Results 1  10
of
20
Interior methods for nonlinear optimization
 SIAM REVIEW
, 2002
"... Interior methods are an omnipresent, conspicuous feature of the constrained optimization landscape today, but it was not always so. Primarily in the form of barrier methods, interiorpoint techniques were popular during the 1960s for solving nonlinearly constrained problems. However, their use for ..."
Abstract

Cited by 127 (6 self)
 Add to MetaCart
(Show Context)
Interior methods are an omnipresent, conspicuous feature of the constrained optimization landscape today, but it was not always so. Primarily in the form of barrier methods, interiorpoint techniques were popular during the 1960s for solving nonlinearly constrained problems. However, their use for linear programming was not even contemplated because of the total dominance of the simplex method. Vague but continuing anxiety about barrier methods eventually led to their abandonment in favor of newly emerging, apparently more efficient alternatives such as augmented Lagrangian and sequential quadratic programming methods. By the early 1980s, barrier methods were almost without exception regarded as a closed chapter in the history of optimization. This picture changed dramatically with Karmarkar’s widely publicized announcement in 1984 of a fast polynomialtime interior method for linear programming; in 1985, a formal connection was established between his method and classical barrier methods. Since then, interior methods have advanced so far, so fast, that their influence has transformed both the theory and practice of constrained optimization. This article provides a condensed, selective look at classical material and recent research about interior methods for nonlinearly constrained optimization.
KNITRO: An integrated package for nonlinear optimization
 Large Scale Nonlinear Optimization, 35–59, 2006
, 2006
"... This paper describes Knitro 5.0, a Cpackage for nonlinear optimization that combines complementary approaches to nonlinear optimization to achieve robust performance over a wide range of application requirements. The package is designed for solving largescale, smooth nonlinear programming problems ..."
Abstract

Cited by 111 (3 self)
 Add to MetaCart
(Show Context)
This paper describes Knitro 5.0, a Cpackage for nonlinear optimization that combines complementary approaches to nonlinear optimization to achieve robust performance over a wide range of application requirements. The package is designed for solving largescale, smooth nonlinear programming problems, and it is also effective for the following special cases: unconstrained optimization, nonlinear systems of equations, least squares, and linear and quadratic programming. Various algorithmic options are available, including two interior methods and an activeset method. The package provides crossover techniques between algorithmic options as well as automatic selection of options and settings. 1
CUTEr (and SifDec), a constrained and unconstrained testing environment, revisited
 ACM TRANSACTIONS ON MATHEMATICAL SOFTWARE
, 2001
"... The initial release of CUTE, a widely used testing environment for optimization software was described in [2]. The latest version, now known as CUTEr is presented. New features include reorganisation of the environment to allow simultaneous multiplatform installation, new tools for, and interface ..."
Abstract

Cited by 89 (7 self)
 Add to MetaCart
(Show Context)
The initial release of CUTE, a widely used testing environment for optimization software was described in [2]. The latest version, now known as CUTEr is presented. New features include reorganisation of the environment to allow simultaneous multiplatform installation, new tools for, and interfaces to, optimization packages, and a considerably simplified and entirely automated installation procedure for unix systems. The SIF decoder, which used to be a part of CUTE, has become a separate tool, easily callable by various packages. It features simple extensions to the SIF test problem format and the generation of files suited to automatic differentiation packages.
On Augmented Lagrangian methods with general lowerlevel constraints
, 2005
"... Augmented Lagrangian methods with general lowerlevel constraints are considered in the present research. These methods are useful when efficient algorithms exist for solving subproblems where the constraints are only of the lowerlevel type. Two methods of this class are introduced and analyzed. In ..."
Abstract

Cited by 84 (7 self)
 Add to MetaCart
(Show Context)
Augmented Lagrangian methods with general lowerlevel constraints are considered in the present research. These methods are useful when efficient algorithms exist for solving subproblems where the constraints are only of the lowerlevel type. Two methods of this class are introduced and analyzed. Inexact resolution of the lowerlevel constrained subproblems is considered. Global convergence is proved using the Constant Positive Linear Dependence constraint qualification. Conditions for boundedness of the penalty parameters are discussed. The reliability of the approach is tested by means of an exhaustive comparison against Lancelot. All the problems of the Cute collection are used in this comparison. Moreover, the resolution of location problems in which many constraints of the lowerlevel set are nonlinear is addressed, employing the Spectral Projected Gradient method for solving the subproblems. Problems of this type with more than 3 × 10 6 variables and 14 × 10 6 constraints are solved in this way, using moderate computer time.
An interior point algorithm for largescale nonlinear . . .
, 2002
"... Nonlinear programming (NLP) has become an essential tool in process engineering, leading to prot gains through improved plant designs and better control strategies. The rapid advance in computer technology enables engineers to consider increasingly complex systems, where existing optimization codes ..."
Abstract

