Results 1 - 10
of
497
Bayesian Description Logics. In:
- Proc. of DL’14. CEUR Workshop Proceedings,
, 2014
"... Abstract This chapter considers, on the one hand, extensions of Description Logics by features not available in the basic framework, but considered important for using Description Logics as a modeling language. In particular, it addresses the extensions concerning: concrete domain constraints; moda ..."
Abstract
-
Cited by 394 (49 self)
- Add to MetaCart
Abstract This chapter considers, on the one hand, extensions of Description Logics by features not available in the basic framework, but considered important for using Description Logics as a modeling language. In particular, it addresses the extensions concerning: concrete domain constraints; modal, epistemic, and temporal operators; probabilities and fuzzy logic; and defaults. On the other hand, it considers non-standard inference problems for Description Logics, i.e., inference problems that-unlike subsumption or instance checking-are not available in all systems, but have turned out to be useful in applications. In particular, it addresses the non-standard inference problems: least common subsumer and most specific concept; unification and matching of concepts; and rewriting.
A Novel Combination of Answer Set Programming with Description Logics for the Semantic Web
- IN PROC. KR-2004
, 2004
"... Abstract. We present a novel combination of disjunctive logic programs under the answer set semantics with description logics for the Semantic Web. The combination is based on a well-balanced interface between disjunctive logic programs and description logics, which guarantees the decidability of th ..."
Abstract
-
Cited by 288 (60 self)
- Add to MetaCart
Abstract. We present a novel combination of disjunctive logic programs under the answer set semantics with description logics for the Semantic Web. The combination is based on a well-balanced interface between disjunctive logic programs and description logics, which guarantees the decidability of the resulting formalism without assuming syntactic restrictions. We show that the new formalism has very nice semantic properties. In particular, it faithfully extends both disjunctive programs and description logics. Furthermore, we describe algorithms for reasoning in the new formalism, and we give a precise picture of its computational complexity. We also provide a special case with polynomial data complexity. 1
Data complexity of query answering in description logics
- IN PROC. OF KR 2006
, 2006
"... In this paper we study data complexity of answering conjunctive queries over Description Logic knowledge bases constituted by an ABox and a TBox. In particular, we are interested in characterizing the FOL-reducibility and the polynomial tractability boundaries of conjunctive query answering, dependi ..."
Abstract
-
Cited by 208 (77 self)
- Add to MetaCart
(Show Context)
In this paper we study data complexity of answering conjunctive queries over Description Logic knowledge bases constituted by an ABox and a TBox. In particular, we are interested in characterizing the FOL-reducibility and the polynomial tractability boundaries of conjunctive query answering, depending on the expressive power of the Description Logic used to specify the knowledge base. FOL-reducibility means that query answering can be reduced to evaluating queries over the database corresponding to the ABox. Since firstorder queries can be expressed in SQL, the importance of FOL-reducibility is that, when query answering enjoys this property, we can take advantage of Data Base Management System (DBMS) techniques for both representing data, i.e., ABox assertions, and answering queries via reformulation into SQL. What emerges from our complexity analysis is that the Description Logics of the DL-Lite family are the maximal logics allowing conjunctive query answering through standard database technology. In this sense, they are the first Description Logics specifically tailored for effective query answering over very large ABoxes.
The DL-Lite family and relations
- JOURNAL OF ARTIFICIAL INTELLIGENCE RESEARCH (JAIR)
, 2009
"... The recently introduced series of description logics under the common moniker ‘DL-Lite ’ has attracted attention of the description logic and semantic web communities due to the low computational complexity of inference, on the one hand, and the ability to represent conceptual modeling formalisms, o ..."
Abstract
-
Cited by 201 (70 self)
- Add to MetaCart
The recently introduced series of description logics under the common moniker ‘DL-Lite ’ has attracted attention of the description logic and semantic web communities due to the low computational complexity of inference, on the one hand, and the ability to represent conceptual modeling formalisms, on the other. The main aim of this article is to carry out a thorough and systematic investigation of inference in extensions of the original DL-Lite logics along five axes: by (i) adding the Boolean connectives and (ii) number restrictions to concept constructs, (iii) allowing role hierarchies, (iv) allowing role disjointness, symmetry, asymmetry, reflexivity, irreflexivity and transitivity constraints, and (v) adopting or dropping the unique name assumption. We analyze the combined complexity of satisfiability for the resulting logics, as well as the data complexity of instance checking and answering positive existential queries. Our approach is based on embedding DL-Lite logics in suitable fragments of the one-variable first-order logic, which provides useful insights into their properties and, in particular, computational behavior.
Linking data to ontologies
- J. on Data Semantics
, 2008
"... Abstract. Many organizations nowadays face the problem of accessing existing data sources by means of flexible mechanisms that are both powerful and efficient. Ontologies are widely considered as a suitable formal tool for sophisticated data access. The ontology expresses the domain of interest of t ..."
Abstract
-
Cited by 198 (73 self)
- Add to MetaCart
(Show Context)
Abstract. Many organizations nowadays face the problem of accessing existing data sources by means of flexible mechanisms that are both powerful and efficient. Ontologies are widely considered as a suitable formal tool for sophisticated data access. The ontology expresses the domain of interest of the information system at a high level of abstraction, and the relationship between data at the sources and instances of concepts and roles in the ontology is expressed by means of mappings. In this paper we present a solution to the problem of designing effective systems for ontology-based data access. Our solution is based on three main ingredients. First, we present a new ontology language, based on Description Logics, that is particularly suited to reason with large amounts of instances. The second ingredient is a novel mapping language that is able to deal with the so-called impedance mismatch problem, i.e., the problem arising from the difference between the basic elements managed by the sources, namely data, and the elements managed by the ontology, namely objects. The third ingredient is the query answering method, that combines reasoning at the level of the ontology with specific mechanisms for both taking into account the mappings and efficiently accessing the data at the sources.
