Results 1 - 10
of
213
Survey of clustering data mining techniques
, 2002
"... Accrue Software, Inc. Clustering is a division of data into groups of similar objects. Representing the data by fewer clusters necessarily loses certain fine details, but achieves simplification. It models data by its clusters. Data modeling puts clustering in a historical perspective rooted in math ..."
Abstract
-
Cited by 408 (0 self)
- Add to MetaCart
(Show Context)
Accrue Software, Inc. Clustering is a division of data into groups of similar objects. Representing the data by fewer clusters necessarily loses certain fine details, but achieves simplification. It models data by its clusters. Data modeling puts clustering in a historical perspective rooted in mathematics, statistics, and numerical analysis. From a machine learning perspective clusters correspond to hidden patterns, the search for clusters is unsupervised learning, and the resulting system represents a data concept. From a practical perspective clustering plays an outstanding role in data mining applications such as scientific data exploration, information retrieval and text mining, spatial database applications, Web analysis, CRM, marketing, medical diagnostics, computational biology, and many others. Clustering is the subject of active research in several fields such as statistics, pattern recognition, and machine learning. This survey focuses on clustering in data mining. Data mining adds to clustering the complications of very large datasets with very many attributes of different types. This imposes unique
On the equivalence of nonnegative matrix factorization and spectral clustering
- in SIAM International Conference on Data Mining
, 2005
"... Current nonnegative matrix factorization (NMF) deals with X = FG T type. We provide a systematic analysis and extensions of NMF to the symmetric W = HH T, and the weighted W = HSHT. We show that (1) W = HHT is equivalent to Kernel K-means clustering and the Laplacian-based spectral clustering. (2) X ..."
Abstract
-
Cited by 159 (20 self)
- Add to MetaCart
(Show Context)
Current nonnegative matrix factorization (NMF) deals with X = FG T type. We provide a systematic analysis and extensions of NMF to the symmetric W = HH T, and the weighted W = HSHT. We show that (1) W = HHT is equivalent to Kernel K-means clustering and the Laplacian-based spectral clustering. (2) X = FGT is equivalent to simultaneous clustering of rows and columns of a bipartite graph. Algorithms are given for computing these symmetric NMFs. 1
SCAN: an Structural Clustering Algorithm for Networks
- IN PROC. OF 13 TH ACM SIGKDD INTERNATIONAL CONFERENCE ON KNOWLEDGE DISCOVERY AND DATA MINING
, 2004
"... Network clustering (or graph partitioning) is an important task for the discovery of underlying structures in networks. Many algorithms find clusters by maximizing the number of intra-cluster edges. While such algorithms find useful and interesting structures, they tend to fail to identify and isola ..."
Abstract
-
Cited by 106 (4 self)
- Add to MetaCart
Network clustering (or graph partitioning) is an important task for the discovery of underlying structures in networks. Many algorithms find clusters by maximizing the number of intra-cluster edges. While such algorithms find useful and interesting structures, they tend to fail to identify and isolate two kinds of vertices that play special roles – vertices that bridge clusters (hubs) and vertices that are marginally connected to clusters (outliers). Identifying hubs is useful for applications such as viral marketing and epidemiology since hubs are responsible for spreading ideas or disease. In contrast, outliers have little or no influence, and may be isolated as noise in the data. In this paper, we proposed a novel algorithm called SCAN (Structural Clustering Algorithm for Networks), which detects clusters, hubs and outliers in networks. It clusters vertices based on a structural similarity measure. The algorithm is fast and efficient, visiting each vertex only once. An empirical evaluation of the method using both synthetic and real datasets demonstrates superior performance over other methods such as the modularity-based algorithms.
Extracting social networks and contact information from email and the web
- In Proceedings of CEAS-1
, 2004
"... Abstract. We present an end-to-end system that extracts a user’s social network and its members’ contact information given the user’s email inbox. The system identifies unique people in email, finds their Web presence, and automatically fills the fields of a contact address book using conditional ra ..."
