Results 1 - 10
of
457
Multimodality Image Registration by Maximization of Mutual Information
- IEEE TRANSACTIONS ON MEDICAL IMAGING
, 1997
"... A new approach to the problem of multimodality medical image registration is proposed, using a basic concept from information theory, mutual information (MI), or relative entropy, as a new matching criterion. The method presented in this paper applies MI to measure the statistical dependence or in ..."
Abstract
-
Cited by 791 (10 self)
- Add to MetaCart
A new approach to the problem of multimodality medical image registration is proposed, using a basic concept from information theory, mutual information (MI), or relative entropy, as a new matching criterion. The method presented in this paper applies MI to measure the statistical dependence or information redundancy between the image intensities of corresponding voxels in both images, which is assumed to be maximal if the images are geometrically aligned. Maximization of MI is a very general and powerful criterion, because no assumptions are made regarding the nature of this dependence and no limiting constraints are imposed on the image content of the modalities involved. The accuracy of the MI criterion is validated for rigid body registration of computed tomography (CT), magnetic resonance (MR), and photon emission tomography (PET) images by comparison with the stereotactic registration solution, while robustness is evaluated with respect to implementation issues, such as interpolation and optimization, and image content, including partial overlap and image degradation. Our results demonstrate that subvoxel accuracy with respect to the stereotactic reference solution can be achieved completely automatically and without any prior segmentation, feature extraction, or other preprocessing steps which makes this method very well suited for clinical applications.
A Survey of Medical Image Registration
, 1998
"... The purpose of this chapter is to present a survey of recent publications concerning medical image registration techniques. These publications will be classified according to a model based on nine salient criteria, the main dichotomy of which is extrinsic versus intrinsic methods The statistics of t ..."
Abstract
-
Cited by 548 (5 self)
- Add to MetaCart
The purpose of this chapter is to present a survey of recent publications concerning medical image registration techniques. These publications will be classified according to a model based on nine salient criteria, the main dichotomy of which is extrinsic versus intrinsic methods The statistics of the classification show definite trends in the evolving registration techniques, which will be discussed. At this moment, the bulk of interesting intrinsic methods is either based on segmented points or surfaces, or on techniques endeavoring to use the full information content of the images involved.
Mutual-information-based registration of medical images: a survey
- IEEE TRANSCATIONS ON MEDICAL IMAGING
, 2003
"... An overview is presented of the medical image processing literature on mutual-information-based registration. The aim of the survey is threefold: an introduction for those new to the field, an overview for those working in the field, and a reference for those searching for literature on a specific ..."
Abstract
-
Cited by 302 (3 self)
- Add to MetaCart
(Show Context)
An overview is presented of the medical image processing literature on mutual-information-based registration. The aim of the survey is threefold: an introduction for those new to the field, an overview for those working in the field, and a reference for those searching for literature on a specific application. Methods are classified according to the different aspects of mutual-information-based registration. The main division is in aspects of the methodology and of the application. The part on methodology describes choices made on facets such as preprocessing of images, gray value interpolation, optimization, adaptations to the mutual information measure, and different types of geometrical transformations. The part on applications is a reference of the literature available on different modalities, on interpatient registration and on different anatomical objects. Comparison studies including mutual information are also considered. The paper starts with a description of entropy and mutual information and it closes with a discussion on past achievements and some future challenges.
probabilistic atlas and reference system for the human brain: International consortium for brain mapping (ICBM
- P, MACDONALD D, IACOBONI M, SCHORMANN T, AMUNTS K, PALOMERO-GALLAGHER N, GEYER S, PARSONS L, NARR K, KABANI N, LE GOUALHER G, BOOMSMA D, CANNON T, KAWASHIMA R and MAZOYER B. A
, 2001
"... Motivated by the vast amount of information that is rapidly accumulating about the human brain in digital ..."
Abstract
-
Cited by 208 (35 self)
- Add to MetaCart
(Show Context)
Motivated by the vast amount of information that is rapidly accumulating about the human brain in digital
Comparison and evaluation of retrospective intermodality brain image registration techniques
- JOURNAL OF COMPUTER ASSISTED TOMOGRAPHY
, 1997
"... ..."
(Show Context)
Consistent Image Registration
, 2001
"... This paper presents a new method for image registration based on jointly estimating the forward and reverse transformations between two images while constraining these transforms to be inverses of one another. This approach produces a consistent set of transformations that have less pairwise registr ..."
Abstract
-
Cited by 161 (10 self)
- Add to MetaCart
This paper presents a new method for image registration based on jointly estimating the forward and reverse transformations between two images while constraining these transforms to be inverses of one another. This approach produces a consistent set of transformations that have less pairwise registration error, i.e., better correspondence, than traditional methods that estimate the forward and reverse transformations independently. The transformations are estimated iteratively and are restricted to preserve topology by constraining them to obey the laws of continuum mechanics. The transformations are parameterized by a Fourier series to diagonalize the covariance structure imposed by the continuum mechanics constraints and to provide a computationally efficient numerical implementation. Results using a linear elastic material constraint are presented using both magnetic resonance and X-ray computed tomography image data. The results show that the joint estimation of a consistent set of forward and reverse transformations constrained by linear-elasticity give better registration results than using either constraint alone or none at all.
Optimization of Mutual Information for Multiresolution Image Registration
- IEEE Transactions on Image Processing
, 2000
"... We propose a new method for the intermodal registration of images using a criterion known as mutual information. Our main contribution is an optimizer that we specifically designed for this criterion. We show that this new optimizer is well adapted to a multiresolution approach because it typically ..."
Abstract
-
Cited by 146 (6 self)
- Add to MetaCart
We propose a new method for the intermodal registration of images using a criterion known as mutual information. Our main contribution is an optimizer that we specifically designed for this criterion. We show that this new optimizer is well adapted to a multiresolution approach because it typically converges in fewer criterion evaluations than other optimizers. We have built a multiresolution image pyramid, along with an interpolation process, an optimizer, and the criterion itself, around the unifying concept of spline-processing. This ensures coherence in the way we model data and yields good performance. We have tested our approach in a variety of experimental conditions and report excellent results. We claim an accuracy of about a hundredth of a pixel under ideal conditions. We are also robust since the accuracy is still about a tenth of a pixel under very noisy conditions. In addition, a blind evaluation of our results compares very favorably to the work of several other researchers.