Results 1 - 10
of
369
Imagenet classification with deep convolutional neural networks.
- In Advances in the Neural Information Processing System,
, 2012
"... Abstract We trained a large, deep convolutional neural network to classify the 1.2 million high-resolution images in the ImageNet LSVRC-2010 contest into the 1000 different classes. On the test data, we achieved top-1 and top-5 error rates of 37.5% and 17.0% which is considerably better than the pr ..."
Abstract
-
Cited by 1010 (11 self)
- Add to MetaCart
(Show Context)
Abstract We trained a large, deep convolutional neural network to classify the 1.2 million high-resolution images in the ImageNet LSVRC-2010 contest into the 1000 different classes. On the test data, we achieved top-1 and top-5 error rates of 37.5% and 17.0% which is considerably better than the previous state-of-the-art. The neural network, which has 60 million parameters and 650,000 neurons, consists of five convolutional layers, some of which are followed by max-pooling layers, and three fully-connected layers with a final 1000-way softmax. To make training faster, we used non-saturating neurons and a very efficient GPU implementation of the convolution operation. To reduce overfitting in the fully-connected layers we employed a recently-developed regularization method called "dropout" that proved to be very effective. We also entered a variant of this model in the ILSVRC-2012 competition and achieved a winning top-5 test error rate of 15.3%, compared to 26.2% achieved by the second-best entry.
What is the Best Multi-Stage Architecture for Object Recognition?
"... In many recent object recognition systems, feature extraction stages are generally composed of a filter bank, a non-linear transformation, and some sort of feature pooling layer. Most systems use only one stage of feature extraction in which the filters are hard-wired, or two stages where the filter ..."
Abstract
-
Cited by 252 (22 self)
- Add to MetaCart
(Show Context)
In many recent object recognition systems, feature extraction stages are generally composed of a filter bank, a non-linear transformation, and some sort of feature pooling layer. Most systems use only one stage of feature extraction in which the filters are hard-wired, or two stages where the filters in one or both stages are learned in supervised or unsupervised mode. This paper addresses three questions: 1. How does the non-linearities that follow the filter banks influence the recognition accuracy? 2. does learning the filter banks in an unsupervised or supervised manner improve the performance over random filters or hardwired filters? 3. Is there any advantage to using an architecture with two stages of feature extraction, rather than one? We show that using non-linearities that include rectification and local contrast normalization is the single most important ingredient for good accuracy on object recognition benchmarks. We show that two stages of feature extraction yield better accuracy than one. Most surprisingly, we show that a two-stage system with random filters can yield almost 63 % recognition rate on Caltech-101, provided that the proper non-linearities and pooling layers are used. Finally, we show that with supervised refinement, the system achieves state-of-the-art performance on NORB dataset (5.6%) and unsupervised pre-training followed by supervised refinement produces good accuracy on Caltech-101 (> 65%), and the lowest known error rate on the undistorted, unprocessed MNIST dataset (0.53%). 1.
Learning mid-level features for recognition
, 2010
"... Many successful models for scene or object recognition transform low-level descriptors (such as Gabor filter responses, or SIFT descriptors) into richer representations of intermediate complexity. This process can often be broken down into two steps: (1) a coding step, which performs a pointwise tra ..."
Abstract
-
Cited by 228 (13 self)
- Add to MetaCart
(Show Context)
Many successful models for scene or object recognition transform low-level descriptors (such as Gabor filter responses, or SIFT descriptors) into richer representations of intermediate complexity. This process can often be broken down into two steps: (1) a coding step, which performs a pointwise transformation of the descriptors into a representation better adapted to the task, and (2) a pooling step, which summarizes the coded features over larger neighborhoods. Several combinations of coding and pooling schemes have been proposed in the literature. The goal of this paper is threefold. We seek to establish the relative importance of each step of mid-level feature extraction through a comprehensive cross evaluation of several types of coding modules (hard and soft vector quantization, sparse coding) and pooling schemes (by taking the average, or the maximum), which obtains state-of-the-art performance or better on several recognition benchmarks. We show how to improve the best performing coding scheme by learning a supervised discriminative dictionary for sparse coding. We provide theoretical and empirical insight into the remarkable performance of max pooling. By teasing apart components shared by modern mid-level feature extractors, our approach aims to facilitate the design of better recognition architectures.