Abstract
-
Cited by 105 (4 self)
- Add to MetaCart
(Show Context)
Abstract. We present an end-to-end system that extracts a user’s social network and its members’ contact information given the user’s email inbox. The system identifies unique people in email, finds their Web presence, and automatically fills the fields of a contact address book using conditional random fields—a type of probabilistic model well-suited for such information extraction tasks. By recursively calling itself on new people discovered on the Web, the system builds a social network with multiple degrees of separation from the user. Additionally, a set of expertise-describing keywords are extracted and associated with each person. We outline the collection of statistical and learning components that enable this system, and present experimental results on the real email of two users; we also present results with a simple method of learning transfer, and discuss the capabilities of the system for addressbook population, expert-finding, and social network analysis. 1
Ranking-based clustering of heterogeneous information networks with star network schema
- In: Proc. 2009 ACM SIGKDD Int. Conf. on Knowledge Discovery and Data Mining (KDD 2009
, 2009
"... A heterogeneous information network is an information network composed of multiple types of objects. Clustering on such a network may lead to better understanding of both hidden structures of the network and the individual role played by every object in each cluster. However, although clustering on ..."
Abstract
-
Cited by 85 (30 self)
- Add to MetaCart
(Show Context)
A heterogeneous information network is an information network composed of multiple types of objects. Clustering on such a network may lead to better understanding of both hidden structures of the network and the individual role played by every object in each cluster. However, although clustering on homogeneous networks has been studied over decades, clustering on heterogeneous networks has not been addressed until recently. A recent study proposed a new algorithm, RankClus, for clustering on bi-typed heterogeneous networks. However, a real-world network may consist of more than two types, and the interactions among multi-typed objects play a key role at disclosing the rich semantics that a network carries. In this paper, we study clustering of multi-typed heterogeneous networks with a star network schema and propose a novel algorithm, NetClus, that utilizes links across multityped objects to generate high-quality net-clusters. An iterative enhancement method is developed that leads to effective ranking-based clustering in such heterogeneous networks. Our experiments on DBLP data show that NetClus generates more accurate clustering results than the baseline topic model algorithm PLSA and the recently proposed algorithm, RankClus. Further, NetClus generates informative clusters, presenting good ranking and cluster membership information for each attribute object in each net-cluster.
Optimal multimodal fusion for multimedia data analysis
- In ACM Multimedia
, 2004
"... Considerable research has been devoted to utilizing multimodal features for better understanding multimedia data. However, two core research issues have not yet been adequately addressed. First, given a set of features extracted from multiple media sources (e.g., extracted from the visual, audio, an ..."
Abstract
-
Cited by 84 (1 self)
- Add to MetaCart
(Show Context)
Considerable research has been devoted to utilizing multimodal features for better understanding multimedia data. However, two core research issues have not yet been adequately addressed. First, given a set of features extracted from multiple media sources (e.g., extracted from the visual, audio, and caption track of videos), how do we determine the best modalities? Second, once a set of modal-ities has been identified, how do we best fuse them to map to se-mantics? In this paper, we propose a two-step approach. The first step finds statistically independent modalities from raw features. In the second step, we use super-kernel fusion to determine the optimal combination of individual modalities. We carefully ana-lyze the tradeoffs between three design factors that affect fusion performance: modality independence, curse of dimensionality, and fusion-model complexity. Through analytical and empirical studies, we demonstrate that our two-step approach, which achieves a care-ful balance of the three design factors, can improve class-prediction accuracy over traditional techniques.
Document clustering using locality preserving indexing
- IEEE Transactions on Knowledge and Data Engineering
, 2005
"... Abstract—We propose a novel document clustering method which aims to cluster the documents into different semantic classes. The document space is generally of high dimensionality and clustering in such a high dimensional space is often infeasible due to the curse of dimensionality. By using Locality ..."
