uncertainty. Pointbased approximate techniques for POMDPs compute a policy based on a finite set of points collected in advance from the agent’s belief space. We present a ra ..."
Abstract

Cited by 202 (16 self)
 Add to MetaCart
(Show Context)
Partially observable Markov decision processes (POMDPs) form an attractive and principled framework for agent planning under uncertainty. Pointbased approximate techniques for POMDPs compute a policy based on a finite set of points collected in advance from the agent’s belief space. We present a randomized pointbased value iteration algorithm called Perseus. The algorithm performs approximate value backup stages, ensuring that in each backup stage the value of each point in the belief set is improved; the key observation is that a single backup may improve the value of many belief points. Contrary to other pointbased methods, Perseus backs up only a (randomly selected) subset of points in the belief set, sufficient for improving the value of each belief point in the set. We show how the same idea can be extended to dealing with continuous action spaces. Experimental results show the potential of Perseus in large scale POMDP problems. 1.
SARSOP: Efficient PointBased POMDP Planning by Approximating Optimally Reachable Belief Spaces
"... Abstract — Motion planning in uncertain and dynamic environments is an essential capability for autonomous robots. Partially observable Markov decision processes (POMDPs) provide a principled mathematical framework for solving such problems, but they are often avoided in robotics due to high computa ..."
Abstract

Cited by 191 (16 self)
 Add to MetaCart
(Show Context)
Abstract — Motion planning in uncertain and dynamic environments is an essential capability for autonomous robots. Partially observable Markov decision processes (POMDPs) provide a principled mathematical framework for solving such problems, but they are often avoided in robotics due to high computational complexity. Our goal is to create practical POMDP algorithms and software for common robotic tasks. To this end, we have developed a new pointbased POMDP algorithm that exploits the notion of optimally reachable belief spaces to improve computational efficiency. In simulation, we successfully applied the algorithm to a set of common robotic tasks, including instances of coastal navigation, grasping, mobile robot exploration, and target tracking, all modeled as POMDPs with a large number of states. In most of the instances studied, our algorithm substantially outperformed one of the fastest existing pointbased algorithms. A software package implementing our algorithm is available for download at
Valuefunction approximations for partially observable Markov decision processes
 Journal of Artificial Intelligence Research
, 2000
"... Partially observable Markov decision processes (POMDPs) provide an elegant mathematical framework for modeling complex decision and planning problems in stochastic domains in which states of the system are observable only indirectly, via a set of imperfect or noisy observations. The modeling advanta ..."
Abstract

Cited by 168 (1 self)
 Add to MetaCart
(Show Context)
Partially observable Markov decision processes (POMDPs) provide an elegant mathematical framework for modeling complex decision and planning problems in stochastic domains in which states of the system are observable only indirectly, via a set of imperfect or noisy observations. The modeling advantage of POMDPs, however, comes at a price — exact methods for solving them are computationally very expensive and thus applicable in practice only to very simple problems. We focus on efficient approximation (heuristic) methods that attempt to alleviate the computational problem and trade off accuracy for speed. We have two objectives here. First, we survey various approximation methods, analyze their properties and relations and provide some new insights into their differences. Second, we present a number of new approximation methods and novel refinements of existing techniques. The theoretical results are supported by experiments on a problem from the agent navigation domain. 1.
Online planning algorithms for POMDPs
 Journal of Artificial Intelligence Research
, 2008
"... Partially Observable Markov Decision Processes (POMDPs) provide a rich framework for sequential decisionmaking under uncertainty in stochastic domains. However, solving a POMDP is often intractable except for small problems due to their complexity. Here, we focus on online approaches that alleviate ..."
Abstract