An Analysis of Single-Layer Networks in Unsupervised Feature Learning
"... A great deal of research has focused on algorithms for learning features from unlabeled data. Indeed, much progress has been made on benchmark datasets like NORB and CIFAR by employing increasingly complex unsupervised learning algorithms and deep models. In this paper, however, we show that several ..."
Abstract
-
Cited by 223 (19 self)
- Add to MetaCart
(Show Context)
A great deal of research has focused on algorithms for learning features from unlabeled data. Indeed, much progress has been made on benchmark datasets like NORB and CIFAR by employing increasingly complex unsupervised learning algorithms and deep models. In this paper, however, we show that several very simple factors, such as the number of hidden nodes in the model, may be as important to achieving high performance as the choice of learning algorithm or the depth of the model. Specifically, we will apply several off-the-shelf feature learning algorithms (sparse auto-encoders, sparse RBMs and K-means clustering, Gaussian mixtures) to NORB and CIFAR datasets using only single-layer networks. We then present a detailed analysis of the effect of changes in the model setup: the receptive field size, number of hidden nodes (features), the step-size (“stride”) between extracted features, and the effect of whitening. Our results show that large numbers of hidden nodes and dense feature extraction are as critical to achieving high performance as the choice of algorithm itself—so critical, in fact, that when these parameters are pushed to their limits, we are able to achieve state-of-theart performance on both CIFAR and NORB using only a single layer of features. More surprisingly, our best performance is based on K-means clustering, which is extremely fast, has no hyper-parameters to tune beyond the model structure itself, and is very easy implement. Despite the simplicity of our system, we achieve performance beyond all previously published results on the CIFAR-10 and NORB datasets (79.6 % and 97.0 % accuracy respectively). 1
Object Bank: A High-Level Image Representation for Scene Classification & Semantic Feature Sparsification
"... Robust low-level image features have been proven to be effective representations for a variety of visual recognition tasks such as object recognition and scene classification; but pixels, or even local image patches, carry little semantic meanings. For high level visual tasks, such low-level image r ..."
Abstract
-
Cited by 207 (6 self)
- Add to MetaCart
Robust low-level image features have been proven to be effective representations for a variety of visual recognition tasks such as object recognition and scene classification; but pixels, or even local image patches, carry little semantic meanings. For high level visual tasks, such low-level image representations are potentially not enough. In this paper, we propose a high-level image representation, called the Object Bank, where an image is represented as a scale-invariant response map of a large number of pre-trained generic object detectors, blind to the testing dataset or visual task. Leveraging on the Object Bank representation, superior performances on high level visual recognition tasks can be achieved with simple off-the-shelf classifiers such as logistic regression and linear SVM. Sparsity algorithms make our representation more efficient and scalable for large scene datasets, and reveal semantically meaningful feature patterns. 1
Building high-level features using large scale unsupervised learning
- In International Conference on Machine Learning, 2012. 103
"... We consider the problem of building highlevel, class-specific feature detectors from only unlabeled data. For example, is it possible to learn a face detector using only unlabeled images? To answer this, we train a 9-layered locally connected sparse autoencoder withpoolingandlocalcontrastnormalizati ..."
Abstract
-
Cited by 180 (9 self)
- Add to MetaCart
(Show Context)
We consider the problem of building highlevel, class-specific feature detectors from only unlabeled data. For example, is it possible to learn a face detector using only unlabeled images? To answer this, we train a 9-layered locally connected sparse autoencoder withpoolingandlocalcontrastnormalization on a large dataset of images (the model has 1 billion connections, the dataset has 10 million 200x200 pixel images downloaded from the Internet). We train this network using model parallelism and asynchronous SGD on a cluster with 1,000 machines (16,000 cores) for three days. Contrary to what appears to be a widely-held intuition, our experimental results reveal that it is possible to train a face detector without having to label images as containingafaceornot. Controlexperiments show that this feature detector is robust not only to translation but also to scaling and out-of-plane rotation. We also find that the same network is sensitive to other high-level concepts such as cat faces and human bodies. Starting with these learned features, we trained our network to obtain 15.8 % accuracy in recognizing 20,000 object categories from ImageNet, a leap of 70 % relative improvement over the previous state-of-the-art.
Representation learning: A review and new perspectives.
- of IEEE Conf. Comp. Vision Pattern Recog. (CVPR),
, 2005
"... Abstract-The success of machine learning algorithms generally depends on data representation, and we hypothesize that this is because different representations can entangle and hide more or less the different explanatory factors of variation behind the data. Although specific domain knowledge can b ..."
