Results 1  10
of
92
SemiSupervised Learning Literature Survey
, 2006
"... We review the literature on semisupervised learning, which is an area in machine learning and more generally, artificial intelligence. There has been a whole
spectrum of interesting ideas on how to learn from both labeled and unlabeled data, i.e. semisupervised learning. This document is a chapter ..."
Abstract

Cited by 757 (8 self)
 Add to MetaCart
(Show Context)
We review the literature on semisupervised learning, which is an area in machine learning and more generally, artificial intelligence. There has been a whole
spectrum of interesting ideas on how to learn from both labeled and unlabeled data, i.e. semisupervised learning. This document is a chapter excerpt from the author’s
doctoral thesis (Zhu, 2005). However the author plans to update the online version frequently to incorporate the latest development in the field. Please obtain the latest
version at http://www.cs.wisc.edu/~jerryzhu/pub/ssl_survey.pdf
A Probabilistic Framework for SemiSupervised Clustering
, 2004
"... Unsupervised clustering can be significantly improved using supervision in the form of pairwise constraints, i.e., pairs of instances labeled as belonging to same or different clusters. In recent years, a number of algorithms have been proposed for enhancing clustering quality by employing such supe ..."
Abstract

Cited by 271 (14 self)
 Add to MetaCart
(Show Context)
Unsupervised clustering can be significantly improved using supervision in the form of pairwise constraints, i.e., pairs of instances labeled as belonging to same or different clusters. In recent years, a number of algorithms have been proposed for enhancing clustering quality by employing such supervision. Such methods use the constraints to either modify the objective function, or to learn the distance measure. We propose a probabilistic model for semisupervised clustering based on Hidden Markov Random Fields (HMRFs) that provides a principled framework for incorporating supervision into prototypebased clustering. The model generalizes a previous approach that combines constraints and Euclidean distance learning, and allows the use of a broad range of clustering distortion measures, including Bregman divergences (e.g., Euclidean distance and Idivergence) and directional similarity measures (e.g., cosine similarity). We present an algorithm that performs partitional semisupervised clustering of data by minimizing an objective function derived from the posterior energy of the HMRF model. Experimental results on several text data sets demonstrate the advantages of the proposed framework. 1.
Integrating Constraints and Metric Learning in SemiSupervised Clustering
 In ICML
, 2004
"... Semisupervised clustering employs a small amount of labeled data to aid unsupervised learning. Previous work in the area has utilized supervised data in one of two approaches: 1) constraintbased methods that guide the clustering algorithm towards a better grouping of the data, and 2) distanc ..."
Abstract

Cited by 245 (7 self)
 Add to MetaCart
Semisupervised clustering employs a small amount of labeled data to aid unsupervised learning. Previous work in the area has utilized supervised data in one of two approaches: 1) constraintbased methods that guide the clustering algorithm towards a better grouping of the data, and 2) distancefunction learning methods that adapt the underlying similarity metric used by the clustering algorithm. This paper provides new methods for the two approaches as well as presents a new semisupervised clustering algorithm that integrates both of these techniques in a uniform, principled framework. Experimental results demonstrate that the unified approach produces better clusters than both individual approaches as well as previously proposed semisupervised clustering algorithms.
Semisupervised Clustering by Seeding
 In Proceedings of 19th International Conference on Machine Learning (ICML2002
, 2002
"... Semisupervised clustering uses a small amount of labeled data to aid and bias the clustering of unlabeled data. This paper explores the use of labeled data to generate initial seed clusters, as well as the use of constraints generated from labeled data to guide the clustering process. It intr ..."
Abstract

