Results 11 - 20
of
2,050
CYCLON: Inexpensive Membership Management for Unstructured P2P Overlays
- Journal of Network and Systems Management
, 2005
"... Unstructured overlays form an important class of peer-to-peer networks, notably when content-based searching is at stake. The construction of these overlays, which is essentially a membership management issue, is crucial. Ideally, the resulting overlays should have low diameter and be resilient to m ..."
Abstract
-
Cited by 212 (24 self)
- Add to MetaCart
(Show Context)
Unstructured overlays form an important class of peer-to-peer networks, notably when content-based searching is at stake. The construction of these overlays, which is essentially a membership management issue, is crucial. Ideally, the resulting overlays should have low diameter and be resilient to massive node failures, which are both characteristic properties of random graphs. In addition, they should be able to deal with a high node churn (i.e., expect high-frequency membership changes). Inexpensive membership management while retaining random-graph properties is therefore important. In this paper, we describe a novel gossip-based membership management protocol that meets these requirements. Our protocol is shown to construct graphs that have low diameter, low clustering, highly symmetric node degrees, and that are highly resilient to massive node failures. Moreover, we show that the protocol is highly reactive to restoring randomness when a large number of nodes fail. KEY WORDS: Membership management; peer-to-peer; epidemic/gossiping protocols; unstructured overlays; random graphs.
Topic and role discovery in social networks
- In IJCAI
, 2005
"... Previous work in social network analysis (SNA) has modeled the existence of links from one entity to another, but not the language content or topics on those links. We present the Author-Recipient-Topic (ART) model for social network analysis, which learns topic distributions based on the direction- ..."
Abstract
-
Cited by 212 (15 self)
- Add to MetaCart
(Show Context)
Previous work in social network analysis (SNA) has modeled the existence of links from one entity to another, but not the language content or topics on those links. We present the Author-Recipient-Topic (ART) model for social network analysis, which learns topic distributions based on the direction-sensitive messages sent between entities. The model builds on Latent Dirichlet Allocation (LDA) and the Author-Topic (AT) model, adding the key attribute that distribution over topics is conditioned distinctly on both the sender and recipient—steering the discovery of topics according to the relationships between people. We give results on both the Enron email corpus and a researcher’s email archive, providing evidence not only that clearly relevant topics are discovered, but that the ART model better predicts people’s roles. 1 Introduction and Related Work Social network analysis (SNA) is the study of mathematical models for interactions among people, organizations and groups. With the recent availability of large datasets of human
Predicting tie strength with social media
- In Proceedings of the Conferece on Human Factors in Computing Systems (CHI’09
, 2009
"... Social media treats all users the same: trusted friend or total stranger, with little or nothing in between. In reality, relationships fall everywhere along this spectrum, a topic social science has investigated for decades under the theme of tie strength. Our work bridges this gap between theory an ..."
Abstract
-
Cited by 210 (5 self)
- Add to MetaCart
(Show Context)
Social media treats all users the same: trusted friend or total stranger, with little or nothing in between. In reality, relationships fall everywhere along this spectrum, a topic social science has investigated for decades under the theme of tie strength. Our work bridges this gap between theory and practice. In this paper, we present a predictive model that maps social media data to tie strength. The model builds on a dataset of over 2,000 social media ties and performs quite well, distinguishing between strong and weak ties with over 85 % accuracy. We complement these quantitative findings with interviews that unpack the relationships we could not predict. The paper concludes by illustrating how modeling tie strength can improve social media design elements, including privacy controls, message routing, friend introductions and information prioritization. Author Keywords Social media, social networks, relationship modeling, ties,
Microscopic Evolution of Social Networks
, 2008
"... We present a detailed study of network evolution by analyzing four large online social networks with full temporal information about node and edge arrivals. For the first time at such a large scale, we study individual node arrival and edge creation processes that collectively lead to macroscopic pr ..."
