Results 1  10
of
108
Near Optimal Signal Recovery From Random Projections: Universal Encoding Strategies?
, 2004
"... Suppose we are given a vector f in RN. How many linear measurements do we need to make about f to be able to recover f to within precision ɛ in the Euclidean (ℓ2) metric? Or more exactly, suppose we are interested in a class F of such objects— discrete digital signals, images, etc; how many linear m ..."
Abstract

Cited by 1513 (20 self)
 Add to MetaCart
Suppose we are given a vector f in RN. How many linear measurements do we need to make about f to be able to recover f to within precision ɛ in the Euclidean (ℓ2) metric? Or more exactly, suppose we are interested in a class F of such objects— discrete digital signals, images, etc; how many linear measurements do we need to recover objects from this class to within accuracy ɛ? This paper shows that if the objects of interest are sparse or compressible in the sense that the reordered entries of a signal f ∈ F decay like a powerlaw (or if the coefficient sequence of f in a fixed basis decays like a powerlaw), then it is possible to reconstruct f to within very high accuracy from a small number of random measurements. typical result is as follows: we rearrange the entries of f (or its coefficients in a fixed basis) in decreasing order of magnitude f  (1) ≥ f  (2) ≥... ≥ f  (N), and define the weakℓp ball as the class F of those elements whose entries obey the power decay law f  (n) ≤ C · n −1/p. We take measurements 〈f, Xk〉, k = 1,..., K, where the Xk are Ndimensional Gaussian
Compressive sampling
, 2006
"... Conventional wisdom and common practice in acquisition and reconstruction of images from frequency data follow the basic principle of the Nyquist density sampling theory. This principle states that to reconstruct an image, the number of Fourier samples we need to acquire must match the desired res ..."
Abstract

Cited by 1441 (15 self)
 Add to MetaCart
Conventional wisdom and common practice in acquisition and reconstruction of images from frequency data follow the basic principle of the Nyquist density sampling theory. This principle states that to reconstruct an image, the number of Fourier samples we need to acquire must match the desired resolution of the image, i.e. the number of pixels in the image. This paper surveys an emerging theory which goes by the name of “compressive sampling” or “compressed sensing,” and which says that this conventional wisdom is inaccurate. Perhaps surprisingly, it is possible to reconstruct images or signals of scientific interest accurately and sometimes even exactly from a number of samples which is far smaller than the desired resolution of the image/signal, e.g. the number of pixels in the image. It is believed that compressive sampling has far reaching implications. For example, it suggests the possibility of new data acquisition protocols that translate analog information into digital form with fewer sensors than what was considered necessary. This new sampling theory may come to underlie procedures for sampling and compressing data simultaneously. In this short survey, we provide some of the key mathematical insights underlying this new theory, and explain some of the interactions between compressive sampling and other fields such as statistics, information theory, coding theory, and theoretical computer science.
CoSaMP: Iterative signal recovery from incomplete and inaccurate samples
 California Institute of Technology, Pasadena
, 2008
"... Abstract. Compressive sampling offers a new paradigm for acquiring signals that are compressible with respect to an orthonormal basis. The major algorithmic challenge in compressive sampling is to approximate a compressible signal from noisy samples. This paper describes a new iterative recovery alg ..."
Abstract

Cited by 770 (13 self)
 Add to MetaCart
Abstract. Compressive sampling offers a new paradigm for acquiring signals that are compressible with respect to an orthonormal basis. The major algorithmic challenge in compressive sampling is to approximate a compressible signal from noisy samples. This paper describes a new iterative recovery algorithm called CoSaMP that delivers the same guarantees as the best optimizationbased approaches. Moreover, this algorithm offers rigorous bounds on computational cost and storage. It is likely to be extremely efficient for practical problems because it requires only matrix–vector multiplies with the sampling matrix. For compressible signals, the running time is just O(N log 2 N), where N is the length of the signal. 1.
Iterative hard thresholding for compressed sensing
 Appl. Comp. Harm. Anal
"... Compressed sensing is a technique to sample compressible signals below the Nyquist rate, whilst still allowing near optimal reconstruction of the signal. In this paper we present a theoretical analysis of the iterative hard thresholding algorithm when applied to the compressed sensing recovery probl ..."
Abstract

Cited by 329 (18 self)
 Add to MetaCart
(Show Context)
Compressed sensing is a technique to sample compressible signals below the Nyquist rate, whilst still allowing near optimal reconstruction of the signal. In this paper we present a theoretical analysis of the iterative hard thresholding algorithm when applied to the compressed sensing recovery problem. We show that the algorithm has the following properties (made more precise in the main text of the paper) • It gives nearoptimal error guarantees. • It is robust to observation noise. • It succeeds with a minimum number of observations. • It can be used with any sampling operator for which the operator and its adjoint can be computed. • The memory requirement is linear in the problem size. Preprint submitted to Elsevier 28 January 2009 • Its computational complexity per iteration is of the same order as the application of the measurement operator or its adjoint. • It requires a fixed number of iterations depending only on the logarithm of a form of signal to noise ratio of the signal. • Its performance guarantees are uniform in that they only depend on properties of the sampling operator and signal sparsity.
On sparse reconstruction from Fourier and Gaussian measurements
 Communications on Pure and Applied Mathematics
, 2006
"... Abstract. This paper improves upon best known guarantees for exact reconstruction of a sparse signal f from a small universal sample of Fourier measurements. The method for reconstruction that has recently gained momentum in the Sparse Approximation Theory is to relax this highly nonconvex problem ..."
Abstract

