Results 1 - 10
of
2,128
Wireless mesh networks: a survey
- COMPUTER NETWORKS
, 2005
"... Wireless meshnet8Ex8 (WMNs)consist of meshrout6L and meshclient8 where meshroutfix have minimal mobilit and formtr backbone of WMNs. They provide netide access for bot mesh andconvent1)fi8 clientt TheintL gratLfl of WMNs wit ot8 net8866 such as t1Int6fiPx1 cellular, IEEE 802.11, IEEE 802.15, IEEE 8 ..."
Abstract
-
Cited by 687 (12 self)
- Add to MetaCart
Wireless meshnet8Ex8 (WMNs)consist of meshrout6L and meshclient8 where meshroutfix have minimal mobilit and formtr backbone of WMNs. They provide netide access for bot mesh andconvent1)fi8 clientt TheintL gratLfl of WMNs wit ot8 net8866 such as t1Int6fiPx1 cellular, IEEE 802.11, IEEE 802.15, IEEE 802.16, sensor netsor1L ets can be accomplishedtccomp tc gatomp and bridging functng1 in t1 meshroutfijx Meshclient can be eit8fi st8fij1)6x or mobile, and can form aclient meshnet16S amongtng1fifiELj and wit meshroutLfifi WMNs are antLfifl1)6fl t resolvets limit18fiflfl andt significantfl improvetp performance of ad hocnetLEP8L wireless local area net1Pxx (WLANs), wireless personal areanet16fij (WPANs), and wirelessmetess1fifljfl areanet1LPS (WMANs). They are undergoing rapid progress and inspiring numerousdeploymentS WMNs will deliver wireless services for a largevariet ofapplicat6fifl in personal, local, campus, andmet8Lfix1)6fi areas. Despit recent advances in wireless mesh netjLfiP1)6 many research challenges remain in allprotjfiS layers. This paperpresent adetEfl81 stEonrecent advances and open research issues in WMNs. Syst1 architL881)6 andapplicat)68 of WMNs are described, followed by discussingts critssi factss influencingprotenc design.Theoret8fiL netore capacit and tdst1LLSjx tt1LL protLLSj for WMNs are exploredwit anobjectE1 t point out a number of open research issues. Finally,tnal beds,indust681 pract68 andcurrent strent actntx1) relatt t WMNs arehighlight8x # 2004 Elsevier B.V. Allrl rl KedI7-8 Wireless meshnet186flfl Ad hocnet8jEES Wireless sensornetor16fl Medium accessconts1fi Routs1 prots1fiS Transport protspor ScalabilitS Securiti Powermanagement andcontfi8fl Timingsynchronizat ion 1389-1286/$ - seefront matt # 2004 Elsevier B.V. Allright reserved. doi:10....
Distributed space-time-coded protocols for exploiting cooperative diversity in wireless networks
- IEEE TRANS. INF. THEORY
, 2003
"... We develop and analyze space–time coded cooperative diversity protocols for combating multipath fading across multiple protocol layers in a wireless network. The protocols exploit spatial diversity available among a collection of distributed terminals that relay messages for one another in such a m ..."
Abstract
-
Cited by 622 (5 self)
- Add to MetaCart
(Show Context)
We develop and analyze space–time coded cooperative diversity protocols for combating multipath fading across multiple protocol layers in a wireless network. The protocols exploit spatial diversity available among a collection of distributed terminals that relay messages for one another in such a manner that the destination terminal can average the fading, even though it is unknown a priori which terminals will be involved. In particular, a source initiates transmission to its destination, and many relays potentially receive the transmission. Those terminals that can fully decode the transmission utilize a space-time code to cooperatively relay to the destination. We demonstrate that these protocols achieve full spatial diversity in the number of cooperating terminals, not just the number of decoding relays, and can be used effectively for higher spectral efficiencies than repetition-based schemes. We discuss issues related to space–time code design for these protocols, emphasizing codes that readily allow for appealing distributed versions.
