Results 1  10
of
65
On ideal lattices and learning with errors over rings
 In Proc. of EUROCRYPT, volume 6110 of LNCS
, 2010
"... The “learning with errors ” (LWE) problem is to distinguish random linear equations, which have been perturbed by a small amount of noise, from truly uniform ones. The problem has been shown to be as hard as worstcase lattice problems, and in recent years it has served as the foundation for a pleth ..."
Abstract

Cited by 125 (18 self)
 Add to MetaCart
The “learning with errors ” (LWE) problem is to distinguish random linear equations, which have been perturbed by a small amount of noise, from truly uniform ones. The problem has been shown to be as hard as worstcase lattice problems, and in recent years it has served as the foundation for a plethora of cryptographic applications. Unfortunately, these applications are rather inefficient due to an inherent quadratic overhead in the use of LWE. A main open question was whether LWE and its applications could be made truly efficient by exploiting extra algebraic structure, as was done for latticebased hash functions (and related primitives). We resolve this question in the affirmative by introducing an algebraic variant of LWE called ringLWE, and proving that it too enjoys very strong hardness guarantees. Specifically, we show that the ringLWE distribution is pseudorandom, assuming that worstcase problems on ideal lattices are hard for polynomialtime quantum algorithms. Applications include the first truly practical latticebased publickey cryptosystem with an efficient security reduction; moreover, many of the other applications of LWE can be made much more efficient through the use of ringLWE. 1
PublicKey Cryptosystems Resilient to Key Leakage
"... Most of the work in the analysis of cryptographic schemes is concentrated in abstract adversarial models that do not capture sidechannel attacks. Such attacks exploit various forms of unintended information leakage, which is inherent to almost all physical implementations. Inspired by recent sidec ..."
Abstract

Cited by 89 (6 self)
 Add to MetaCart
(Show Context)
Most of the work in the analysis of cryptographic schemes is concentrated in abstract adversarial models that do not capture sidechannel attacks. Such attacks exploit various forms of unintended information leakage, which is inherent to almost all physical implementations. Inspired by recent sidechannel attacks, especially the “cold boot attacks ” of Halderman et al. (USENIX Security ’08), Akavia, Goldwasser and Vaikuntanathan (TCC ’09) formalized a realistic framework for modeling the security of encryption schemes against a wide class of sidechannel attacks in which adversarially chosen functions of the secret key are leaked. In the setting of publickey encryption, Akavia et al. showed that Regev’s latticebased scheme (STOC ’05) is resilient to any leakage of
Better key sizes (and attacks) for LWEbased encryption
 In CTRSA
, 2011
"... We analyze the concrete security and key sizes of theoretically sound latticebased encryption schemes based on the “learning with errors ” (LWE) problem. Our main contributions are: (1) a new lattice attack on LWE that combines basis reduction with an enumeration algorithm admitting a time/success ..."
Abstract

Cited by 71 (7 self)
 Add to MetaCart
We analyze the concrete security and key sizes of theoretically sound latticebased encryption schemes based on the “learning with errors ” (LWE) problem. Our main contributions are: (1) a new lattice attack on LWE that combines basis reduction with an enumeration algorithm admitting a time/success tradeoff, which performs better than the simple distinguishing attack considered in prior analyses; (2) concrete parameters and security estimates for an LWEbased cryptosystem that is more compact and efficient than the wellknown schemes from the literature. Our new key sizes are up to 10 times smaller than prior examples, while providing even stronger concrete security levels.
Fully Homomorphic Encryption from RingLWE and Security for Key Dependent Messages
 in Advances in Cryptology—CRYPTO 2011, Lect. Notes in Comp. Sci. 6841 (2011
"... Abstract. We present a somewhat homomorphic encryption scheme that is both very simple to describe and analyze, and whose security (quantumly) reduces to the worstcase hardness of problems on ideal lattices. We then transform it into a fully homomorphic encryption scheme using standard “squashing ” ..."
Abstract

Cited by 71 (3 self)
 Add to MetaCart
(Show Context)
Abstract. We present a somewhat homomorphic encryption scheme that is both very simple to describe and analyze, and whose security (quantumly) reduces to the worstcase hardness of problems on ideal lattices. We then transform it into a fully homomorphic encryption scheme using standard “squashing ” and “bootstrapping ” techniques introduced by Gentry (STOC 2009). One of the obstacles in going from “somewhat ” to full homomorphism is the requirement that the somewhat homomorphic scheme be circular secure, namely, the scheme can be used to securely encrypt its own secret key. For all known somewhat homomorphic encryption schemes, this requirement was not known to be achievable under any cryptographic assumption, and had to be explicitly assumed. We take a step forward towards removing this additional assumption by proving that our scheme is in fact secure when encrypting polynomial functions of the secret key. Our scheme is based on the ring learning with errors (RLWE) assumption that was recently introduced by Lyubashevsky, Peikert and Regev (Eurocrypt 2010). The RLWE assumption is reducible to worstcase problems on ideal lattices, and allows us to completely abstract out the lattice interpretation, resulting in an extremely simple scheme. For example, our secret key is s, and our public key is (a, b = as + 2e), where s, a, e are all degree (n − 1) integer polynomials whose coefficients are independently drawn from easy to sample distributions. 1
Foundations of Garbled Circuits
, 2012
"... Garbled circuits, a classical idea rooted in the work of Andrew Yao, have long been understood as a cryptographic technique, not a cryptographic goal. Here we cull out a primitive corresponding to this technique. We call it a garbling scheme. We provide a provablesecurity treatment for garbling s ..."
Abstract