Cited by 206 (17 self)
 Add to MetaCart
Semisupervised clustering uses a small amount of labeled data to aid and bias the clustering of unlabeled data. This paper explores the use of labeled data to generate initial seed clusters, as well as the use of constraints generated from labeled data to guide the clustering process. It introduces two semisupervised variants of KMeans clustering that can be viewed as instances of the EM algorithm, where labeled data provides prior information about the conditional distributions of hidden category labels. Experimental results demonstrate the advantages of these methods over standard random seeding and COPKMeans, a previously developed semisupervised clustering algorithm.
Clustering with instancelevel constraints
 In Proceedings of the Seventeenth International Conference on Machine Learning
, 2000
"... One goal of research in artificial intelligence is to automate tasks that currently require human expertise; this automation is important because it saves time and brings problems that were previously too large to be solved into the feasible domain. Data analysis, or the ability to identify meaningf ..."
Abstract

Cited by 202 (7 self)
 Add to MetaCart
One goal of research in artificial intelligence is to automate tasks that currently require human expertise; this automation is important because it saves time and brings problems that were previously too large to be solved into the feasible domain. Data analysis, or the ability to identify meaningful patterns and trends in large volumes of data, is an important task that falls into this category. Clustering algorithms are a particularly useful group of data analysis tools. These methods are used, for example, to analyze satellite images of the Earth to identify and categorize different land and foliage types or to analyze telescopic observations to determine what distinct types of astronomical bodies exist and to categorize each observation. However, most existing clustering methods apply general similarity techniques rather than making use of problemspecific information. This dissertation first presents a novel method for converting existing clustering algorithms into constrained clustering algorithms. The resulting methods are able to accept domainspecific information in the form of constraints on the output clusters. At the most general level, each constraint is an instancelevel statement
MultiManifold SemiSupervised Learning
"... We study semisupervised learning when the data consists of multiple intersecting manifolds. We give a finite sample analysis to quantify the potential gain of using unlabeled data in this multimanifold setting. We then propose a semisupervised learning algorithm that separates different manifolds ..."
Abstract

Cited by 143 (8 self)
 Add to MetaCart
We study semisupervised learning when the data consists of multiple intersecting manifolds. We give a finite sample analysis to quantify the potential gain of using unlabeled data in this multimanifold setting. We then propose a semisupervised learning algorithm that separates different manifolds into decision sets, and performs supervised learning within each set. Our algorithm involves a novel application of Hellinger distance and sizeconstrained spectral clustering. Experiments demonstrate the benefit of our multimanifold semisupervised learning approach. 1
Semisupervised Clustering with User Feedback
, 2003
"... We present a new approach to clustering based on the observation that \it is easier to criticize than to construct." Our approach of semisupervised clustering allows a user to iteratively provide feedback to a clustering algorithm. The feedback is incorporated in the form of constraints w ..."
Abstract

Cited by 124 (2 self)
 Add to MetaCart
We present a new approach to clustering based on the observation that \it is easier to criticize than to construct." Our approach of semisupervised clustering allows a user to iteratively provide feedback to a clustering algorithm. The feedback is incorporated in the form of constraints which the clustering algorithm attempts to satisfy on future iterations. These constraints allow the user to guide the clusterer towards clusterings of the data that the user nds more useful. We demonstrate semisupervised clustering with a system that learns to cluster news stories from a Reuters data set. Introduction Consider the following problem: you are given 100,000 text documents (e.g., papers, newsgroup articles, or web pages) and asked to group them into classes or into a hierarchy such that related documents are grouped together. You are not told what classes or hierarchy to use or what documents are related; you have some criteria in mind, but may not be able to say exactly w...
Semisupervised graph clustering: a kernel approach
, 2008
"... Semisupervised clustering algorithms aim to improve clustering results using limited supervision. The supervision is generally given as pairwise constraints; such constraints are natural for graphs, yet most semisupervised clustering algorithms are designed for data represented as vectors. In this ..."
Abstract