Cited by 109 (3 self)
 Add to MetaCart
(Show Context)
Partially Observable Markov Decision Processes (POMDPs) provide a rich framework for sequential decisionmaking under uncertainty in stochastic domains. However, solving a POMDP is often intractable except for small problems due to their complexity. Here, we focus on online approaches that alleviate the computational complexity by computing good local policies at each decision step during the execution. Online algorithms generally consist of a lookahead search to find the best action to execute at each time step in an environment. Our objectives here are to survey the various existing online POMDP methods, analyze their properties and discuss their advantages and disadvantages; and to thoroughly evaluate these online approaches in different environments under various metrics (return, error bound reduction, lower bound improvement). Our experimental results indicate that stateoftheart online heuristic search methods can handle large POMDP domains efficiently. 1.
Exploiting Structure to Efficiently Solve Large Scale Partially Observable Markov Decision Processes
, 2005
"... Partially observable Markov decision processes (POMDPs) provide a natural and principled framework to model a wide range of sequential decision making problems under uncertainty. To date, the use of POMDPs in realworld problems has been limited by the poor scalability of existing solution algorithm ..."
Abstract

Cited by 91 (6 self)
 Add to MetaCart
Partially observable Markov decision processes (POMDPs) provide a natural and principled framework to model a wide range of sequential decision making problems under uncertainty. To date, the use of POMDPs in realworld problems has been limited by the poor scalability of existing solution algorithms, which can only solve problems with up to ten thousand states. In fact, the complexity of finding an optimal policy for a finitehorizon discrete POMDP is PSPACEcomplete. In practice, two important sources of intractability plague most solution algorithms: large policy spaces and large state spaces. On the other hand,
Contingent Planning Under Uncertainty via Stochastic Satisfiability
 Artificial Intelligence
, 1999
"... We describe two new probabilistic planning techniques cmaxplan and zanderthat generate contingent plans in probabilistic propositional domains. Both operate by transforming the planning problem into a stochastic satisfiability problem and solving that problem instead. cmaxplan encodes t ..."
Abstract

Cited by 70 (11 self)
 Add to MetaCart
(Show Context)
We describe two new probabilistic planning techniques cmaxplan and zanderthat generate contingent plans in probabilistic propositional domains. Both operate by transforming the planning problem into a stochastic satisfiability problem and solving that problem instead. cmaxplan encodes the problem as an EMajsat instance, while zander encodes the problem as an SSat instance. Although SSat problems are in a higher complexity class than EMajsat problems, the problem encodings produced by zander are substantially more compact and appear to be easier to solve than the corresponding EMajsat encodings. Preliminary results for zander indicate that it is competitive with existing planners on a variety of problems. Introduction When planning under uncertainty, any information about the state of the world is precious. A contingent plan is one that can make action choices contingent on such information. In this paper, we present an implemented framework for contingent pl...
PointBased Value Iteration for Continuous POMDPs
 JOURNAL OF MACHINE LEARNING RESEARCH
, 2006
"... We propose a novel approach to optimize Partially Observable Markov Decisions Processes (POMDPs) defined on continuous spaces. To date, most algorithms for modelbased POMDPs are restricted to discrete states, actions, and observations, but many realworld problems such as, for instance, robot na ..."
Abstract

Cited by 65 (4 self)
 Add to MetaCart
We propose a novel approach to optimize Partially Observable Markov Decisions Processes (POMDPs) defined on continuous spaces. To date, most algorithms for modelbased POMDPs are restricted to discrete states, actions, and observations, but many realworld problems such as, for instance, robot navigation, are naturally defined on continuous spaces. In this work, we demonstrate that the value function for continuous POMDPs is convex in the beliefs over continuous state spaces, and piecewiselinear convex for the particular case of discrete observations and actions but still continuous states. We also demonstrate that continuous Bellman backups are contracting and isotonic ensuring the monotonic convergence of valueiteration algorithms. Relying on those properties, we extend the PERSEUS algorithm, originally developed for discrete POMDPs, to work in continuous state spaces by representing the observation, transition, and reward models using Gaussian mixtures, and the beliefs using Gaussian mixtures or particle sets. With these representations, the integrals that appear in the Bellman backup can be computed in closed form and, therefore, the algorithm is computationally feasible. Finally, we further extend PERSEUS to deal with continuous action and observation sets by designing effective sampling approaches.