Abstract
-
Cited by 173 (4 self)
- Add to MetaCart
(Show Context)
Abstract-The success of machine learning algorithms generally depends on data representation, and we hypothesize that this is because different representations can entangle and hide more or less the different explanatory factors of variation behind the data. Although specific domain knowledge can be used to help design representations, learning with generic priors can also be used, and the quest for AI is motivating the design of more powerful representation-learning algorithms implementing such priors. This paper reviews recent work in the area of unsupervised feature learning and deep learning, covering advances in probabilistic models, autoencoders, manifold learning, and deep networks. This motivates longer term unanswered questions about the appropriate objectives for learning good representations, for computing representations (i.e., inference), and the geometrical connections between representation learning, density estimation, and manifold learning.
Why does unsupervised pre-training help deep learning?
, 2010
"... Much recent research has been devoted to learning algorithms for deep architectures such as Deep Belief Networks and stacks of autoencoder variants with impressive results being obtained in several areas, mostly on vision and language datasets. The best results obtained on supervised learning tasks ..."
Abstract
-
Cited by 155 (20 self)
- Add to MetaCart
(Show Context)
Much recent research has been devoted to learning algorithms for deep architectures such as Deep Belief Networks and stacks of autoencoder variants with impressive results being obtained in several areas, mostly on vision and language datasets. The best results obtained on supervised learning tasks often involve an unsupervised learning component, usually in an unsupervised pre-training phase. The main question investigated here is the following: why does unsupervised pre-training work so well? Through extensive experimentation, we explore several possible explanations discussed in the literature including its action as a regularizer (Erhan et al., 2009b) and as an aid to optimization (Bengio et al., 2007). Our results build on the work of Erhan et al. (2009b), showing that unsupervised pre-training appears to play predominantly a regularization role in subsequent supervised training. However our results in an online setting, with a virtually unlimited data stream, point to a somewhat more nuanced interpretation of the roles of optimization and regularization in the unsupervised pre-training effect.
Parsing Natural Scenes and Natural Language with Recursive Neural Networks
"... Recursive structure is commonly found in the inputs of different modalities such as natural scene images or natural language sentences. Discovering this recursive structure helps us to not only identify the units that an image or sentence contains but also how they interact to form a whole. We intro ..."
Abstract
-
Cited by 118 (5 self)
- Add to MetaCart
Recursive structure is commonly found in the inputs of different modalities such as natural scene images or natural language sentences. Discovering this recursive structure helps us to not only identify the units that an image or sentence contains but also how they interact to form a whole. We introduce a max-margin structure prediction architecture based on recursive neural networks that can successfully recover such structure both in complex scene images as well as sentences. The same algorithm can be used both to provide a competitive syntactic parser for natural language sentences from the Penn Treebank and to outperform alternative approaches for semantic scene segmentation, annotation and classification. For segmentation and annotation our algorithm obtains a new level of state-of-theart performance on the Stanford background dataset (78.1%). The features from the image parse tree outperform Gist descriptors for scene classification by 4%. 1.
Task-Driven Dictionary Learning
"... Abstract—Modeling data with linear combinations of a few elements from a learned dictionary has been the focus of much recent research in machine learning, neuroscience, and signal processing. For signals such as natural images that admit such sparse representations, it is now well established that ..."
Abstract
-
Cited by 86 (3 self)
- Add to MetaCart
(Show Context)
Abstract—Modeling data with linear combinations of a few elements from a learned dictionary has been the focus of much recent research in machine learning, neuroscience, and signal processing. For signals such as natural images that admit such sparse representations, it is now well established that these models are well suited to restoration tasks. In this context, learning the dictionary amounts to solving a large-scale matrix factorization problem, which can be done efficiently with classical optimization tools. The same approach has also been used for learning features from data for other purposes, e.g., image classification, but tuning the dictionary in a supervised way for these tasks has proven to be more difficult. In this paper, we present a general formulation for supervised dictionary learning adapted to a wide variety of tasks, and present an efficient algorithm for solving the corresponding optimization problem. Experiments on handwritten digit classification, digital art identification, nonlinear inverse image problems, and compressed sensing demonstrate that our approach is effective in large-scale settings, and is well suited to supervised and semi-supervised classification, as well as regression tasks for data that admit sparse representations. Index Terms—Basis pursuit, Lasso, dictionary learning, matrix factorization, semi-supervised learning, compressed sensing. Ç 1