Cited by 262 (8 self)
 Add to MetaCart
(Show Context)
Abstract. This paper improves upon best known guarantees for exact reconstruction of a sparse signal f from a small universal sample of Fourier measurements. The method for reconstruction that has recently gained momentum in the Sparse Approximation Theory is to relax this highly nonconvex problem to a convex problem, and then solve it as a linear program. We show that there exists a set of frequencies Ω such that one can exactly reconstruct every rsparse signal f of length n from its frequencies in Ω, using the convex relaxation, and Ω has size k(r, n) = O(r log(n)·log 2 (r) log(r log n)) = O(r log 4 n). A random set Ω satisfies this with high probability. This estimate is optimal within the log log n and log 3 r factors. We also give a relatively short argument for a similar problem with k(r, n) � r[12 + 8 log(n/r)] Gaussian measurements. We use methods of geometric functional analysis and probability theory in Banach spaces, which makes our arguments quite short. 1.
Sparsity and Incoherence in Compressive Sampling
, 2006
"... We consider the problem of reconstructing a sparse signal x 0 ∈ R n from a limited number of linear measurements. Given m randomly selected samples of Ux 0, where U is an orthonormal matrix, we show that ℓ1 minimization recovers x 0 exactly when the number of measurements exceeds m ≥ Const · µ 2 (U) ..."
Abstract

Cited by 238 (13 self)
 Add to MetaCart
We consider the problem of reconstructing a sparse signal x 0 ∈ R n from a limited number of linear measurements. Given m randomly selected samples of Ux 0, where U is an orthonormal matrix, we show that ℓ1 minimization recovers x 0 exactly when the number of measurements exceeds m ≥ Const · µ 2 (U) · S · log n, where S is the number of nonzero components in x 0, and µ is the largest entry in U properly normalized: µ(U) = √ n · maxk,j Uk,j. The smaller µ, the fewer samples needed. The result holds for “most ” sparse signals x 0 supported on a fixed (but arbitrary) set T. Given T, if the sign of x 0 for each nonzero entry on T and the observed values of Ux 0 are drawn at random, the signal is recovered with overwhelming probability. Moreover, there is a sense in which this is nearly optimal since any method succeeding with the same probability would require just about this many samples.
The Convex Geometry of Linear Inverse Problems
, 2010
"... In applications throughout science and engineering one is often faced with the challenge of solving an illposed inverse problem, where the number of available measurements is smaller than the dimension of the model to be estimated. However in many practical situations of interest, models are constr ..."
Abstract

Cited by 189 (20 self)
 Add to MetaCart
In applications throughout science and engineering one is often faced with the challenge of solving an illposed inverse problem, where the number of available measurements is smaller than the dimension of the model to be estimated. However in many practical situations of interest, models are constrained structurally so that they only have a few degrees of freedom relative to their ambient dimension. This paper provides a general framework to convert notions of simplicity into convex penalty functions, resulting in convex optimization solutions to linear, underdetermined inverse problems. The class of simple models considered are those formed as the sum of a few atoms from some (possibly infinite) elementary atomic set; examples include wellstudied cases such as sparse vectors (e.g., signal processing, statistics) and lowrank matrices (e.g., control, statistics), as well as several others including sums of a few permutations matrices (e.g., ranked elections, multiobject tracking), lowrank tensors (e.g., computer vision, neuroscience), orthogonal matrices (e.g., machine learning), and atomic measures (e.g., system identification). The convex programming formulation is based on minimizing the norm induced by the convex hull of the atomic set; this norm is referred to as the atomic norm. The facial
Beyond Nyquist: Efficient Sampling of Sparse Bandlimited Signals
, 2009
"... Wideband analog signals push contemporary analogtodigital conversion systems to their performance limits. In many applications, however, sampling at the Nyquist rate is inefficient because the signals of interest contain only a small number of significant frequencies relative to the bandlimit, alt ..."
Abstract

Cited by 158 (18 self)
 Add to MetaCart
Wideband analog signals push contemporary analogtodigital conversion systems to their performance limits. In many applications, however, sampling at the Nyquist rate is inefficient because the signals of interest contain only a small number of significant frequencies relative to the bandlimit, although the locations of the frequencies may not be known a priori. For this type of sparse signal, other sampling strategies are possible. This paper describes a new type of data acquisition system, called a random demodulator, that is constructed from robust, readily available components. Let K denote the total number of frequencies in the signal, and let W denote its bandlimit in Hz. Simulations suggest that the random demodulator requires just O(K log(W/K)) samples per second to stably reconstruct the signal. This sampling rate is exponentially lower than the Nyquist rate of W Hz. In contrast with Nyquist sampling, one must use nonlinear methods, such as convex programming, to recover the signal from the samples taken by the random demodulator. This paper provides a detailed theoretical analysis of the system’s performance that supports the empirical observations.
Compressed Sensing and Redundant Dictionaries
"... This article extends the concept of compressed sensing to signals that are not sparse in an orthonormal basis but rather in a redundant dictionary. It is shown that a matrix, which is a composition of a random matrix of certain type and a deterministic dictionary, has small restricted isometry con ..."
Abstract

Cited by 137 (13 self)
 Add to MetaCart
(Show Context)
This article extends the concept of compressed sensing to signals that are not sparse in an orthonormal basis but rather in a redundant dictionary. It is shown that a matrix, which is a composition of a random matrix of certain type and a deterministic dictionary, has small restricted isometry constants. Thus, signals that are sparse with respect to the dictionary can be recovered via Basis Pursuit from a small number of random measurements. Further, thresholding is investigated as recovery algorithm for compressed sensing and conditions are provided that guarantee reconstruction with high probability. The different schemes are compared by numerical experiments.