Results 1  10
of
204
A quantitative analysis and performance study for similaritysearch methods in highdimensional spaces
 In VLDB ’98: Proceedings of the 24rd International Conference on Very Large Data Bases
, 1998
"... ..."
Distance Browsing in Spatial Databases
, 1999
"... Two different techniques of browsing through a collection of spatial objects stored in an Rtree spatial data structure on the basis of their distances from an arbitrary spatial query object are compared. The conventional approach is one that makes use of a knearest neighbor algorithm where k is kn ..."
Abstract

Cited by 390 (20 self)
 Add to MetaCart
Two different techniques of browsing through a collection of spatial objects stored in an Rtree spatial data structure on the basis of their distances from an arbitrary spatial query object are compared. The conventional approach is one that makes use of a knearest neighbor algorithm where k is known prior to the invocation of the algorithm. Thus if m#kneighbors are needed, the knearest neighbor algorithm needs to be reinvoked for m neighbors, thereby possibly performing some redundant computations. The second approach is incremental in the sense that having obtained the k nearest neighbors, the k +1 st neighbor can be obtained without having to calculate the k +1nearest neighbors from scratch. The incremental approach finds use when processing complex queries where one of the conditions involves spatial proximity (e.g., the nearest city to Chicago with population greater than a million), in which case a query engine can make use of a pipelined strategy. A general incremental nearest neighbor algorithm is presented that is applicable to a large class of hierarchical spatial data structures. This algorithm is adapted to the Rtree and its performance is compared to an existing knearest neighbor algorithm for Rtrees [45]. Experiments show that the incremental nearest neighbor algorithm significantly outperforms the knearest neighbor algorithm for distance browsing queries in a spatial database that uses the Rtree as a spatial index. Moreover, the incremental nearest neighbor algorithm also usually outperforms the knearest neighbor algorithm when applied to the knearest neighbor problem for the Rtree, although the improvement is not nearly as large as for distance browsing queries. In fact, we prove informally that, at any step in its execution, the incremental...
Blobworld: A System for RegionBased Image Indexing and Retrieval
 In Third International Conference on Visual Information Systems
, 1999
"... . Blobworld is a system for image retrieval based on finding coherent image regions which roughly correspond to objects. Each image is automatically segmented into regions ("blobs") with associated color and texture descriptors. Querying is based on the attributes of one or two regions of ..."
Abstract

Cited by 363 (4 self)
 Add to MetaCart
(Show Context)
. Blobworld is a system for image retrieval based on finding coherent image regions which roughly correspond to objects. Each image is automatically segmented into regions ("blobs") with associated color and texture descriptors. Querying is based on the attributes of one or two regions of interest, rather than a description of the entire image. In order to make largescale retrieval feasible, we index the blob descriptions using a tree. Because indexing in the highdimensional feature space is computationally prohibitive, we use a lowerrank approximation to the highdimensional distance. Experiments show encouraging results for both querying and indexing. 1 Introduction From a user's point of view, the performance of an information retrieval system can be measured by the quality and speed with which it answers the user's information need. Several factors contribute to overall performance:  the time required to run each individual query,  the quality (precision/recall) of each i...
Locally Adaptive Dimensionality Reduction for Indexing Large Time Series Databases
 In proceedings of ACM SIGMOD Conference on Management of Data
, 2002
"... Similarity search in large time series databases has attracted much research interest recently. It is a difficult problem because of the typically high dimensionality of the data.. The most promising solutions' involve performing dimensionality reduction on the data, then indexing the reduced d ..."
Abstract

Cited by 311 (32 self)
 Add to MetaCart
(Show Context)
Similarity search in large time series databases has attracted much research interest recently. It is a difficult problem because of the typically high dimensionality of the data.. The most promising solutions' involve performing dimensionality reduction on the data, then indexing the reduced data with a multidimensional index structure. Many dimensionality reduction techniques have been proposed, including Singular Value Decomposition (SVD), the Discrete Fourier transform (DFT), and the Discrete Wavelet Transform (DWT). In this work we introduce a new dimensionality reduction technique which we call Adaptive Piecewise Constant Approximation (APCA). While previous techniques (e.g., SVD, DFT and DWT) choose a common representation for all the items in the database that minimizes the global reconstruction error, APCA approximates each time series by a set of constant value segments' of varying lengths' such that their individual reconstruction errors' are minimal. We show how APCA can be indexed using a multidimensional index structure. We propose two distance measures in the indexed space that exploit the high fidelity of APCA for fast searching: a lower bounding Euclidean distance approximation, and a nonlower bounding, but very tight Euclidean distance approximation and show how they can support fast exact searchin& and even faster approximate searching on the same index structure. We theoretically and empirically compare APCA to all the other techniques and demonstrate its' superiority.
An Introduction to Spatial Database Systems
 THE VLDB JOURNAL
, 1994
"... We propose a definition of a spatial database system as a database system that offers spatial data types in its data model and query language, and supports ..."
Abstract

