Results 1  10
of
24
InductiveDataType Systems
, 2002
"... In a previous work ("Abstract Data Type Systems", TCS 173(2), 1997), the leI two authors presented a combined lmbined made of a (strongl normal3zG9 alrmal rewrite system and a typed #calA#Ik enriched by patternmatching definitions folnitio a certain format,calat the "General Schem ..."
Abstract

Cited by 821 (23 self)
 Add to MetaCart
In a previous work ("Abstract Data Type Systems", TCS 173(2), 1997), the leI two authors presented a combined lmbined made of a (strongl normal3zG9 alrmal rewrite system and a typed #calA#Ik enriched by patternmatching definitions folnitio a certain format,calat the "General Schema", whichgeneral39I theusual recursor definitions fornatural numbers and simil9 "basic inductive types". This combined lmbined was shown to bestrongl normalIk39f The purpose of this paper is toreformul33 and extend theGeneral Schema in order to make it easil extensibl3 to capture a more general cler of inductive types, cals, "strictly positive", and to ease the strong normalgAg9Ik proof of theresulGGg system. Thisresul provides a computation model for the combination of anal"DAfGI specification language based on abstract data types and of astrongl typed functional language with strictly positive inductive types.
Term Rewriting Systems
, 1992
"... Term Rewriting Systems play an important role in various areas, such as abstract data type specifications, implementations of functional programming languages and automated deduction. In this chapter we introduce several of the basic comcepts and facts for TRS's. Specifically, we discuss Abstra ..."
Abstract

Cited by 610 (18 self)
 Add to MetaCart
Term Rewriting Systems play an important role in various areas, such as abstract data type specifications, implementations of functional programming languages and automated deduction. In this chapter we introduce several of the basic comcepts and facts for TRS's. Specifically, we discuss Abstract Reduction Systems
A Transformational Methodology for Proving Termination of Logic Programs
, 1991
"... this paper, we present a transformational approach for proving termination of logic programs by reducing the termination problem of logic programs to that of term rewriting systems. The termination problem of term rewriting systems has been well studied and many useful techniques and tools have been ..."
Abstract

Cited by 34 (5 self)
 Add to MetaCart
this paper, we present a transformational approach for proving termination of logic programs by reducing the termination problem of logic programs to that of term rewriting systems. The termination problem of term rewriting systems has been well studied and many useful techniques and tools have been developed for proving termination of term rewriting systems. The prime motivation of our approach is to facilitate the use of this vast source of termination techniques and tools in proving termination of logic programs.
Open Problems in Rewriting
 Proceeding of the Fifth International Conference on Rewriting Techniques and Application (Montreal, Canada), LNCS 690
, 1991
"... Introduction Interest in the theory and applications of rewriting has been growing rapidly, as evidenced in part by four conference proceedings #including this one# #15, 26, 41,66#; three workshop proceedings #33, 47, 77#; #ve special journal issues #5,88, 24, 40, 67#; more than ten surveys #2,7,27 ..."
Abstract

Cited by 19 (2 self)
 Add to MetaCart
Introduction Interest in the theory and applications of rewriting has been growing rapidly, as evidenced in part by four conference proceedings #including this one# #15, 26, 41,66#; three workshop proceedings #33, 47, 77#; #ve special journal issues #5,88, 24, 40, 67#; more than ten surveys #2,7,27, 28, 44, 56,57,76, 82, 81#; one edited collection of papers #1#; four monographs #3, 12,55,65#; and seven books #four of them still in progress# #8,9, 35, 54, 60,75, 84#. To encourage and stimulate continued progress in this area, wehave collected #with the help of colleagues# a number of problems that appear to us to be of interest and regarding whichwe do not know the answer. Questions on rewriting and other equational paradigms have been included; manyhave not aged su#ciently to be accorded the appellation #open problem". Wehave limited ourselves to theoretical questions, though there are certainly many additional interesting questions relating to applications and implementation
Decision Problems in Ordered Rewriting
 In 13th IEEE Symposium on Logic in Computer Science (LICS
, 1997
"... A term rewrite system (TRS) terminates iff its rules are contained in a reduction ordering ?. In order to deal with any set of equations, including inherently nonterminating ones (like commutativity), TRS have been generalised to ordered TRS (E; ?), where equations of E are applied in whatever dir ..."
Abstract

