Results 11  20
of
1,713
Spectral hashing
, 2009
"... Semantic hashing [1] seeks compact binary codes of datapoints so that the Hamming distance between codewords correlates with semantic similarity. In this paper, we show that the problem of finding a best code for a given dataset is closely related to the problem of graph partitioning and can be sho ..."
Abstract

Cited by 284 (4 self)
 Add to MetaCart
(Show Context)
Semantic hashing [1] seeks compact binary codes of datapoints so that the Hamming distance between codewords correlates with semantic similarity. In this paper, we show that the problem of finding a best code for a given dataset is closely related to the problem of graph partitioning and can be shown to be NP hard. By relaxing the original problem, we obtain a spectral method whose solutions are simply a subset of thresholded eigenvectors of the graph Laplacian. By utilizing recent results on convergence of graph Laplacian eigenvectors to the LaplaceBeltrami eigenfunctions of manifolds, we show how to efficiently calculate the code of a novel datapoint. Taken together, both learning the code and applying it to a novel point are extremely simple. Our experiments show that our codes outperform the stateofthe art.
Unsupervised Learning of Image Manifolds by Semidefinite Programming
, 2004
"... Can we detect low dimensional structure in high dimensional data sets of images and video? The problem of dimensionality reduction arises often in computer vision and pattern recognition. In this paper, we propose a new solution to this problem based on semidefinite programming. Our algorithm can be ..."
Abstract

Cited by 270 (9 self)
 Add to MetaCart
Can we detect low dimensional structure in high dimensional data sets of images and video? The problem of dimensionality reduction arises often in computer vision and pattern recognition. In this paper, we propose a new solution to this problem based on semidefinite programming. Our algorithm can be used to analyze high dimensional data that lies on or near a low dimensional manifold. It overcomes certain limitations of previous work in manifold learning, such as Isomap and locally linear embedding. We illustrate the algorithm on easily visualized examples of curves and surfaces, as well as on actual images of faces, handwritten digits, and solid objects.
Multiclass spectral clustering
 In Proc. Int. Conf. Computer Vision
, 2003
"... We propose a principled account on multiclass spectral clustering. Given a discrete clustering formulation, we first solve a relaxed continuous optimization problem by eigendecomposition. We clarify the role of eigenvectors as a generator of all optimal solutions through orthonormal transforms. We t ..."
Abstract

Cited by 265 (7 self)
 Add to MetaCart
(Show Context)
We propose a principled account on multiclass spectral clustering. Given a discrete clustering formulation, we first solve a relaxed continuous optimization problem by eigendecomposition. We clarify the role of eigenvectors as a generator of all optimal solutions through orthonormal transforms. We then solve an optimal discretization problem, which seeks a discrete solution closest to the continuous optima. The discretization is efficiently computed in an iterative fashion using singular value decomposition and nonmaximum suppression. The resulting discrete solutions are nearly globaloptimal. Our method is robust to random initialization and converges faster than other clustering methods. Experiments on real image segmentation are reported. optima consist not only of the eigenvectors, but of a whole family spanned by the eigenvectors through orthonormal transforms. The goal is to find the right orthonormal transform that leads to a discretization. ˜X normalize
Metric Learning by Collapsing Classes
"... We present an algorithm for learning a quadratic Gaussian metric (Mahalanobis distance) for use in classification tasks. Our method relies on the simple geometric intuition that a good metric is one under which points in the same class are simultaneously near each other and far from points in th ..."
Abstract

