Results 1 - 10
of
229
Flow-Sensitive Type Qualifiers
, 2002
"... We present a system for extending standard type systems with flow-sensitive type qualifiers. Users annotate their programs with type qualifiers, and inference checks that the annotations are correct. In our system only the type qualifiers are modeled flow-sensitively - the underlying standard types ..."
Abstract
-
Cited by 409 (28 self)
- Add to MetaCart
(Show Context)
We present a system for extending standard type systems with flow-sensitive type qualifiers. Users annotate their programs with type qualifiers, and inference checks that the annotations are correct. In our system only the type qualifiers are modeled flow-sensitively - the underlying standard types are unchanged, which allows us to obtain an efficient constraint-based inference algorithm that integrates flow-insensitive alias analysis, effect inference, and ideas from linear type systems to support strong updates. We demonstrate the usefulness of flow-sensitive type qualifiers by finding a number of new locking bugs in the Linux kernel.
Cyclone: A safe dialect of C
"... Cyclone is a safe dialect of C. It has been designed from the ground up to prevent the buffer overflows, format string attacks, and memory management errors that are common in C programs, while retaining C's syntax and semantics. This paper examines safety violations enabled by C's design ..."
Abstract
-
Cited by 401 (24 self)
- Add to MetaCart
(Show Context)
Cyclone is a safe dialect of C. It has been designed from the ground up to prevent the buffer overflows, format string attacks, and memory management errors that are common in C programs, while retaining C's syntax and semantics. This paper examines safety violations enabled by C's design, and shows how Cyclone avoids them, without giving up C's hallmark control over low-level details such as data representation and memory management.
Vigilante: End-to-End Containment of Internet Worm Epidemics
, 2008
"... Worm containment must be automatic because worms can spread too fast for humans to respond. Recent work proposed network-level techniques to automate worm containment; these techniques have limitations because there is no information about the vulnerabilities exploited by worms at the network level. ..."
Abstract
-
Cited by 304 (6 self)
- Add to MetaCart
Worm containment must be automatic because worms can spread too fast for humans to respond. Recent work proposed network-level techniques to automate worm containment; these techniques have limitations because there is no information about the vulnerabilities exploited by worms at the network level. We propose Vigilante, a new end-to-end architecture to contain worms automatically that addresses these limitations. In Vigilante, hosts detect worms by instrumenting vulnerable programs to analyze infection attempts. We introduce dynamic data-flow analysis: a broad-coverage host-based algorithm that can detect unknown worms by tracking the flow of data from network messages and disallowing unsafe uses of this data. We also show how to integrate other host-based detection mechanisms into the Vigilante architecture. Upon detection, hosts generate self-certifying alerts (SCAs), a new type of security alert that can be inexpensively verified by any vulnerable host. Using SCAs, hosts can cooperate to contain an outbreak, without having to trust each other. Vigilante broadcasts SCAs over an overlay network that propagates alerts rapidly and resiliently. Hosts receiving an SCA protect themselves by generating filters with vulnerability condition slicing: an algorithm that performs dynamic analysis of the vulnerable program to identify control-flow conditions that lead
Securing Web Application Code by Static Analysis and Runtime Protection
, 2004
"... Security remains a major roadblock to universal acceptance of the Web for many kinds of transactions, especially since the recent sharp increase in remotely exploitable vulnerabilities has been attributed to Web application bugs. Many verification tools are discovering previously unknown vulnerabili ..."
Abstract
-
Cited by 234 (2 self)
- Add to MetaCart
(Show Context)
Security remains a major roadblock to universal acceptance of the Web for many kinds of transactions, especially since the recent sharp increase in remotely exploitable vulnerabilities has been attributed to Web application bugs. Many verification tools are discovering previously unknown vulnerabilities in legacy C programs, raising hopes that the same success can be achieved with Web applications. In this paper, we describe a sound and holistic approach to ensuring Web application security. Viewing Web application vulnerabilities as a secure information flow problem, we created a lattice-based static analysis algorithm derived from type systems and typestate, and addressed its soundness. During the analysis, sections of code considered vulnerable are instrumented with runtime guards, thus securing Web applications in the absence of user intervention. With sufficient annotations, runtime overhead can be reduced to zero. We also created a tool named WebSSARI (Web application Security by Static Analysis and Runtime Inspection) to test our algorithm, and used it to verify 230 open-source Web application projects on SourceForge.net, which were selected to represent projects of different maturity, popularity, and scale. 69 contained vulnerabilities and their developers were notified. 38 projects acknowledged our findings and stated their plans to provide patches. Our statistics also show that static analysis reduced potential runtime overhead by 98.4%.
