Results 1  10
of
91
Optimal aggregation of classifiers in statistical learning
 ANN. STATIST
, 2004
"... Classification can be considered as nonparametric estimation of sets, where the risk is defined by means of a specific distance between sets associated with misclassification error. It is shown that the rates of convergence of classifiers depend on two parameters: the complexity of the class of cand ..."
Abstract

Cited by 215 (6 self)
 Add to MetaCart
Classification can be considered as nonparametric estimation of sets, where the risk is defined by means of a specific distance between sets associated with misclassification error. It is shown that the rates of convergence of classifiers depend on two parameters: the complexity of the class of candidate sets and the margin parameter. The dependence is explicitly given, indicating that optimal fast rates approaching O(nâ1) can be attained, where n is the sample size, and that the proposed classifiers have the property of robustness to the margin. The main result of the paper concerns optimal aggregation of classifiers: we suggest a classifier that automatically adapts both to the complexity and to the margin, and attains the optimal fast rates, up to a logarithmic factor.
On the Generalization Ability of Online Learning Algorithms
 IEEE Transactions on Information Theory
, 2001
"... In this paper we show that online algorithms for classification and regression can be naturally used to obtain hypotheses with good datadependent tail bounds on their risk. Our results are proven without requiring complicated concentrationofmeasure arguments and they hold for arbitrary onlin ..."
Abstract

Cited by 173 (7 self)
 Add to MetaCart
(Show Context)
In this paper we show that online algorithms for classification and regression can be naturally used to obtain hypotheses with good datadependent tail bounds on their risk. Our results are proven without requiring complicated concentrationofmeasure arguments and they hold for arbitrary online learning algorithms. Furthermore, when applied to concrete online algorithms, our results yield tail bounds that in many cases are comparable or better than the best known bounds.
Local Rademacher complexities
 Annals of Statistics
, 2002
"... We propose new bounds on the error of learning algorithms in terms of a datadependent notion of complexity. The estimates we establish give optimal rates and are based on a local and empirical version of Rademacher averages, in the sense that the Rademacher averages are computed from the data, on a ..."
Abstract

Cited by 161 (21 self)
 Add to MetaCart
(Show Context)
We propose new bounds on the error of learning algorithms in terms of a datadependent notion of complexity. The estimates we establish give optimal rates and are based on a local and empirical version of Rademacher averages, in the sense that the Rademacher averages are computed from the data, on a subset of functions with small empirical error. We present some applications to classification and prediction with convex function classes, and with kernel classes in particular.
Aggregation for Gaussian regression
 SUBMITTED TO THE ANNALS OF STATISTICS
, 2007
"... This paper studies statistical aggregation procedures in the regression setting. A motivating factor is the existence of many different methods of estimation, leading to possibly competing estimators. We consider here three different types of aggregation: model selection (MS) aggregation, convex (C) ..."
Abstract

Cited by 144 (17 self)
 Add to MetaCart
(Show Context)
This paper studies statistical aggregation procedures in the regression setting. A motivating factor is the existence of many different methods of estimation, leading to possibly competing estimators. We consider here three different types of aggregation: model selection (MS) aggregation, convex (C) aggregation and linear (L) aggregation. The objective of (MS) is to select the optimal single estimator from the list; that of (C) is to select the optimal convex combination of the given estimators; and that of (L) is to select the optimal linear combination of the given estimators. We are interested in evaluating the rates of convergence of the excess risks of the estimators obtained by these procedures. Our approach is motivated by recent minimax results in [34, 40]. There exist competing aggregation procedures achieving optimal convergence rates for each of the (MS), (C) and (L) cases separately. Since these procedures are not directly comparable with each other, we suggest an alternative solution. We prove that all the three optimal rates, as well as those for the newly introduced (S)
Theory of classification: A survey of some recent advances
, 2005
"... The last few years have witnessed important new developments in the theory and practice of pattern classification. We intend to survey some of the main new ideas that have led to these recent results. ..."
Abstract

Cited by 91 (3 self)
 Add to MetaCart
The last few years have witnessed important new developments in the theory and practice of pattern classification. We intend to survey some of the main new ideas that have led to these recent results.
Concentration inequalities
 ADVANCED LECTURES IN MACHINE LEARNING
, 2004
"... Concentration inequalities deal with deviations of functions of independent random variables from their expectation. In the last decade new tools have been introduced making it possible to establish simple and powerful inequalities. These inequalities are at the heart of the mathematical analysis o ..."
Abstract

Cited by 85 (1 self)
 Add to MetaCart
(Show Context)
Concentration inequalities deal with deviations of functions of independent random variables from their expectation. In the last decade new tools have been introduced making it possible to establish simple and powerful inequalities. These inequalities are at the heart of the mathematical analysis of various problems in machine learning and made it possible to derive new efficient algorithms. This text attempts to summarize some of the basic tools.
Concentration inequalities using the entropy method
"... We investigate a new methodology, worked out by Ledoux and Massart, to prove concentrationofmeasure inequalities. The method is based on certain modified logarithmic Sobolev inequalities. We provide some very simple and general readytouse inequalities. One of these inequalities may be considered ..."
Abstract

Cited by 64 (3 self)
 Add to MetaCart
We investigate a new methodology, worked out by Ledoux and Massart, to prove concentrationofmeasure inequalities. The method is based on certain modified logarithmic Sobolev inequalities. We provide some very simple and general readytouse inequalities. One of these inequalities may be considered as an exponential version of the EfronStein inequality. The main purpose of this paper is to point out the simplicity and the generality of the approach. We show how the new method can recover many of Talagrand’s revolutionary inequalities and provide new applications in a variety of problems including Rademacher averages, Rademacher chaos, the number of certain small subgraphs in a random graph, and the minimum of the empirical risk in some statistical estimation problems.
Learning by mirror averaging
 The Annals of Statistics
"... Given a finite collection of estimators or classifiers, we study the problem of model selection type aggregation, that is, we construct a new estimator or classifier, called aggregate, which is nearly as good as the best among them with respect to a given risk criterion. We define our aggregate by a ..."
Abstract

Cited by 52 (7 self)
 Add to MetaCart
Given a finite collection of estimators or classifiers, we study the problem of model selection type aggregation, that is, we construct a new estimator or classifier, called aggregate, which is nearly as good as the best among them with respect to a given risk criterion. We define our aggregate by a simple recursive procedure which solves an auxiliary stochastic linear programming problem related to the original nonlinear one and constitutes a special case of the mirror averaging algorithm. We show that the aggregate satisfies sharp oracle inequalities under some general assumptions. The results are applied to several problems including regression, classification and density estimation. 1. Introduction. Several