Results 11  20
of
736
Regularized estimation of large covariance matrices
 Ann. Statist
, 2008
"... This paper considers estimating a covariance matrix of p variables from n observations by either banding or tapering the sample covariance matrix, or estimating a banded version of the inverse of the covariance. We show that these estimates are consistent in the operator norm as long as (log p)/n → ..."
Abstract

Cited by 185 (14 self)
 Add to MetaCart
(Show Context)
This paper considers estimating a covariance matrix of p variables from n observations by either banding or tapering the sample covariance matrix, or estimating a banded version of the inverse of the covariance. We show that these estimates are consistent in the operator norm as long as (log p)/n → 0, and obtain explicit rates. The results are uniform over some fairly natural wellconditioned families of covariance matrices. We also introduce an analogue of the Gaussian white noise model and show that if the population covariance is embeddable in that model and wellconditioned, then the banded approximations produce consistent estimates of the eigenvalues and associated eigenvectors of the covariance matrix. The results can be extended to smooth versions of banding and to nonGaussian distributions with sufficiently short tails. A resampling approach is proposed for choosing the banding parameter in practice. This approach is illustrated numerically on both simulated and real data. 1. Introduction. Estimation
Nearly unbiased variable selection under minimax concave penalty
 Annals of Statistics
, 2010
"... ar ..."
Sparsity oracle inequalities for the lasso
 Electronic Journal of Statistics
"... Abstract: This paper studies oracle properties of ℓ1penalized least squares in nonparametric regression setting with random design. We show that the penalized least squares estimator satisfies sparsity oracle inequalities, i.e., bounds in terms of the number of nonzero components of the oracle vec ..."
Abstract

Cited by 171 (12 self)
 Add to MetaCart
(Show Context)
Abstract: This paper studies oracle properties of ℓ1penalized least squares in nonparametric regression setting with random design. We show that the penalized least squares estimator satisfies sparsity oracle inequalities, i.e., bounds in terms of the number of nonzero components of the oracle vector. The results are valid even when the dimension of the model is (much) larger than the sample size and the regression matrix is not positive definite. They can be applied to highdimensional linear regression, to nonparametric adaptive regression estimation and to the problem of aggregation of arbitrary estimators.
Sparse Permutation Invariant Covariance Estimation
 Electronic Journal of Statistics
, 2008
"... The paper proposes a method for constructing a sparse estimator for the inverse covariance (concentration) matrix in highdimensional settings. The estimator uses a penalized normal likelihood approach and forces sparsity by using a lassotype penalty. We establish a rate of convergence in the Fro ..."
Abstract

Cited by 164 (8 self)
 Add to MetaCart
(Show Context)
The paper proposes a method for constructing a sparse estimator for the inverse covariance (concentration) matrix in highdimensional settings. The estimator uses a penalized normal likelihood approach and forces sparsity by using a lassotype penalty. We establish a rate of convergence in the Frobenius norm as both data dimension p and sample size n are allowed to grow, and show that the rate depends explicitly on how sparse the true concentration matrix is. We also show that a correlationbased version of the method exhibits better rates in the operator norm. The estimator is required to be positive definite, but we avoid having to use semidefinite programming by reparameterizing the objective function
A CORRELATED TOPIC MODEL OF SCIENCE
, 2007
"... Topic models, such as latent Dirichlet allocation (LDA), can be useful tools for the statistical analysis of document collections and other discrete data. The LDA model assumes that the words of each document arise from a mixture of topics, each of which is a distribution over the vocabulary. A limi ..."
Abstract

Cited by 156 (10 self)
 Add to MetaCart
Topic models, such as latent Dirichlet allocation (LDA), can be useful tools for the statistical analysis of document collections and other discrete data. The LDA model assumes that the words of each document arise from a mixture of topics, each of which is a distribution over the vocabulary. A limitation of LDA is the inability to model topic correlation even though, for example, a document about genetics is more likely to also be about disease than Xray astronomy. This limitation stems from the use of the Dirichlet distribution to model the variability among the topic proportions. In this paper we develop the correlated topic model (CTM), where the topic proportions exhibit correlation via the logistic normal distribution [J. Roy. Statist. Soc. Ser. B 44 (1982) 139–177]. We derive a fast variational inference algorithm for approximate posterior inference in this model, which is complicated by the fact that the logistic normal is not conjugate to the multinomial. We apply the CTM to the articles from Science published from 1990–1999, a data set that comprises 57M words. The CTM gives a better fit of the data than LDA, and we demonstrate its use as an exploratory tool of large document collections.
Informationtheoretic limits on sparsity recovery in the highdimensional and noisy setting
, 2007
"... Abstract—The problem of sparsity pattern or support set recovery refers to estimating the set of nonzero coefficients of an un3 p known vector 2 based on a set of n noisy observations. It arises in a variety of settings, including subset selection in regression, graphical model selection, signal de ..."
Abstract

Cited by 131 (2 self)
 Add to MetaCart
(Show Context)
Abstract—The problem of sparsity pattern or support set recovery refers to estimating the set of nonzero coefficients of an un3 p known vector 2 based on a set of n noisy observations. It arises in a variety of settings, including subset selection in regression, graphical model selection, signal denoising, compressive sensing, and constructive approximation. The sample complexity of a given method for subset recovery refers to the scaling of the required sample size n as a function of the signal dimension p, sparsity index k (number of nonzeroes in 3), as well as the minimum value min of 3 over its support and other parameters of measurement matrix. This paper studies the informationtheoretic limits of sparsity recovery: in particular, for a noisy linear observation model based on random measurement matrices drawn from general Gaussian measurement matrices, we derive both a set of sufficient conditions for exact support recovery using an exhaustive search decoder, as well as a set of necessary conditions that any decoder, regardless of its computational complexity, must satisfy for exact support recovery. This analysis of fundamental limits complements our previous work on sharp thresholds for support set recovery over the same set of random measurement ensembles using the polynomialtime Lasso method (`1constrained quadratic programming). Index Terms—Compressed sensing, `1relaxation, Fano’s method, highdimensional statistical inference, informationtheoretic
Efficient Online and Batch Learning using Forward Backward Splitting
"... We describe, analyze, and experiment with a framework for empirical loss minimization with regularization. Our algorithmic framework alternates between two phases. On each iteration we first perform an unconstrained gradient descent step. We then cast and solve an instantaneous optimization problem ..."
Abstract

Cited by 130 (1 self)
 Add to MetaCart
We describe, analyze, and experiment with a framework for empirical loss minimization with regularization. Our algorithmic framework alternates between two phases. On each iteration we first perform an unconstrained gradient descent step. We then cast and solve an instantaneous optimization problem that trades off minimization of a regularization term while keeping close proximity to the result of the first phase. This view yields a simple yet effective algorithm that can be used for batch penalized risk minimization and online learning. Furthermore, the two phase approach enables sparse solutions when used in conjunction with regularization functions that promote sparsity, such as ℓ1. We derive concrete and very simple algorithms for minimization of loss functions with ℓ1, ℓ2, ℓ 2 2, and ℓ ∞ regularization. We also show how to construct efficient algorithms for mixednorm ℓ1/ℓq regularization. We further extend the algorithms and give efficient implementations for very highdimensional data with sparsity. We demonstrate the potential of the proposed framework in a series of experiments with synthetic and natural datasets.