Cited by 51 (5 self)
 Add to MetaCart
Garbled circuits, a classical idea rooted in the work of Andrew Yao, have long been understood as a cryptographic technique, not a cryptographic goal. Here we cull out a primitive corresponding to this technique. We call it a garbling scheme. We provide a provablesecurity treatment for garbling schemes, endowing them with a versatile syntax and multiple security definitions. The most basic of these, privacy, suffices for twoparty secure function evaluation (SFE) and private function evaluation (PFE). Starting from a PRF, we provide an efficient garbling scheme achieving privacy and we analyze its concrete security. We next consider obliviousness and authenticity, properties needed for private and verifiable outsourcing of computation. We extend our scheme to achieve these ends. We provide highly efficient blockcipherbased instantiations of both schemes. Our treatment of garbling schemes presages more efficient garbling, more rigorous analyses, and more
Making NTRU as secure as worstcase problems over ideal lattices
 In Proc. of EUROCRYPT, volume 6632 of LNCS
, 2011
"... Abstract. NTRUEncrypt, proposed in 1996 by Ho stein, Pipher and Silverman, is the fastest known latticebased encryption scheme. Its moderate keysizes, excellent asymptotic performance and conjectured resistance to quantum computers could make it a desirable alternative to factorisation and discret ..."
Abstract

Cited by 46 (5 self)
 Add to MetaCart
Abstract. NTRUEncrypt, proposed in 1996 by Ho stein, Pipher and Silverman, is the fastest known latticebased encryption scheme. Its moderate keysizes, excellent asymptotic performance and conjectured resistance to quantum computers could make it a desirable alternative to factorisation and discretelog based encryption schemes. However, since its introduction, doubts have regularly arisen on its security. In the present work, we show how to modify NTRUEncrypt to make it provably secure in the standard model, under the assumed quantum hardness of standard worstcase lattice problems, restricted to a family of lattices related to some cyclotomic elds. Our main contribution is to show that if the secret key polynomials are selected by rejection from discrete Gaussians, then the public key, which is their ratio, is statistically indistinguishable from uniform over its domain. The security then follows from the already proven hardness of the RLWE problem.
Pseudorandom Functions and Lattices
, 2011
"... We give direct constructions of pseudorandom function (PRF) families based on conjectured hard lattice problems and learning problems. Our constructions are asymptotically efficient and highly parallelizable in a practical sense, i.e., they can be computed by simple, relatively small lowdepth arith ..."
Abstract

Cited by 35 (10 self)
 Add to MetaCart
We give direct constructions of pseudorandom function (PRF) families based on conjectured hard lattice problems and learning problems. Our constructions are asymptotically efficient and highly parallelizable in a practical sense, i.e., they can be computed by simple, relatively small lowdepth arithmetic or boolean circuits (e.g., in NC 1 or even TC 0). In addition, they are the first lowdepth PRFs that have no known attack by efficient quantum algorithms. Central to our results is a new “derandomization ” technique for the learning with errors (LWE) problem which, in effect, generates the error terms deterministically. 1 Introduction and Main Results The past few years have seen significant progress in constructing publickey, identitybased, and homomorphic cryptographic schemes using lattices, e.g., [Reg05, PW08, GPV08, Gen09, CHKP10, ABB10a] and many more. Part of their appeal stems from provable worstcase hardness guarantees (starting with the seminal work of Ajtai [Ajt96]), good asymptotic efficiency and parallelism, and apparent resistance to quantum
KeyDependent Message Security: Generic Amplification and Completeness
, 2011
"... Keydependent message (KDM) secure encryption schemes provide secrecy even when the attacker sees encryptions of messages related to the secretkey sk. Namely, the scheme should remain secure even when messages of the form f(sk) are encrypted, where f is taken from some function class F. A KDM ampli ..."
Abstract

