Results 1  10
of
835
A blocksorting lossless data compression algorithm
, 1994
"... We describe a blocksorting, lossless data compression algorithm, and our implementation of that algorithm. We compare the performance of our implementation with widely available data compressors running on the same hardware. The algorithm works by applying a reversible transformation to a block o ..."
Abstract

Cited by 809 (5 self)
 Add to MetaCart
We describe a blocksorting, lossless data compression algorithm, and our implementation of that algorithm. We compare the performance of our implementation with widely available data compressors running on the same hardware. The algorithm works by applying a reversible transformation to a block of input text. The transformation does not itself compress the data, but reorders it to make it easy to compress with simple algorithms such as movetofront coding. Our algorithm achieves speed comparable to algorithms based on the techniques of Lempel and Ziv, but obtains compression close to the best statistical modelling techniques. The size of the input block must be large (a few kilobytes) to achieve good compression.
Opportunistic Data Structures with Applications
, 2000
"... In this paper we address the issue of compressing and indexing data. We devise a data structure whose space occupancy is a function of the entropy of the underlying data set. We call the data structure opportunistic since its space occupancy is decreased when the input is compressible and this space ..."
Abstract

Cited by 296 (11 self)
 Add to MetaCart
(Show Context)
In this paper we address the issue of compressing and indexing data. We devise a data structure whose space occupancy is a function of the entropy of the underlying data set. We call the data structure opportunistic since its space occupancy is decreased when the input is compressible and this space reduction is achieved at no significant slowdown in the query performance. More precisely, its space occupancy is optimal in an informationcontent sense because a text T [1, u] is stored using O(H k (T )) + o(1) bits per input symbol in the worst case, where H k (T ) is the kth order empirical entropy of T (the bound holds for any fixed k). Given an arbitrary string P [1; p], the opportunistic data structure allows to search for the occ occurrences of P in T in O(p + occ log u) time (for any fixed > 0). If data are uncompressible we achieve the best space bound currently known [12]; on compressible data our solution improves the succinct suffix array of [12] and the classical suffix tree and suffix array data structures either in space or in query time or both.
Highorder entropycompressed text indexes
, 2003
"... We present a novel implementation of compressed suffix arrays exhibiting new tradeoffs between search time and space occupancy for a given text (or sequence) of n symbols over an alphabet Σ, where each symbol is encoded by lg Σ  bits. We show that compressed suffix arrays use just nHh + O(n lg lg ..."
Abstract

Cited by 267 (22 self)
 Add to MetaCart
(Show Context)
We present a novel implementation of compressed suffix arrays exhibiting new tradeoffs between search time and space occupancy for a given text (or sequence) of n symbols over an alphabet Σ, where each symbol is encoded by lg Σ  bits. We show that compressed suffix arrays use just nHh + O(n lg lg n / lg Σ  n) bits, while retaining full text indexing functionalities, such as searching any pattern sequence of length m in O(m lg Σ  + polylog(n)) time. The term Hh ≤ lg Σ  denotes the hthorder empirical entropy of the text, which means that our index is nearly optimal in space apart from lowerorder terms, achieving asymptotically the empirical entropy of the text (with a multiplicative constant 1). If the text is highly compressible so that Hh = o(1) and the alphabet size is small, we obtain a text index with o(m) search time that requires only o(n) bits. Further results and tradeoffs are reported in the paper. 1
Compressed fulltext indexes
 ACM COMPUTING SURVEYS
, 2007
"... Fulltext indexes provide fast substring search over large text collections. A serious problem of these indexes has traditionally been their space consumption. A recent trend is to develop indexes that exploit the compressibility of the text, so that their size is a function of the compressed text l ..."
Abstract

Cited by 263 (94 self)
 Add to MetaCart
(Show Context)
Fulltext indexes provide fast substring search over large text collections. A serious problem of these indexes has traditionally been their space consumption. A recent trend is to develop indexes that exploit the compressibility of the text, so that their size is a function of the compressed text length. This concept has evolved into selfindexes, which in addition contain enough information to reproduce any text portion, so they replace the text. The exciting possibility of an index that takes space close to that of the compressed text, replaces it, and in addition provides fast search over it, has triggered a wealth of activity and produced surprising results in a very short time, and radically changed the status of this area in less than five years. The most successful indexes nowadays are able to obtain almost optimal space and search time simultaneously. In this paper we present the main concepts underlying selfindexes. We explain the relationship between text entropy and regularities that show up in index structures and permit compressing them. Then we cover the most relevant selfindexes up to date, focusing on the essential aspects on how they exploit the text compressibility and how they solve efficiently various search problems. We aim at giving the theoretical background to understand and follow the developments in this area.
Simple linear work suffix array construction
, 2003
"... Abstract. Suffix trees and suffix arrays are widely used and largely interchangeable index structures on strings and sequences. Practitioners prefer suffix arrays due to their simplicity and space efficiency while theoreticians use suffix trees due to lineartime construction algorithms and more exp ..."
Abstract