Countering Code-Injection Attacks With Instruction-Set Randomization
- In Proceedings of the ACM Computer and Communications Security (CCS) Conference
, 2003
"... We describe a new, general approach for safeguarding systems against any type of code-injection attack. We apply Kerckhoff’s principle, by creating process-specific randomized instruction sets (e.g., machine instructions) of the system executing potentially vulnerable software. An attacker who does ..."
Abstract
-
Cited by 234 (26 self)
- Add to MetaCart
(Show Context)
We describe a new, general approach for safeguarding systems against any type of code-injection attack. We apply Kerckhoff’s principle, by creating process-specific randomized instruction sets (e.g., machine instructions) of the system executing potentially vulnerable software. An attacker who does not know the key to the randomization algorithm will inject code that is invalid for that randomized processor, causing a runtime exception. To determine the difficulty of integrating support for the proposed mechanism in the operating system, we modified the Linux kernel, the GNU binutils tools, and the bochs-x86 emulator. Although the performance penalty is significant, our prototype demonstrates the feasibility of the approach, and should be directly usable on a suitable-modified processor (e.g., the Transmeta Crusoe). Our approach is equally applicable against code-injecting attacks in scripting and interpreted languages, e.g., web-based SQL injection. We demonstrate this by modifying the Perl interpreter to permit randomized script execution. The performance penalty in this case is minimal. Where our proposed approach is feasible (i.e., in an emulated environment, in the presence of programmable or specialized hardware, or in interpreted languages), it can serve as a low-overhead protection mechanism, and can easily complement other mechanisms.
MOPS: an Infrastructure for Examining Security Properties of Software
- In Proceedings of the 9th ACM Conference on Computer and Communications Security
, 2002
"... We describe a formal approach for finding bugs in security-relevant software and verifying their absence. The idea is as follows: we identify rules of safe programming practice, encode them as safety properties, and verify whether these properties are obeyed. Because manual verification is too expen ..."
Abstract
-
Cited by 233 (8 self)
- Add to MetaCart
(Show Context)
We describe a formal approach for finding bugs in security-relevant software and verifying their absence. The idea is as follows: we identify rules of safe programming practice, encode them as safety properties, and verify whether these properties are obeyed. Because manual verification is too expensive, we have built a program analysis tool to automate this process. Our program analysis models the program to be verified as a pushdown automaton, represents the security property as a finite state automaton, and uses model checking techniques to identify whether any state violating the desired security goal is reachable in the program. The major advantages of this approach are that it is sound in verifying the absence of certain classes of vulnerabilities, that it is fully interprocedural, and that it is efficient and scalable. Experience suggests that this approach will be useful in finding a wide range of security vulnerabilities in large programs efficiently.
Precise analysis of string expressions
- In Proc. 10th International Static Analysis Symposium, SAS ’03, volume 2694 of LNCS
, 2003
"... We perform static analysis of Java programs to answer a simple question: which values may occur as results of string expressions? The answers are summarized for each expression by a regular language that is guaranteed to contain all possible values. We present several applications of this analysis, ..."
Abstract
-
Cited by 221 (18 self)
- Add to MetaCart
We perform static analysis of Java programs to answer a simple question: which values may occur as results of string expressions? The answers are summarized for each expression by a regular language that is guaranteed to contain all possible values. We present several applications of this analysis, including statically checking the syntax of dynamically generated expressions, such as SQL queries. Our analysis constructs flow graphs from class files and generates a context-free grammar with a nonterminal for each string expression. The language of this grammar is then widened into a regular language through a variant of an algorithm previously used for speech recognition. The collection of resulting regular languages is compactly represented as a special kind of multi-level automaton from which individual answers may be extracted. If a program error is detected, examples of invalid strings are automatically produced. We present extensive benchmarks demonstrating that the analysis is e#cient and produces results of useful precision.