Fading relay channels: Performance limits and space-time signal design
- IEEE J. SELECT. AREAS COMMUN
, 2004
"... Cooperative diversity is a transmission technique where multiple terminals pool their resources to form a virtual antenna array that realizes spatial diversity gain in a distributed fashion. In this paper, we examine the basic building block of cooperative diversity systems, a simple fading relay ch ..."
Abstract
-
Cited by 445 (4 self)
- Add to MetaCart
(Show Context)
Cooperative diversity is a transmission technique where multiple terminals pool their resources to form a virtual antenna array that realizes spatial diversity gain in a distributed fashion. In this paper, we examine the basic building block of cooperative diversity systems, a simple fading relay channel where the source, destination and relay terminals are each equipped with single antenna transceivers. We consider three different TDMA-based cooperative protocols that vary the degree of broadcasting and receive collision. The relay terminal operates in either the amplify-and-forward (AF) or decode-and-forward (DF) modes. For each protocol, we study the ergodic and outage capacity behavior (assuming Gaussian code books) under the AF and DF modes of relaying. We analyze the spatial diversity performance of the various protocols and find that full spatial diversity (second-order in this case) is achieved by certain protocols provided that appropriate power control is employed. Our analysis unifies previous results reported in the literature and establishes the superiority (both from a capacity as well as a diversity point-of-view) of a new protocol proposed in this paper. The second part of the paper is devoted to (distributed) space-time code design for fading relay channels operating in the AF mode. We show that the corresponding code design criteria consist of the traditional rank and determinant criteria for the case of co-located antennas as well as appropriate power control rules. Consequently space-time codes designed for the case of co-located multi-antenna channels can be used to realize cooperative diversity provided that appropriate power control is employed.
Grassmannian beamforming for multiple-input multiple-output wireless systems
- IEEE TRANS. INFORM. THEORY
, 2003
"... Transmit beamforming and receive combining are simple methods for exploiting the significant diversity that is available in multiple-input and multiple-output (MIMO) wireless systems. Unfortunately, optimal performance requires either complete channel knowledge or knowledge of the optimal beamformi ..."
Abstract
-
Cited by 329 (38 self)
- Add to MetaCart
Transmit beamforming and receive combining are simple methods for exploiting the significant diversity that is available in multiple-input and multiple-output (MIMO) wireless systems. Unfortunately, optimal performance requires either complete channel knowledge or knowledge of the optimal beamforming vector which are not always realizable in practice. In this correspondence, a quantized maximum signal-to-noise ratio (SNR) beamforming technique is proposed where the receiver only sends the label of the best beamforming vector in a predetermined codebook to the transmitter. By using the distribution of the optimal beamforming vector in independent identically distributed Rayleigh fading matrix channels, the codebook design problem is solved and related to the problem of Grassmannian line packing. The proposed design criterion is flexible enough to allow for side constraints on the codebook vectors. Bounds on the codebook size are derived to guarantee full diversity order. Results on the density of Grassmannian line packings are derived and used to develop bounds on the codebook size given a capacity or SNR loss. Monte Carlo simulations are presented that compare the probability of error for different quantization strategies.
Differential space-time modulation
- IEEE Trans. Inform. Theory
, 2000
"... Abstract—Space–time coding and modulation exploit the presence of multiple transmit antennas to improve performance on multipath radio channels. Thus far, most work on space–time coding has assumed that perfect channel estimates are available at the receiver. In certain situations, however, it may b ..."