Cited by 215 (8 self)
 Add to MetaCart
Abstract. Suffix trees and suffix arrays are widely used and largely interchangeable index structures on strings and sequences. Practitioners prefer suffix arrays due to their simplicity and space efficiency while theoreticians use suffix trees due to lineartime construction algorithms and more explicit structure. We narrow this gap between theory and practice with a simple lineartime construction algorithm for suffix arrays. The simplicity is demonstrated with a C++ implementation of 50 effective lines of code. The algorithm is called DC3, which stems from the central underlying concept of difference cover. This view leads to a generalized algorithm, DC, that allows a spaceefficient implementation and, moreover, supports the choice of a space–time tradeoff. For any v ∈ [1, √ n], it runs in O(vn) time using O(n / √ v) space in addition to the input string and the suffix array. We also present variants of the algorithm for several parallel and hierarchical memory models of computation. The algorithms for BSP and EREWPRAM models are asymptotically faster than all previous suffix tree or array construction algorithms.
Replacing suffix trees with enhanced suffix arrays
, 2004
"... The suffix tree is one of the most important data structures in string processing and comparative genomics. However, the space consumption of the suffix tree is a bottleneck in large scale applications such as genome analysis. In this article, we will overcome this obstacle. We will show how every ..."
Abstract

Cited by 207 (10 self)
 Add to MetaCart
The suffix tree is one of the most important data structures in string processing and comparative genomics. However, the space consumption of the suffix tree is a bottleneck in large scale applications such as genome analysis. In this article, we will overcome this obstacle. We will show how every algorithm that uses a suffix tree as data structure can systematically be replaced with an algorithm that uses an enhanced suffix array and solves the same problem in the same time complexity. The generic name enhanced suffix array stands for data structures consisting of the suffix array and additional tables. Our new algorithms are not only more space efficient than previous ones, but they are also faster and easier to implement.
Fast algorithms for sorting and searching strings. In:
 ACM (ed.) 8th Symposium on Discrete Algorithms (SODA),
, 1997
"... Abstract We present theoretical algorithms for sorting and searching multikey data, and derive from them practical C implementations for applications in which keys are character strings. The sorting algorithm blends Quicksort and radix sort; it is competitive with the best known C sort codes. The s ..."
Abstract

Cited by 165 (0 self)
 Add to MetaCart
(Show Context)
Abstract We present theoretical algorithms for sorting and searching multikey data, and derive from them practical C implementations for applications in which keys are character strings. The sorting algorithm blends Quicksort and radix sort; it is competitive with the best known C sort codes. The searching algorithm blends tries and binary search trees; it is faster than hashing and other commonly used search methods. The basic ideas behind the algorithms date back at least to the 1960s, but their practical utility has been overlooked. We also present extensions to more complex string problems, such as partialmatch searching.
Searching the Web
 ACM TRANSACTIONS ON INTERNET TECHNOLOGY
, 2001
"... We offer an overview of current Web search engine design. After introducing a generic search engine architecture, we examine each engine component in turn. We cover crawling, local Web page storage, indexing, and the use of link analysis for boosting search performance. The most common design and im ..."
Abstract

Cited by 162 (1 self)
 Add to MetaCart
(Show Context)
We offer an overview of current Web search engine design. After introducing a generic search engine architecture, we examine each engine component in turn. We cover crawling, local Web page storage, indexing, and the use of link analysis for boosting search performance. The most common design and implementation techniques for each of these components are presented. For this presentation we draw from the literature and from our own experimental search engine testbed. Emphasis is on introducing the fundamental concepts and the results of several performance analyses we conducted to compare different designs.
Compressed representations of sequences and fulltext indexes
 ACM Transactions on Algorithms
, 2007
"... Abstract. Given a sequence S = s1s2... sn of integers smaller than r = O(polylog(n)), we show how S can be represented using nH0(S) + o(n) bits, so that we can know any sq, as well as answer rank and select queries on S, in constant time. H0(S) is the zeroorder empirical entropy of S and nH0(S) pro ..."
Abstract

Cited by 155 (76 self)
 Add to MetaCart
(Show Context)
Abstract. Given a sequence S = s1s2... sn of integers smaller than r = O(polylog(n)), we show how S can be represented using nH0(S) + o(n) bits, so that we can know any sq, as well as answer rank and select queries on S, in constant time. H0(S) is the zeroorder empirical entropy of S and nH0(S) provides an Information Theoretic lower bound to the bit storage of any sequence S via a fixed encoding of its symbols. This extends previous results on binary sequences, and improves previous results on general sequences where those queries are answered in O(log r) time. For larger r, we can still represent S in nH0(S) + o(n log r) bits and answer queries in O(log r / log log n) time. Another contribution of this paper is to show how to combine our compressed representation of integer sequences with an existing compression boosting technique to design compressed fulltext indexes that scale well with the size of the input alphabet Σ. Namely, we design a variant of the FMindex that indexes a string T [1, n] within nHk(T) + o(n) bits of storage, where Hk(T) is the kth order empirical entropy of T. This space bound holds simultaneously for all k ≤ α log Σ  n, constant 0 < α < 1, and Σ  = O(polylog(n)). This index counts the occurrences of an arbitrary pattern P [1, p] as a substring of T in O(p) time; it locates each pattern occurrence in O(log 1+ε n) time, for any constant 0 < ε < 1; and it reports a text substring of length ℓ in O(ℓ + log 1+ε n) time.