Results 1  10
of
83
PolynomialTime Algorithms for Prime Factorization and Discrete Logarithms on a Quantum Computer
 SIAM J. on Computing
, 1997
"... A digital computer is generally believed to be an efficient universal computing device; that is, it is believed able to simulate any physical computing device with an increase in computation time by at most a polynomial factor. This may not be true when quantum mechanics is taken into consideration. ..."
Abstract

Cited by 1277 (4 self)
 Add to MetaCart
(Show Context)
A digital computer is generally believed to be an efficient universal computing device; that is, it is believed able to simulate any physical computing device with an increase in computation time by at most a polynomial factor. This may not be true when quantum mechanics is taken into consideration. This paper considers factoring integers and finding discrete logarithms, two problems which are generally thought to be hard on a classical computer and which have been used as the basis of several proposed cryptosystems. Efficient randomized algorithms are given for these two problems on a hypothetical quantum computer. These algorithms take a number of steps polynomial in the input size, e.g., the number of digits of the integer to be factored.
Algorithms for Quantum Computation: Discrete Logarithms and Factoring
, 1994
"... A computer is generally considered to be a universal computational device; i.e., it is believed able to simulate any physical computational device with a cost in computation time of at most a polynomial factol: It is not clear whether this is still true when quantum mechanics is taken into consider ..."
Abstract

Cited by 1111 (5 self)
 Add to MetaCart
A computer is generally considered to be a universal computational device; i.e., it is believed able to simulate any physical computational device with a cost in computation time of at most a polynomial factol: It is not clear whether this is still true when quantum mechanics is taken into consideration. Several researchers, starting with David Deutsch, have developed models for quantum mechanical computers and have investigated their computational properties. This paper gives Las Vegas algorithms for finding discrete logarithms and factoring integers on a quantum computer that take a number of steps which is polynomial in the input size, e.g., the number of digits of the integer to be factored. These two problems are generally considered hard on a classical computer and have been used as the basis of several proposed cryptosystems. (We thus give the first examples of quantum cryptanulysis.)
Quantum complexity theory
 in Proc. 25th Annual ACM Symposium on Theory of Computing, ACM
, 1993
"... Abstract. In this paper we study quantum computation from a complexity theoretic viewpoint. Our first result is the existence of an efficient universal quantum Turing machine in Deutsch’s model of a quantum Turing machine (QTM) [Proc. Roy. Soc. London Ser. A, 400 (1985), pp. 97–117]. This constructi ..."
Abstract

Cited by 574 (5 self)
 Add to MetaCart
(Show Context)
Abstract. In this paper we study quantum computation from a complexity theoretic viewpoint. Our first result is the existence of an efficient universal quantum Turing machine in Deutsch’s model of a quantum Turing machine (QTM) [Proc. Roy. Soc. London Ser. A, 400 (1985), pp. 97–117]. This construction is substantially more complicated than the corresponding construction for classical Turing machines (TMs); in fact, even simple primitives such as looping, branching, and composition are not straightforward in the context of quantum Turing machines. We establish how these familiar primitives can be implemented and introduce some new, purely quantum mechanical primitives, such as changing the computational basis and carrying out an arbitrary unitary transformation of polynomially bounded dimension. We also consider the precision to which the transition amplitudes of a quantum Turing machine need to be specified. We prove that O(log T) bits of precision suffice to support a T step computation. This justifies the claim that the quantum Turing machine model should be regarded as a discrete model of computation and not an analog one. We give the first formal evidence that quantum Turing machines violate the modern (complexity theoretic) formulation of the Church–Turing thesis. We show the existence of a problem, relative to an oracle, that can be solved in polynomial time on a quantum Turing machine, but requires superpolynomial time on a boundederror probabilistic Turing machine, and thus not in the class BPP. The class BQP of languages that are efficiently decidable (with small errorprobability) on a quantum Turing machine satisfies BPP ⊆ BQP ⊆ P ♯P. Therefore, there is no possibility of giving a mathematical proof that quantum Turing machines are more powerful than classical probabilistic Turing machines (in the unrelativized setting) unless there is a major breakthrough in complexity theory.
Elementary Gates for Quantum Computation
, 1995
"... We show that a set of gates that consists of all onebit quantum gates (U(2)) and the twobit exclusiveor gate (that maps Boolean values (x, y)to(x, x⊕y)) is universal in the sense that all unitary operations on arbitrarily many bits n (U(2 n)) can be expressed as compositions of these gates. We in ..."
Abstract