Cited by 230 (2 self)
 Add to MetaCart
We present an algorithm for learning a quadratic Gaussian metric (Mahalanobis distance) for use in classification tasks. Our method relies on the simple geometric intuition that a good metric is one under which points in the same class are simultaneously near each other and far from points in the other classes. We construct a convex optimization problem whose solution generates such a metric by trying to collapse all examples in the same class to a single point and push examples in other classes infinitely far away. We show that when the metric we learn is used in simple classifiers, it yields substantial improvements over standard alternatives on a variety of problems. We also discuss how the learned metric may be used to obtain a compact low dimensional feature representation of the original input space, allowing more efficient classification with very little reduction in performance.
Combining pairwise sequence similarity and support vector machines for remote protein homology detection
 Proc. 6th Ann. Int. Conf. Computational Molecular Biology
, 2002
"... One key element in understanding the molecular machinery of the cell is to understand the structure and function of each protein encoded in the genome. A very successful means of inferring the structure or function of a previously unannotated protein is via sequence similarity with one or more prote ..."
Abstract

Cited by 205 (20 self)
 Add to MetaCart
(Show Context)
One key element in understanding the molecular machinery of the cell is to understand the structure and function of each protein encoded in the genome. A very successful means of inferring the structure or function of a previously unannotated protein is via sequence similarity with one or more proteins whose structure or function is already known. Toward this end, we propose a means of representing proteins using pairwise sequence similarity scores. This representation, combined with a discriminative classi � cation algorithm known as the support vector machine (SVM), provides a powerful means of detecting subtle structural and evolutionary relationships among proteins. The algorithm, called SVMpairwise, when tested on its ability to recognize previously unseen families from the SCOP database, yields signi � cantly better performance than SVMFisher, pro � le HMMs, and PSIBLAST. Key words: pairwise sequence comparison, homology, detection, support vector machines. 1.
Kmeans Clustering via Principal Component Analysis
, 2004
"... Principal component analysis (PCA) is a widely used statistical technique for unsupervised dimension reduction. Kmeans clustering is a commonly used data clustering for performing unsupervised learning tasks. Here we ..."
Abstract

Cited by 201 (5 self)
 Add to MetaCart
Principal component analysis (PCA) is a widely used statistical technique for unsupervised dimension reduction. Kmeans clustering is a commonly used data clustering for performing unsupervised learning tasks. Here we
Cluster kernels for semisupervised learning
 Advances in Neural Information Processing Systems
, 2002
"... We propose a framework to incorporate unlabeled data in kernel classifier, based on the idea that two points in the same cluster are more likely to have the same label. This is achieved by modifying the eigenspectrum of the kernel matrix. Experimental results assess the validity of this approach. 1 ..."
Abstract

Cited by 188 (10 self)
 Add to MetaCart
(Show Context)
We propose a framework to incorporate unlabeled data in kernel classifier, based on the idea that two points in the same cluster are more likely to have the same label. This is achieved by modifying the eigenspectrum of the kernel matrix. Experimental results assess the validity of this approach. 1
Fast random walk with restart and its applications
 In ICDM ’06: Proceedings of the 6th IEEE International Conference on Data Mining
, 2006
"... How closely related are two nodes in a graph? How to compute this score quickly, on huge, diskresident, real graphs? Random walk with restart (RWR) provides a good relevance score between two nodes in a weighted graph, and it has been successfully used in numerous settings, like automatic captionin ..."
Abstract

Cited by 179 (19 self)
 Add to MetaCart
(Show Context)
How closely related are two nodes in a graph? How to compute this score quickly, on huge, diskresident, real graphs? Random walk with restart (RWR) provides a good relevance score between two nodes in a weighted graph, and it has been successfully used in numerous settings, like automatic captioning of images, generalizations to the “connection subgraphs”, personalized PageRank, and many more. However, the straightforward implementations of RWR do not scale for large graphs, requiring either quadratic space and cubic precomputation time, or slow response time on queries. We propose fast solutions to this problem. The heart of our approach is to exploit two important properties shared by many real graphs: (a) linear correlations and (b) blockwise, communitylike structure. We exploit the linearity by using lowrank matrix approximation, and the community structure by graph partitioning, followed by the ShermanMorrison lemma for matrix inversion. Experimental results on the Corel image and the DBLP dabasets demonstrate that our proposed methods achieve significant savings over the straightforward implementations: they can save several orders of magnitude in precomputation and storage cost, and they achieve up to 150x speed up with 90%+ quality preservation. 1