Abstract
-
Cited by 81 (19 self)
- Add to MetaCart
Abstract—We propose a novel document clustering method which aims to cluster the documents into different semantic classes. The document space is generally of high dimensionality and clustering in such a high dimensional space is often infeasible due to the curse of dimensionality. By using Locality Preserving Indexing (LPI), the documents can be projected into a lower-dimensional semantic space in which the documents related to the same semantics are close to each other. Different from previous document clustering methods based on Latent Semantic Indexing (LSI) or Nonnegative Matrix Factorization (NMF), our method tries to discover both the geometric and discriminating structures of the document space. Theoretical analysis of our method shows that LPI is an unsupervised approximation of the supervised Linear Discriminant Analysis (LDA) method, which gives the intuitive motivation of our method. Extensive experimental evaluations are performed on the Reuters-21578 and TDT2 data sets. Index Terms—Document clustering, locality preserving indexing, dimensionality reduction, semantics. æ 1
1 Parallel Spectral Clustering in Distributed Systems
"... Spectral clustering algorithms have been shown to be more effective in finding clusters than some traditional algorithms such as k-means. However, spectral clustering suffers from a scalability problem in both memory use and computational time when the size of a data set is large. To perform cluster ..."
Abstract
-
Cited by 63 (1 self)
- Add to MetaCart
(Show Context)
Spectral clustering algorithms have been shown to be more effective in finding clusters than some traditional algorithms such as k-means. However, spectral clustering suffers from a scalability problem in both memory use and computational time when the size of a data set is large. To perform clustering on large data sets, we investigate two representative ways of approximating the dense similarity matrix. We compare one approach by sparsifying the matrix with another by the Nyström method. We then pick the strategy of sparsifying the matrix via retaining nearest neighbors and investigate its parallelization. We parallelize both memory use and computation on distributed computers. Through
Spectral clustering for multi-type relational data
- In ICML
, 2006
"... Clustering on multi-type relational data has attracted more and more attention in recent years due to its high impact on various important applications, such as Web mining, e-commerce and bioinformatics. However, the research on general multi-type relational data clustering is still limited and prel ..."
Abstract
-
Cited by 60 (4 self)
- Add to MetaCart
(Show Context)
Clustering on multi-type relational data has attracted more and more attention in recent years due to its high impact on various important applications, such as Web mining, e-commerce and bioinformatics. However, the research on general multi-type relational data clustering is still limited and preliminary. The contribution of the paper is three-fold. First, we propose a general model, the collective factorization on related matrices, for multi-type relational data clustering. The model is applicable to relational data with various structures. Second, under this model, we derive a novel algorithm, the spectral relational clustering, to cluster multi-type interrelated data objects simultaneously. The algorithm iteratively embeds each type of data objects into low dimensional spaces and benefits from the interactions among the hidden structures of different types of data objects. Extensive experiments demonstrate the promise and effectiveness of the proposed algorithm. Third, we show that the existing spectral clustering algorithms can be considered as the special cases of the proposed model and algorithm. This demonstrates the good theoretic generality of the proposed model and algorithm. 1.
Consistent bipartite graph co-partitioning for star-structured high-order heterogeneous data co-clustering
- KDD
, 2005
"... Heterogeneous data co-clustering has attracted more and more attention in recent years due to its high impact on various applications. While the co-clustering algorithms for two types of heterogeneous data (denoted by pair-wise co-clustering), such as documents and terms, have been well studied in t ..."
Abstract
-
Cited by 50 (2 self)
- Add to MetaCart
(Show Context)
Heterogeneous data co-clustering has attracted more and more attention in recent years due to its high impact on various applications. While the co-clustering algorithms for two types of heterogeneous data (denoted by pair-wise co-clustering), such as documents and terms, have been well studied in the literature, the work on more types of heterogeneous data (denoted by high-order co-clustering) is still very limited. As an attempt in this direction, in this paper, we worked on a specific case of high-order coclustering in which there is a central type of objects that connects the other types so as to form a star structure of the interrelationships. Actually, this case could be a very good abstract for many real-world applications, such as the co-clustering of categories, documents and terms in text mining. In our philosophy, we treated such kind of problems as the fusion of multiple pairwise co-clustering sub-problems with the constraint of the star structure. Accordingly, we proposed the concept of consistent bipartite graph co-partitioning, and developed an algorithm based on semi-definite programming (SDP) for efficient computation of the clustering results. Experiments on toy problems and real data both verified the effectiveness of our proposed method.