Cited by 280 (11 self)
 Add to MetaCart
We show that a set of gates that consists of all onebit quantum gates (U(2)) and the twobit exclusiveor gate (that maps Boolean values (x, y)to(x, x⊕y)) is universal in the sense that all unitary operations on arbitrarily many bits n (U(2 n)) can be expressed as compositions of these gates. We investigate the number of the above gates required to implement other gates, such as generalized DeutschToffoli gates, that apply a specific U(2) transformation to one input bit if and only if the logical AND of all remaining input bits is satisfied. These gates play a central role in many proposed constructions of quantum computational networks. We derive upper and lower bounds on the exact number of elementary gates required to build up a variety of two and threebit quantum gates, the asymptotic number required for nbit DeutschToffoli gates, and make some observations about the number required for arbitrary nbit unitary operations.
TwoBit Gates Are Universal for Quantum Computation
, 1995
"... A proof is given, which relies on the commutator algebra of the unitary Lie groups, that quantum gates operating on just two bits at a time are sufficient to construct a general quantum circuit. The best previous result had shown the universality of threebit gates, by analogy to the universality of ..."
Abstract

Cited by 182 (9 self)
 Add to MetaCart
A proof is given, which relies on the commutator algebra of the unitary Lie groups, that quantum gates operating on just two bits at a time are sufficient to construct a general quantum circuit. The best previous result had shown the universality of threebit gates, by analogy to the universality of the Toffoli threebit gate of classical reversible computing. Twobit quantum gates may be implemented by magnetic resonance operations applied to a pair of electronic or nuclear spins. A "gearbox quantum computer" proposed here, based on the principles of atomic force microscopy, would permit the operation of such twobit gates in a physical system with very long phase breaking (i.e., quantum phase coherence) times. Simpler versions of the gearbox computer could be used to do experiments on EinsteinPodolskyRosen states and related entangled quantum states.
Oracle quantum computing
 Brassard & U.Vazirani, Strengths and weaknesses of quantum computing
, 1994
"... \Because nature isn't classical, dammit..." ..."
Abstract

Cited by 115 (8 self)
 Add to MetaCart
\Because nature isn't classical, dammit..."
On the Power of Quantum Finite State Automata
 Proceedings of the 38th IEEE Conference on Foundations of Computer Science
, 1997
"... In this paper, we introduce 1way and 2way quantum finite state automata (1qfa's and 2qfa's), which are the quantum analogues of deterministic, nondeterministic and probabilistic 1way and 2way finite state automata. We prove the following facts regarding 2qfa's. 1. For any ffl ? 0, ..."
Abstract

Cited by 105 (5 self)
 Add to MetaCart
(Show Context)
In this paper, we introduce 1way and 2way quantum finite state automata (1qfa's and 2qfa's), which are the quantum analogues of deterministic, nondeterministic and probabilistic 1way and 2way finite state automata. We prove the following facts regarding 2qfa's. 1. For any ffl ? 0, there is a 2qfa M which recognizes the nonregular language L = fa m b m j m 1g with (onesided) error bounded by ffl, and which halts in linear time. Specifically, M accepts any string in L with probability 1 and rejects any string not in L with probability at least 1 \Gamma ffl. 2. For every regular language L, there is a reversible (and hence quantum) 2way finite state automaton which recognizes L and which runs in linear time. In fact, it is possible to define 2qfa's which recognize the noncontextfree language fa m b m c m jm 1g, based on the same technique used for 1. Consequently, the class of languages recognized by linear time, bounded error 2qfa's properly includes the regular l...
Efficient simulation of quantum systems by quantum computers
, 1998
"... We show that the time evolution of the wave function of a quantummechanical manyparticle system can be simulated precisely and efficiently on a quantum computer. The time needed for such a simulation is comparable to the time of a conventional simulation of the corresponding classical system, a per ..."
Abstract