Cited by 16 (7 self)
 Add to MetaCart
(Show Context)
A term rewrite system (TRS) terminates iff its rules are contained in a reduction ordering ?. In order to deal with any set of equations, including inherently nonterminating ones (like commutativity), TRS have been generalised to ordered TRS (E; ?), where equations of E are applied in whatever direction agrees with ?. The confluence of terminating TRS is wellknown to be decidable, but for ordered TRS the decidability of confluence has been open. Here we show that the confluence of ordered TRS is decidable if ordering constraints for ? can be solved in an adequate way, which holds in particular for the class of LPO orderings. For sets E of constrained equations, confluence is shown to be undecidable. Finally, ground reducibility is proved undecidable for ordered TRS. 1 Introduction Term rewrite systems (TRS) have been applied to many problems in symbolic computation, automated theorem proving, program synthesis and verification, and logic programming among others. Two fundamental pr...
Elimination of Conditions
, 1995
"... We present a transformation from any conditional rewrite systems into non conditional ones and prove its correctness. The transformed systems are quite intuitive and well suited for parallel execution. We also show how termination and confluence of the original system are preserved in the transforme ..."
Abstract

Cited by 12 (0 self)
 Add to MetaCart
We present a transformation from any conditional rewrite systems into non conditional ones and prove its correctness. The transformed systems are quite intuitive and well suited for parallel execution. We also show how termination and confluence of the original system are preserved in the transformed one.
Rewrite Proofs and Computations
 Proof and Computation
, 1995
"... . Rewriting is a general paradigm for expressing computations in various logics, and we focus here on rewriting techniques in equational logic. When used at the proof level, rewriting provides with a very powerful methodology for proving completeness results, a technique that is illustrated here. We ..."
Abstract

Cited by 12 (0 self)
 Add to MetaCart
. Rewriting is a general paradigm for expressing computations in various logics, and we focus here on rewriting techniques in equational logic. When used at the proof level, rewriting provides with a very powerful methodology for proving completeness results, a technique that is illustrated here. We also consider whether important properties of rewrite systems such as confluence and termination can be proved in a modular way. Finally, we stress the links between rewriting and tree automata. Previous surveys include [21; 18; 37; 12; 45; 46]. The present one owes much to [21]. Keywords. completion, confluence, critical pair, ground reducibility, inductive completion, local confluence, modularity, narrowing, ordersorted algebras, rewrite rule, rewriting, term algebra, termination, tree automata. 1 Introduction The use of equations is traditional in mathematics. Its use in computer science has culminated with the success of algebraic specifications, a method of specifying software by enc...
How to Transform Canonical Decreasing CTRSs into Equivalent Canonical TRSs
 In Proceedings of the 4th International Workshop on Conditional Term Rewriting Systems
, 1994
"... We prove constructively that the class of groundconfluent and decreasing conditional term rewriting systems (CTRSs) (without extra variables) coincides with the class of orthogonal and terminating, unconditional term rewriting systems (TRSs). TRSs being included in CTRSs, this result follows from a ..."
Abstract

Cited by 11 (0 self)
 Add to MetaCart
We prove constructively that the class of groundconfluent and decreasing conditional term rewriting systems (CTRSs) (without extra variables) coincides with the class of orthogonal and terminating, unconditional term rewriting systems (TRSs). TRSs being included in CTRSs, this result follows from a transformation from any groundconfluent and decreasing CTRS specifying a computable function f into a TRS with the mentioned properties for f . The generated TRS is ordersorted, but we outline a similar transformation yielding an unsorted TRS.
Knowledge Representation and Classical Logic
, 2007
"... Mathematical logicians had developed the art of formalizing declarative knowledge long before the advent of the computer age. But they were interested primarily in formalizing mathematics. Because of the important role of nonmathematical knowledge in AI, their emphasis was too narrow from the perspe ..."
Abstract

Cited by 11 (5 self)
 Add to MetaCart
(Show Context)
Mathematical logicians had developed the art of formalizing declarative knowledge long before the advent of the computer age. But they were interested primarily in formalizing mathematics. Because of the important role of nonmathematical knowledge in AI, their emphasis was too narrow from the perspective of knowledge representation, their formal languages were not sufficiently expressive. On the other hand, most logicians were not concerned about the possibility of automated reasoning; from the perspective of knowledge representation, they were often too generous in the choice of syntactic constructs. In spite of these differences, classical mathematical logic has exerted significant influence on knowledge representation research, and it is appropriate to begin this handbook with a discussion of the relationship between these fields. The language of classical logic that is most widely used in the theory of knowledge representation is the language of firstorder (predicate) formulas. These are the formulas that John McCarthy proposed to use for representing declarative knowledge in his advice taker paper [176], and Alan Robinson proposed to prove automatically using resolution [236]. Propositional logic is, of course, the most important subset of firstorder logic; recent