Abstract
-
Cited by 269 (1 self)
- Add to MetaCart
(Show Context)
Abstract—Space–time coding and modulation exploit the presence of multiple transmit antennas to improve performance on multipath radio channels. Thus far, most work on space–time coding has assumed that perfect channel estimates are available at the receiver. In certain situations, however, it may be difficult or costly to estimate the channel accurately, in which case it is natural to consider the design of modulation techniques that do not require channel estimates at the transmitter or receiver. We propose a general approach to differential modulation for multiple transmit antennas based on group codes. This approach can be applied to any number of transmit and receive antennas, and any signal constellation. We also derive low-complexity dif-ferential receivers, error bounds, and modulator design criteria, which we use to construct optimal differential modulation schemes for two transmit antennas. These schemes can be demodulated with or without channel estimates. This permits the receiver to exploit channel estimates when they are available. Performance degrades by approximately 3 dB when estimates are not available. Index Terms—Differential modulation, group codes, multi-path channels, noncoherent communication, space–time coding, transmit diversity. I.
An overview of limited feedback in wireless communication systems
- IEEE J. SEL. AREAS COMMUN
, 2008
"... It is now well known that employing channel adaptive signaling in wireless communication systems can yield large improvements in almost any performance metric. Unfortunately, many kinds of channel adaptive techniques have been deemed impractical in the past because of the problem of obtaining channe ..."
Abstract
-
Cited by 205 (41 self)
- Add to MetaCart
(Show Context)
It is now well known that employing channel adaptive signaling in wireless communication systems can yield large improvements in almost any performance metric. Unfortunately, many kinds of channel adaptive techniques have been deemed impractical in the past because of the problem of obtaining channel knowledge at the transmitter. The transmitter in many systems (such as those using frequency division duplexing) can not leverage techniques such as training to obtain channel state information. Over the last few years, research has repeatedly shown that allowing the receiver to send a small number of information bits about the channel conditions to the transmitter can allow near optimal channel adaptation. These practical systems, which are commonly referred to as limited or finite-rate feedback systems, supply benefits nearly identical to unrealizable perfect transmitter channel knowledge systems when they are judiciously designed. In this tutorial, we provide a broad look at the field of limited feedback wireless communications. We review work in systems using various combinations of single antenna, multiple antenna, narrowband, broadband, single-user, and multiuser technology. We also provide a synopsis of the role of limited feedback in the standardization of next generation wireless systems.
Coded cooperation in wireless communications: space-time transmission and iterative decoding
- IEEE Trans. Signal Processing
, 2004
"... Abstract—When mobiles cannot support multiple antennas due to size or other constraints, conventional space-time coding cannot be used to provide uplink transmit diversity. To address this limitation, the concept of cooperation diversity has been introduced, where mobiles achieve uplink transmit div ..."
Abstract
-
Cited by 201 (3 self)
- Add to MetaCart
(Show Context)
Abstract—When mobiles cannot support multiple antennas due to size or other constraints, conventional space-time coding cannot be used to provide uplink transmit diversity. To address this limitation, the concept of cooperation diversity has been introduced, where mobiles achieve uplink transmit diversity by relaying each other’s messages. A particularly powerful variation of this principle is coded cooperation. Instead of a simple repetition relay, coded cooperation partitions the codewords of each mobile and transmits portions of each codeword through independent fading channels. This paper presents two extensions to the coded cooperation framework. First, we increase the diversity of coded cooperation in the fast-fading scenario via ideas borrowed from space-time codes. We calculate bounds for the bit- and block-error rates to demonstrate the resulting gains. Second, since cooperative coding contains two code components, it is natural to apply turbo codes to this framework. We investigate the application of turbo codes in coded cooperation and demonstrate the resulting gains via error bounds and simulations. Index Terms—Channel coding, diversity, space-time coding, user cooperation, wireless communications.
Optimal Designs for Space-Time Linear Precoders and Decoders
- IEEE Trans. Signal Processing
, 2001
"... In this paper we introduce a new paradigm for the design of transmitter space-time coding that we refer to as linear precoding. It leads to simple closed form solutions for transmission over frequency selective multiple-input multiple-output (MIMO) channels, which are scalable with respect to the nu ..."