Pixy: A Static Analysis Tool for Detecting Web Application Vulnerabilities (Short Paper)
- IN 2006 IEEE SYMPOSIUM ON SECURITY AND PRIVACY
, 2006
"... The number and the importance of Web applications have increased rapidly over the last years. At the same time, the quantity and impact of security vulnerabilities in such applications have grown as well. Since manual code reviews are time-consuming, error-prone and costly, the need for automated so ..."
Abstract
-
Cited by 212 (23 self)
- Add to MetaCart
(Show Context)
The number and the importance of Web applications have increased rapidly over the last years. At the same time, the quantity and impact of security vulnerabilities in such applications have grown as well. Since manual code reviews are time-consuming, error-prone and costly, the need for automated solutions has become evident. In this paper, we address the problem of vulnerable Web applications by means of static source code analysis. More precisely, we use flow-sensitive, interprocedural and context-sensitive data flow analysis to discover vulnerable points in a program. In addition, alias and literal analysis are employed to improve the correctness and precision of the results. The presented concepts are targeted at the general class of taint-style vulnerabilities and can be applied to the detection of vulnerability types such as SQL injection, cross-site scripting, or command injection. Pixy, the open source prototype implementation of our concepts, is targeted at detecting cross-site scripting vulnerabilities in PHP scripts. Using our tool, we discovered and reported 15 previously unknown vulnerabilities in three web applications, and reconstructed 36 known vulnerabilities in three other web applications. The observed false positive rate is at around 50 % (i.e., one false positive for each vulnerability) and therefore, low enough to permit effective security audits.
Taint-enhanced policy enforcement: A practical approach to defeat a wide range of attacks
- In the Proc. of the 15th USENIX Security Symp
, 2006
"... Policy-based confinement, employed in SELinux and specification-based intrusion detection systems, is a popular approach for defending against exploitation of vulnerabilities in benign software. Conventional access control policies employed in these approaches are effective in detecting privilege es ..."
Abstract
-
Cited by 202 (10 self)
- Add to MetaCart
(Show Context)
Policy-based confinement, employed in SELinux and specification-based intrusion detection systems, is a popular approach for defending against exploitation of vulnerabilities in benign software. Conventional access control policies employed in these approaches are effective in detecting privilege escalation attacks. However, they are unable to detect attacks that “hijack ” legitimate access privileges granted to a program, e.g., an attack that subverts an FTP server to download the password file. (Note that an FTP server would normally need to access the password file for performing user authentication.) Some of the common attack types reported today, such as SQL injection and cross-site scripting, involve such subversion of legitimate access privileges. In this paper, we present a new approach to strengthen policy enforcement by augmenting security policies with information about the trustworthiness of data used in securitysensitive operations. We evaluated this technique using 9 available exploits involving several popular software packages containing the above types of vulnerabilities. Our technique sucessfully defeated these exploits. 1
Non-control-data attacks are realistic threats
- In USENIX Security Symposium
, 2005
"... Most memory corruption attacks and Internet worms follow a familiar pattern known as the control-data attack. Hence, many defensive techniques are designed to protect program control flow integrity. Although earlier work did suggest the existence of attacks that do not alter control flow, such attac ..."
Abstract
-
Cited by 185 (6 self)
- Add to MetaCart
(Show Context)
Most memory corruption attacks and Internet worms follow a familiar pattern known as the control-data attack. Hence, many defensive techniques are designed to protect program control flow integrity. Although earlier work did suggest the existence of attacks that do not alter control flow, such attacks are generally believed to be rare against real-world software. The key contribution of this paper is to show that non-control-data attacks are realistic. We demonstrate that many real-world applications, including FTP, SSH, Telnet, and HTTP servers, are vulnerable to such attacks. In each case, the generated attack results in a security compromise equivalent to that due to the controldata attack exploiting the same security bug. Non-control-data attacks corrupt a variety of application data including user identity data, configuration data, user input data, and decision-making data. The success of these attacks and the variety of applications and target data suggest that potential attack patterns are diverse. Attackers are currently focused on control-data attacks, but it is clear that when control flow protection techniques shut them down, they have incentives to study and employ non-control-data attacks. This paper emphasizes the importance of future research efforts to address this realistic threat. 1