Abstract
-
Cited by 202 (9 self)
- Add to MetaCart
We present a detailed study of network evolution by analyzing four large online social networks with full temporal information about node and edge arrivals. For the first time at such a large scale, we study individual node arrival and edge creation processes that collectively lead to macroscopic properties of networks. Using a methodology based on the maximum-likelihood principle, we investigate a wide variety of network formation strategies, and show that edge locality plays a critical role in evolution of networks. Our findings supplement earlier network models based on the inherently non-local preferential attachment. Based on our observations, we develop a complete model of network evolution, where nodes arrive at a prespecified rate and select their lifetimes. Each node then independently initiates edges according to a “gap” process, selecting a destination for each edge according to a simple triangle-closing model free of any parameters. We show analytically that the combination of the gap distribution with the node lifetime leads to a power law out-degree distribution that accurately reflects the true network in all four cases. Finally, we give model parameter settings that allow automatic evolution and generation of realistic synthetic networks of arbitrary scale.
Scale-free networks in cell biology
- JOURNAL OF CELL SCIENCE
"... A cell’s behavior is a consequence of the complex interactions between its numerous constituents, such as DNA, RNA, proteins and small molecules. Cells use signaling pathways and regulatory mechanisms to coordinate multiple processes, allowing them to respond to and adapt to an ever-changing environ ..."
Abstract
-
Cited by 199 (6 self)
- Add to MetaCart
A cell’s behavior is a consequence of the complex interactions between its numerous constituents, such as DNA, RNA, proteins and small molecules. Cells use signaling pathways and regulatory mechanisms to coordinate multiple processes, allowing them to respond to and adapt to an ever-changing environment. The large number of components, the degree of interconnectivity and the complex control of cellular networks are becoming evident in the integrated genomic and proteomic analyses that are emerging. It is increasingly recognized that the understanding of properties that arise from whole-cell function require integrated, theoretical descriptions of the relationships between different cellular components. Recent
Community structure in large networks: Natural cluster sizes and the absence of large well-defined clusters
, 2008
"... A large body of work has been devoted to defining and identifying clusters or communities in social and information networks, i.e., in graphs in which the nodes represent underlying social entities and the edges represent some sort of interaction between pairs of nodes. Most such research begins wit ..."
Abstract
-
Cited by 198 (17 self)
- Add to MetaCart
(Show Context)
A large body of work has been devoted to defining and identifying clusters or communities in social and information networks, i.e., in graphs in which the nodes represent underlying social entities and the edges represent some sort of interaction between pairs of nodes. Most such research begins with the premise that a community or a cluster should be thought of as a set of nodes that has more and/or better connections between its members than to the remainder of the network. In this paper, we explore from a novel perspective several questions related to identifying meaningful communities in large social and information networks, and we come to several striking conclusions. Rather than defining a procedure to extract sets of nodes from a graph and then attempt to interpret these sets as a “real ” communities, we employ approximation algorithms for the graph partitioning problem to characterize as a function of size the statistical and structural properties of partitions of graphs that could plausibly be interpreted as communities. In particular, we define the network community profile plot, which characterizes the “best ” possible community—according to the conductance measure—over a wide range of size scales. We study over 100 large real-world networks, ranging from traditional and on-line social networks, to technological and information networks and
The Peer Sampling Service: Experimental Evaluation of Unstructured Gossip-Based Implementations
- In Middleware ’04: Proceedings of the 5th ACM/IFIP/USENIX international conference on Middleware
, 2004
"... Abstract. In recent years, the gossip-based communication model in large-scale distributed systems has become a general paradigm with important applications which include information dissemination, aggregation, overlay topology management and synchronization. At the heart of all of these protocols l ..."