OWL 2: The Next Step for OWL
, 2008
"... Since achieving W3C recommendation status in 2004, the Web Ontology Language (OWL) has been successfully applied to many problems in computer science. Practical experience with OWL has been quite positive in general; however, it has also revealed room for improvement in several areas. We systematica ..."
Abstract
-
Cited by 140 (18 self)
- Add to MetaCart
Since achieving W3C recommendation status in 2004, the Web Ontology Language (OWL) has been successfully applied to many problems in computer science. Practical experience with OWL has been quite positive in general; however, it has also revealed room for improvement in several areas. We systematically analyze the identified shortcomings of OWL, such as expressivity issues, problems with its syntaxes, and deficiencies in the definition of OWL species. Furthermore, we present an overview of OWL 2—an extension to and revision of OWL that is currently being developed within the W3C OWL Working Group. Many aspects of OWL have been thoroughly reengineered in OWL 2, thus producing a robust platform for future development of the language.
Conjunctive query answering for the description logic SHIQ
, 2007
"... Conjunctive queries play an important role as an expressive query language for Description Logics (DLs). Although modern DLs usually provide for transitive roles, it was an open problem whether conjunctive query answering over DL knowledge bases is decidable if transitive roles are admitted in the q ..."
Abstract
-
Cited by 140 (28 self)
- Add to MetaCart
Conjunctive queries play an important role as an expressive query language for Description Logics (DLs). Although modern DLs usually provide for transitive roles, it was an open problem whether conjunctive query answering over DL knowledge bases is decidable if transitive roles are admitted in the query. In this paper, we consider conjunctive queries over knowledge bases formulated in the popular DL SHIQ and allow transitive roles in both the query and the knowledge base. We show that query answering is decidable and establish the following complexity bounds: regarding combined complexity, we devise a deterministic algorithm for query answering that needs time single exponential in the size of the KB and double exponential in the size of the query. Regarding data complexity, we prove co-NP-completeness. 1
A general Datalog-based framework for tractable query answering over ontologies
- In Proc. PODS-2009. ACM
, 2009
"... Ontologies play a key role in the Semantic Web [4], data modeling, and information integration [16]. Recent trends in ontological reasoning have shifted from decidability issues to tractability ones, as e.g. reflected by the work on the DL-Lite family of tractable description logics (DLs) [11, 19]. ..."
Abstract
-
Cited by 135 (24 self)
- Add to MetaCart
(Show Context)
Ontologies play a key role in the Semantic Web [4], data modeling, and information integration [16]. Recent trends in ontological reasoning have shifted from decidability issues to tractability ones, as e.g. reflected by the work on the DL-Lite family of tractable description logics (DLs) [11, 19]. An important result of these works is that the main
Taming the infinite chase: Query answering under expressive relational constraints
- In Proc. of KR 2008
, 2008
"... The chase algorithm is a fundamental tool for query evaluation and for testing query containment under tuple-generating dependencies (TGDs) and equality-generating dependencies (EGDs). So far, most of the research on this topic has focused on cases where the chase procedure terminates. This paper in ..."
Abstract
-
Cited by 104 (16 self)
- Add to MetaCart
The chase algorithm is a fundamental tool for query evaluation and for testing query containment under tuple-generating dependencies (TGDs) and equality-generating dependencies (EGDs). So far, most of the research on this topic has focused on cases where the chase procedure terminates. This paper introduces expressive classes of TGDs defined via syntactic restrictions: guarded TGDs (GTGDs) and weakly guarded sets of TGDs (WGT-GDs). For these classes, the chase procedure is not guaranteed to terminate and thus may have an infinite outcome. Nevertheless, we prove that the problems of conjunctive-query answering and query containment under such TGDs are decidable. We provide decision procedures and tight complexity bounds for these problems. Then we show how EGDs can be incorporated into our results by providing conditions under which EGDs do not harmfully interact with TGDs and do not affect the decidability and complexity of query answering. We show applications of the aforesaid classes of constraints to the problem of answering conjunctive queries in F-Logic Lite, an object-oriented ontology language, and in some tractable Description Logics. 1.
Conjunctive Query Answering in the Description Logic EL Using a Relational Database System
"... Conjunctive queries (CQ) are fundamental for accessing description logic (DL) knowledge bases. We study CQ answering in (extensions of) the DL EL, which is popular for large-scale ontologies and underlies the designated OWL2-EL profile of OWL2. Our main contribution is a novel approach to CQ answeri ..."
Abstract
-
Cited by 92 (19 self)
- Add to MetaCart
Conjunctive queries (CQ) are fundamental for accessing description logic (DL) knowledge bases. We study CQ answering in (extensions of) the DL EL, which is popular for large-scale ontologies and underlies the designated OWL2-EL profile of OWL2. Our main contribution is a novel approach to CQ answering that enables the use of standard relational database systems as the basis for query execution. We evaluate our approach using the IBM DB2 system, with encouraging results. 1