Abstract
-
Cited by 197 (6 self)
- Add to MetaCart
In this paper we introduce a new paradigm for the design of transmitter space-time coding that we refer to as linear precoding. It leads to simple closed form solutions for transmission over frequency selective multiple-input multiple-output (MIMO) channels, which are scalable with respect to the number of antennas, size of the coding block and transmit average/peak power. The scheme operates as a block transmission system in which vectors of symbols are encoded and modulated through a linear mapping operating jointly in the space and time dimension. The specific designs target minimization of the symbol mean square error and the approximate maximization of the minimum distance between symbol hypotheses, under average and peak power constraints. The solutions are shown to convert the MIMO channel with memory into a set of parallel flat fading subchannels, regardless of the design criterion, while appropriate power/bits loading on the sub-channels is the specific signature of the different designs. The proposed designs are compared in terms of various performance measures such as information rate, BER and symbol mean square error.
Full-Diversity, High-Rate Space-Time Block Codes from Division Algebras
- IEEE TRANS. INFORM. THEORY
, 2003
"... We present some general techniques for constructing full-rank, minimal-delay, rate at least one space-time block codes (STBCs) over a variety of signal sets for arbitrary number of transmit antennas using commutative division algebras (field extensions) as well as using noncommutative division algeb ..."
Abstract
-
Cited by 177 (55 self)
- Add to MetaCart
We present some general techniques for constructing full-rank, minimal-delay, rate at least one space-time block codes (STBCs) over a variety of signal sets for arbitrary number of transmit antennas using commutative division algebras (field extensions) as well as using noncommutative division algebras of the rational field embedded in matrix rings. The first half of the paper deals with constructions using field extensions of . Working with cyclotomic field extensions, we construct several families of STBCs over a wide range of signal sets that are of full rank, minimal delay, and rate at least one appropriate for any number of transmit antennas. We study the coding gain and capacity of these codes. Using transcendental extensions we construct arbitrary rate codes that are full rank for arbitrary number of antennas. We also present a method of constructing STBCs using noncyclotomic field extensions. In the later half of the paper, we discuss two ways of embedding noncommutative division algebras into matrices: left regular representation, and representation over maximal cyclic subfields. The 4 4 real orthogonal design is obtained by the left regular representation of quaternions. Alamouti's code is just a special case of the construction using representation over maximal cyclic subfields and we observe certain algebraic uniqueness characteristics of it. Also, we discuss a general principle for constructing cyclic division algebras using the th root of a transcendental element and study the capacity of the STBCs obtained from this construction. Another family of cyclic division algebras discovered by Brauer is discussed and several examples of STBCs derived from each of these constructions are presented.
An Overview of MIMO Communications: A Key to Gigabit Wireless
- Proc. IEEE
, 2004
"... High data rate wireless communications, nearing 1 Gigabit/second (Gbps) transmission rates, is of interest in emerging Wireless Local Area Networks (WLANs) and home Audio/Visual (A/V) networks. Designing very high speed wireless links that offer good Quality-of-Service (QoS) and range capability in ..."
Abstract
-
Cited by 176 (0 self)
- Add to MetaCart
(Show Context)
High data rate wireless communications, nearing 1 Gigabit/second (Gbps) transmission rates, is of interest in emerging Wireless Local Area Networks (WLANs) and home Audio/Visual (A/V) networks. Designing very high speed wireless links that offer good Quality-of-Service (QoS) and range capability in Non-Line-of-Sight (NLOS) environments constitutes a significant research and engineering challenge. Ignoring fading in NLOS environments, we can, in principle, meet the 1Gbps data rate requirement with a single-transmit single-receive antenna wireless system if the product of bandwidth (measured in Hz) and spectral efficiency (measured in bps/Hz) is equal to 10 9. As we shall outline in this paper, a variety of cost, technology and regulatory constraints make such a brute force solution unattractive if not impossible. The use of multiple antennas at transmitter and receiver, popularly known as multiple-input multiple-output (MIMO) wireless is an emerging cost-effective technology that offers substantial leverages in making 1Gbps wireless links a reality. This paper provides an overview of MIMO wireless technology covering channel models, performance limits, coding, and transceiver design.