Abstract
-
Cited by 184 (42 self)
- Add to MetaCart
(Show Context)
Abstract. In recent years, the gossip-based communication model in large-scale distributed systems has become a general paradigm with important applications which include information dissemination, aggregation, overlay topology management and synchronization. At the heart of all of these protocols lies a fundamental distributed abstraction: the peer sampling service. In short, the aim of this service is to provide every node with peers to exchange information with. Analytical studies reveal a high reliability and efficiency of gossip-based protocols, under the (often implicit) assumption that the peers to send gossip messages to are selected uniformly at random from the set of all nodes. In practice—instead of requiring all nodes to know all the peer nodes so that a random sample could be drawn—a scalable and efficient way to implement the peer sampling service is by constructing and maintaining dynamic unstructured overlays through gossiping membership information itself. This paper presents a generic framework to implement reliable and efficient peer sampling services. The framework generalizes existing approaches and makes it easy to introduce new ones. We use this framework to explore and compare several implementations of our abstract scheme. Through extensive experimental analysis, we show that all of them lead to different peer sampling services none of which is uniformly random. This clearly renders traditional theoretical approaches invalid, when the underlying peer sampling service is based on a gossip-based scheme. Our observations also help explain important differences between design choices of peer sampling algorithms, and how these impact the reliability of the corresponding service. 1
The phase transition in inhomogeneous random graphs
, 2005
"... The ‘classical’ random graph models, in particular G(n, p), are ‘homogeneous’, in the sense that the degrees (for example) tend to be concentrated around a typical value. Many graphs arising in the real world do not have this property, having, for example, power-law degree distributions. Thus there ..."
Abstract
-
Cited by 181 (31 self)
- Add to MetaCart
The ‘classical’ random graph models, in particular G(n, p), are ‘homogeneous’, in the sense that the degrees (for example) tend to be concentrated around a typical value. Many graphs arising in the real world do not have this property, having, for example, power-law degree distributions. Thus there has been a lot of recent interest in defining and studying ‘inhomogeneous ’ random graph models. One of the most studied properties of these new models is their ‘robustness’, or, equivalently, the ‘phase transition ’ as an edge density parameter is varied. For G(n, p), p = c/n, the phase transition at c = 1 has been a central topic in the study of random graphs for well over 40 years. Many of the new inhomogenous models are rather complicated; although there are exceptions, in most cases precise questions such as determining exactly the critical point of the phase transition are approachable only when there is independence between the edges. Fortunately, some models studied have this already, and others can be approximated by models with
Collective classification in network data
, 2008
"... Numerous real-world applications produce networked data such as web data (hypertext documents connected via hyperlinks) and communication networks (people connected via communication links). A recent focus in machine learning research has been to extend traditional machine learning classification te ..."
Abstract
-
Cited by 174 (33 self)
- Add to MetaCart
(Show Context)
Numerous real-world applications produce networked data such as web data (hypertext documents connected via hyperlinks) and communication networks (people connected via communication links). A recent focus in machine learning research has been to extend traditional machine learning classification techniques to classify nodes in such data. In this report, we attempt to provide a brief introduction to this area of research and how it has progressed during the past decade. We introduce four of the most widely used inference algorithms for classifying networked data and empirically compare them on both synthetic and real-world data.
New specifications for exponential random graph models
, 2004
"... The most promising class of statistical models for expressing structural properties of social networks observed at one moment in time, is the class of Exponential Random Graph Models (ERGMs), also known as p ∗ models. The strong point of these models is that they can represent a variety of structura ..."
Abstract
-
Cited by 164 (26 self)
- Add to MetaCart
(Show Context)
The most promising class of statistical models for expressing structural properties of social networks observed at one moment in time, is the class of Exponential Random Graph Models (ERGMs), also known as p ∗ models. The strong point of these models is that they can represent a variety of structural tendencies, such as transitivity, that define complicated dependence patterns not easily modeled by more basic probability models. Recently, MCMC algorithms have been developed which produce approximate Maximum Likelihood estimators. Applying these models in their traditional specification to observed network data often has led to problems, however, which can be traced back to the fact that important parts of the parameter space correspond to nearly degenerate distributions, which may lead to convergence problems of estimation algorithms, and a poor fit to empirical data. This paper proposes new specifications of Exponential Random Graph Models. These specifications represent structural properties such as transitivity and heterogeneity of degrees by more complicated graph statistics than the traditional star and triangle counts. Three kinds of statistic are proposed: geometrically weighted degree distributions, alternating k-triangles, and alternating independent two-paths. Examples are presented both of modeling graphs and digraphs, in which the new specifications lead to much better results than the earlier existing specifications of the ERGM. It is concluded that the new specifications increase the range and applicability of the ERGM as a tool for the statistical analysis of social networks.