Cited by 79 (0 self)
 Add to MetaCart
(Show Context)
We show that the time evolution of the wave function of a quantummechanical manyparticle system can be simulated precisely and efficiently on a quantum computer. The time needed for such a simulation is comparable to the time of a conventional simulation of the corresponding classical system, a performance which can’t be expected from any classical simulation of a quantum system. We then show how quantities of interest, like the energy spectrum of a system, can be obtained. We also indicate that ultimately the simulation of quantum field theory might be possible on large quantum computers.
Quantum computation in brain microtubules? The Penrose–Hameroff “Orch OR” model of consciousness.
 Philos Trans R Soc Lond Ser A, Math Phys Sci
, 1998
"... Potential features of quantum computation could explain enigmatic aspects of consciousness. The PenroseHameroff model (orchestrated objective reduction: 'Orch OR') suggests that quantum superposition and a form of quantum computation occur in microtubulescylindrical protein lattices of ..."
Abstract

Cited by 58 (13 self)
 Add to MetaCart
(Show Context)
Potential features of quantum computation could explain enigmatic aspects of consciousness. The PenroseHameroff model (orchestrated objective reduction: 'Orch OR') suggests that quantum superposition and a form of quantum computation occur in microtubulescylindrical protein lattices of the cell cytoskeleton within the brain's neurons. Microtubules couple to and regulate neurallevel synaptic functions, and they may be ideal quantum computers because of dynamical lattice structure, quantumlevel subunit states and intermittent isolation from environmental interactions. In addition to its biological setting, the Orch OR proposal differs in an essential way from technologically envisioned quantum computers in which collapse, or reduction to classical output states, is caused by environmental decoherence (hence introducing randomness). In the Orch OR proposal, reduction of microtubule quantum superposition to classical output states occurs by an objective factorRoger Penrose's quantum gravity threshold stemming from instability in Planckscale separations (superpositions) in spacetime geometry. Output states following Penrose's objective reduction are neither totally deterministic nor random, but influenced by a noncomputable factor ingrained in fundamental spacetime. Taking a modern panpsychist view in which protoconscious experience and Platonic values are embedded in Planckscale spin networks, the Orch OR model portrays consciousness as brain activities linked to fundamental ripples in spacetime geometry. Keywords: consciousness; quantum computation; objective reduction; orchestrated objective reduction (Orch OR); microtubules; brain Quantum computation and consciousness Proposals for quantum computation rely on superposed states implementing multiple computations simultaneously, in parallel, according to quantum linear superposition (see, for example,
Decoherence, Einselection and the Existential Interpretation (The Rough Guide)
 PHIL. TRANS. R. SOC. LOND. A
, 1998
"... The roles of decoherence and environmentinduced superselection in the emergence of the classical from the quantum substrate are described. The stability of correlations between the einselected quantum pointer states and the environment allows them to exist almost as objectively as classical states ..."
Abstract

Cited by 41 (0 self)
 Add to MetaCart
(Show Context)
The roles of decoherence and environmentinduced superselection in the emergence of the classical from the quantum substrate are described. The stability of correlations between the einselected quantum pointer states and the environment allows them to exist almost as objectively as classical states were once thought to exist: there are ways of finding out what is the pointer state of the system which uses redundancy of its correlations with the environment, and which leave einselected states essentially unperturbed. This relatively objective existence of certain quantum states facilitates operational definition of probabilities in the quantum setting. Moreover, once there are states that ‘exist ’ and can be ‘found out’, a ‘collapse ’ in the traditional sense is no longer necessary—in effect, it has already happened. The role of the preferred states in the processing and storage of information is emphasized. The existential interpretation based on the relatively objective existence of stable correlations between the einselected states of observers’ memory and in the outside universe is formulated and discussed.