Cited by 94 (3 self)
 Add to MetaCart
Semisupervised clustering algorithms aim to improve clustering results using limited supervision. The supervision is generally given as pairwise constraints; such constraints are natural for graphs, yet most semisupervised clustering algorithms are designed for data represented as vectors. In this paper, we unify vectorbased and graphbased approaches. We first show that a recentlyproposed objective function for semisupervised clustering based on Hidden Markov Random Fields, with squared Euclidean distance and a certain class of constraint penalty functions, can be expressed as a special case of the weighted kernel kmeans objective (Dhillon et al., in Proceedings of the 10th International Conference on Knowledge Discovery and Data Mining, 2004a). A recent theoretical connection between weighted kernel kmeans and several graph clustering objectives enables us to perform semisupervised clustering of data given either as vectors or as a graph. For graph data, this result leads to algorithms for optimizing several new semisupervised graph clustering objectives. For vector data, the kernel approach also enables us to find clusters with nonlinear boundaries in the input data space. Furthermore, we show that recent work on spectral learning (Kamvar et al., in Proceedings of the 17th International Joint Conference on Artificial Intelligence, 2003) may be viewed as a special case of our formulation. We empirically show that our algorithm is able to outperform current stateoftheart semisupervised algorithms on both vectorbased and graphbased data sets.
Statistical strategies for avoiding false discoveries in metabolomics and related experiments
, 2006
"... Many metabolomics, and other highcontent or highthroughput, experiments are set up such that the primary aim is the discovery of biomarker metabolites that can discriminate, with a certain level of certainty, between nominally matched ‘case ’ and ‘control ’ samples. However, it is unfortunately ve ..."
Abstract

Cited by 60 (11 self)
 Add to MetaCart
(Show Context)
Many metabolomics, and other highcontent or highthroughput, experiments are set up such that the primary aim is the discovery of biomarker metabolites that can discriminate, with a certain level of certainty, between nominally matched ‘case ’ and ‘control ’ samples. However, it is unfortunately very easy to find markers that are apparently persuasive but that are in fact entirely spurious, and there are wellknown examples in the proteomics literature. The main types of danger are not entirely independent of each other, but include bias, inadequate sample size (especially relative to the number of metabolite variables and to the required statistical power to prove that a biomarker is discriminant), excessive false discovery rate due to multiple hypothesis testing, inappropriate choice of particular numerical methods, and overfitting (generally caused by the failure to perform adequate validation and crossvalidation). Many studies fail to take these into account, and thereby fail to discover anything of true significance (despite their claims). We summarise these problems, and provide pointers to a substantial existing literature that should assist in the improved design and evaluation of metabolomics experiments, thereby allowing robust scientific conclusions to be drawn from the available data. We provide a list of some of the simpler checks that might improve one’s confidence that a candidate biomarker is not simply a statistical artefact, and suggest a series of preferred tests and visualisation tools that can assist readers and authors in assessing papers. These tools can be applied to individual metabolites by using multiple univariate tests performed in parallel across all metabolite peaks. They may also be applied to the validation of multivariate models. We stress in
Meta clustering
 In Proceedings IEEE International Conference on Data Mining
, 2006
"... Clustering is illdefined. Unlike supervised learning where labels lead to crisp performance criteria such as accuracy and squared error, clustering quality depends on how the clusters will be used. Devising clustering criteria that capture what users need is difficult. Most clustering algorithms se ..."
Abstract

Cited by 41 (1 self)
 Add to MetaCart
(Show Context)
Clustering is illdefined. Unlike supervised learning where labels lead to crisp performance criteria such as accuracy and squared error, clustering quality depends on how the clusters will be used. Devising clustering criteria that capture what users need is difficult. Most clustering algorithms search for optimal clusterings based on a prespecified clustering criterion. Our approach differs. We search for many alternate clusterings of the data, and then allow users to select the clustering(s) that best fit their needs. Meta clustering first finds a variety of clusterings and then clusters this diverse set of clusterings so that users must only examine a small number of qualitatively different clusterings. We present methods for automatically generating a diverse set of alternate clusterings, as well as methods for grouping clusterings into meta clusters. We evaluate meta clustering on four test problems and two case studies. Surprisingly, clusterings that would be of most interest to users often are not very compact clusterings. 1.