Cited by 64 (3 self)
 Add to MetaCart
Nonlinear programming (NLP) has become an essential tool in process engineering, leading to prot gains through improved plant designs and better control strategies. The rapid advance in computer technology enables engineers to consider increasingly complex systems, where existing optimization codes reach their practical limits. The objective of this dissertation is the design, analysis, implementation, and evaluation of a new NLP algorithm that is able to overcome the current bottlenecks, particularly in the area of process engineering. The proposed algorithm follows an interior point approach, thereby avoiding the combinatorial complexity of identifying the active constraints. Emphasis is laid on exibility in the computation of search directions, which allows the tailoring of the method to individual applications and is mandatory for the solution of very large problems. In a fullspace version the method can be used as general purpose NLP solver, for example in modeling environments such as Ampl. The reduced space version, based on coordinate decomposition, makes it possible to tailor linear algebra
Improving ultimate convergence of an Augmented Lagrangian method
, 2007
"... Optimization methods that employ the classical PowellHestenesRockafellar Augmented Lagrangian are useful tools for solving Nonlinear Programming problems. Their reputation decreased in the last ten years due to the comparative success of InteriorPoint Newtonian algorithms, which are asymptoticall ..."
Abstract

Cited by 14 (0 self)
 Add to MetaCart
Optimization methods that employ the classical PowellHestenesRockafellar Augmented Lagrangian are useful tools for solving Nonlinear Programming problems. Their reputation decreased in the last ten years due to the comparative success of InteriorPoint Newtonian algorithms, which are asymptotically faster. In the present research a combination of both approaches is evaluated. The idea is to produce a competitive method, being more robust and efficient than its “pure” counterparts for critical problems. Moreover, an additional hybrid algorithm is defined, in which the Interior Point method is replaced by the Newtonian resolution of a KKT system identified by the Augmented Lagrangian algorithm. The software used in this work is freely available through the Tango Project web page:
Solving Problems with Semidefinite and Related Constraints Using InteriorPoint Methods for Nonlinear Programming
, 2001
"... In this paper, we describe how to reformulate a problem that has secondorder cone and/or semidefiniteness constraints in order to solve it using a generalpurpose interiorpoint algorithm for nonlinear programming. The resulting problems are smooth and convex, and numerical results from the DIMAC ..."
Abstract

Cited by 12 (1 self)
 Add to MetaCart
In this paper, we describe how to reformulate a problem that has secondorder cone and/or semidefiniteness constraints in order to solve it using a generalpurpose interiorpoint algorithm for nonlinear programming. The resulting problems are smooth and convex, and numerical results from the DIMACS Implementation Challenge problems and SDPLib are provided.
InteriorPoint l_2Penalty Methods for Nonlinear Programming with Strong Global Convergence Properties
 Math. Programming
, 2004
"... We propose two line search primaldual interiorpoint methods that have a generic barrierSQP outer structure and approximately solve a sequence of equality constrained barrier subproblems. To enforce convergence for each subproblem, these methods use an # 2 exact penalty function eliminating the n ..."
Abstract

Cited by 9 (0 self)
 Add to MetaCart
We propose two line search primaldual interiorpoint methods that have a generic barrierSQP outer structure and approximately solve a sequence of equality constrained barrier subproblems. To enforce convergence for each subproblem, these methods use an # 2 exact penalty function eliminating the need to drive the corresponding penalty parameter to infinity when finite multipliers exist. Instead of directly decreasing an equality constraint infeasibility measure, these methods attain feasibility by forcing this measure to zero whenever the steps generated by the methods tend to zero. Our analysis shows that under standard assumptions, our methods have strong global convergence properties. Specifically, we show that if the penalty parameter remains bounded, any limit point of the iterate sequence is either a KKT point of the barrier subproblem, or a FritzJohn (FJ) point of the original problem that fails to satisfy the MangasarianFromovitz constraint qualification (MFCQ); if the penalty parameter tends to infinity, there is a limit point that is either an infeasible FJ point of the inequality constrained feasibility problem (an infeasible stationary point of the infeasibility measure if slack variables are added) or a FJ point of the original problem at which the MFCQ fails to hold. Numerical results are given that illustrate these outcomes.
Nonlinear programming techniques for operative planning in large drinking water networks
, 2005
"... Mathematical decision support for operative planning in water supply systems is highly desirable but leads to very difficult optimization problems. We propose a nonlinear programming approach that yields practically satisfactory operating schedules in acceptable computing time even for large networ ..."
Abstract

Cited by 8 (2 self)
 Add to MetaCart
(Show Context)
Mathematical decision support for operative planning in water supply systems is highly desirable but leads to very difficult optimization problems. We propose a nonlinear programming approach that yields practically satisfactory operating schedules in acceptable computing time even for large networks. Based on a carefully designed model supporting gradientbased optimization algorithms, this approach employs a special initialization strategy for convergence acceleration, special minimum up and down time constraints together with pump aggregation to handle switching decisions, and several network reduction techniques for further speedup. Results for selected application scenarios at Berliner Wasserbetriebe demonstrate the success of the approach.
On secondorder optimality conditions for nonlinear programming
 Optimization
"... A new SecondOrder condition is given, which depends on a weak constant rank constraint requirement. We show that practical and publicly available algorithms (www.ime.usp.br/∼egbirgin/tango) of Augmented Lagrangian type converge, after slight modifications, to stationary points defined by the new co ..."
Abstract

Cited by 5 (0 self)
 Add to MetaCart
A new SecondOrder condition is given, which depends on a weak constant rank constraint requirement. We show that practical and publicly available algorithms (www.ime.usp.br/∼egbirgin/tango) of Augmented Lagrangian type converge, after slight modifications, to stationary points defined by the new condition.