Cited by 28 (2 self)
 Add to MetaCart
Keydependent message (KDM) secure encryption schemes provide secrecy even when the attacker sees encryptions of messages related to the secretkey sk. Namely, the scheme should remain secure even when messages of the form f(sk) are encrypted, where f is taken from some function class F. A KDM amplification procedure takes an encryption scheme which satisfies FKDM security and boost it into a GKDM secure scheme, where the function class G should be richer than F. It was recently shown by Brakerski et al. (TCC 2011) and Barak et al. (EUROCRYPT 2010), that a strong form of amplification is possible, provided that the underlying encryption scheme satisfies some special additional properties. In this work, we prove the first generic KDM amplification theorem which relies solely on the KDM security of the underlying scheme without making any other assumptions. Specifically, we show that an elementary form of KDM security against functions in which each output bit either copies or flips a single bit of the key (aka projections) can be amplified into KDM security with respect to any function family that can be computed in arbitrary fixed polynomialtime. Furthermore, our amplification theorem and its proof are insensitive to the exact setting of KDM security, and they hold in the presence of multiplekeys and in the symmetrickey/publickey and the CPA/CCA cases. As a result, we can amplify the security of all known KDM constructions, including ones that could not be amplified before. Finally, we study the minimal conditions under which fullKDM security (with respect to all functions) can be achieved. We show that under strong notion of KDM security, the existence of cyclicsecure fullyhomomorphic encryption is not only sufficient for fullKDM security, as shown by Barak et al., but also necessary. On the other hand, we observe that for standard KDM security, this condition can be relaxed by adopting Gentry’s bootstrapping technique (STOC 2009) to the KDM setting.
Improved Security for a RingBased Fully Homomorphic Encryption Scheme
"... Abstract. In 1996, Hoffstein, Pipher and Silverman introduced an efficient lattice based encryption scheme dubbed NTRUEncrypt. Unfortunately, this scheme lacks a proof of security. However, in 2011, Stehlé and Steinfeld showed how to modify NTRUEncrypt to reduce security to standard problems in idea ..."
Abstract

Cited by 27 (7 self)
 Add to MetaCart
(Show Context)
Abstract. In 1996, Hoffstein, Pipher and Silverman introduced an efficient lattice based encryption scheme dubbed NTRUEncrypt. Unfortunately, this scheme lacks a proof of security. However, in 2011, Stehlé and Steinfeld showed how to modify NTRUEncrypt to reduce security to standard problems in ideal lattices. At STOC 2012, LópezAlt, Tromer and Vaikuntanathan proposed a fully homomorphic scheme based on this modified system. However, to allow homomorphic operations and prove security, a nonstandard assumption is required in their scheme. In this paper, we show how to remove this nonstandard assumption via techniques introduced by Brakerski at CRYPTO 2012 and construct a new fully homomorphic encryption scheme from the Stehlé and Steinfeld version based on standard lattice assumptions and a circular security assumption. The scheme is scaleinvariant and therefore avoids modulus switching, it eliminates ciphertext expansion in homomorphic multiplication, and the size of ciphertexts is one ring element. Moreover, we present a practical variant of our scheme, which is secure under stronger assumptions, along with parameter recommendations and promising implementation results. Finally, we present a novel approach for encrypting larger input sizes by applying a CRT approach on the input space.
Bounded KeyDependent Message Security
, 2009
"... We construct the first publickey encryption scheme that is proven secure (in the standard model, under standard assumptions) even when the attacker gets access to encryptions of arbitrary efficient functions of the secret key. Specifically, under either the DDH or LWE assumption, for every polynomi ..."
Abstract

Cited by 23 (4 self)
 Add to MetaCart
(Show Context)
We construct the first publickey encryption scheme that is proven secure (in the standard model, under standard assumptions) even when the attacker gets access to encryptions of arbitrary efficient functions of the secret key. Specifically, under either the DDH or LWE assumption, for every polynomials L and N we obtain a publickey encryption scheme that resists keydependent message (KDM) attacks for up to N(k) public keys and functions of circuit size up to L(k), where k denotes the size of the secret key. We call such a scheme bounded KDM secure. Moreover, we show that our scheme suffices for one of the important applications of KDM security: ability to securely instantiate symbolic protocols with axiomatic proofs of security. We also observe that any fully homomorphic encryption scheme which additionally enjoys circular security and circuit privacy is fully KDM secure in the sense that the encryption and decryption algorithms can be independent of the polynomials L and N as above. Thus, the recent fully homomorphic encryption scheme of Gentry (STOC 2009) is fully KDM secure under certain nonstandard hardness assumptions. Previous works obtained either full KDM security in the random oracle model (Black et al., SAC 2002) or security with respect to a very restricted class of functions (e.g., clique/circular security and affine functions, Boneh et al., CRYPTO 2008, and Applebaum et al., CRYPTO 2009). Our main result is based on a combination of the circularsecure encryption scheme of either Boneh et al. or Applebaum et al. with Yao’s garbled circuit construction. Finally, we extend the impossibility result of Haitner and Holenstein (TCC 2009), showing that it is impossible to prove KDM security against a family of query functions that contains exponentially hard pseudorandom functions, using only blackbox access to the query function and the adversary attacking the scheme. This proves that the nonblackbox usage of the query function in our proof of security makes to the KDM query function is inherent. Keywords: KDM/clique/circular security; fully homomorphic encryption; formal security. 1