Cited by 216 (9 self)
 Add to MetaCart
We propose a definition of a spatial database system as a database system that offers spatial data types in its data model and query language, and supports
Optimal MultiStep kNearest Neighbor Search
, 1998
"... For an increasing number of modern database applications, efficient support of similarity search becomes an important task. Along with the complexity of the objects such as images, molecules and mechanical parts, also the complexity of the similarity models increases more and more. Whereas algorithm ..."
Abstract

Cited by 199 (23 self)
 Add to MetaCart
For an increasing number of modern database applications, efficient support of similarity search becomes an important task. Along with the complexity of the objects such as images, molecules and mechanical parts, also the complexity of the similarity models increases more and more. Whereas algorithms that are directly based on indexes work well for simple mediumdimensional similarity distance functions, they do not meet the efficiency requirements of complex highdimensional and adaptable distance functions. The use of a multistep query processing strategy is recommended in these cases, and our investigations substantiate that the number of candidates which are produced in the filter step and exactly evaluated in the refinement step is a fundamental efficiency parameter. After revealing the strong performance shortcomings of the stateoftheart algorithm for knearest neighbor search [Korn et al. 1996], we present a novel multistep algorithm which is guaranteed to produce the minim...
Indexdriven similarity search in metric spaces
 ACM Transactions on Database Systems
, 2003
"... Similarity search is a very important operation in multimedia databases and other database applications involving complex objects, and involves finding objects in a data set S similar to a query object q, based on some similarity measure. In this article, we focus on methods for similarity search th ..."
Abstract

Cited by 184 (7 self)
 Add to MetaCart
Similarity search is a very important operation in multimedia databases and other database applications involving complex objects, and involves finding objects in a data set S similar to a query object q, based on some similarity measure. In this article, we focus on methods for similarity search that make the general assumption that similarity is represented with a distance metric d. Existing methods for handling similarity search in this setting typically fall into one of two classes. The first directly indexes the objects based on distances (distancebased indexing), while the second is based on mapping to a vector space (mappingbased approach). The main part of this article is dedicated to a survey of distancebased indexing methods, but we also briefly outline how search occurs in mappingbased methods. We also present a general framework for performing search based on distances, and present algorithms for common types of queries that operate on an arbitrary “search hierarchy. ” These algorithms can be applied on each of the methods presented, provided a suitable search hierarchy is defined.
3D shape histograms for similarity search and classification in spatial databases
 SSD'99
, 1999
"... Classification is one of the basic tasks of data mining in modern database applications including molecular biology, astronomy, mechanical engineering, medical imaging or meteorology. The underlying models have to consider spatial properties such as shape or extension as well as thematic attributes ..."
Abstract

Cited by 176 (11 self)
 Add to MetaCart
Classification is one of the basic tasks of data mining in modern database applications including molecular biology, astronomy, mechanical engineering, medical imaging or meteorology. The underlying models have to consider spatial properties such as shape or extension as well as thematic attributes. We introduce 3D shape histograms as an intuitive and powerful similarity model for 3D objects. Particular flexibility is provided by using quadratic form distance functions in order to account for errors of measurement, sampling, and numerical rounding that all may result in small displacements and rotations of shapes. For query processing, a general filterrefinement architecture is employed that efficiently supports similarity search based on quadratic forms. An experimental evaluation in the context of molecular biology demonstrates both, the high classification accuracy of more than 90 % and the good performance of the approach.
Incremental Distance Join Algorithms for Spatial Databases
, 1998
"... Two new spatial join operations, distance join and distance semijoin, are introduced where the join output is ordered by the distance between the spatial attribute values of the joined tuples. Incremental algorithms are presented for computing these operations, which can be used in a pipelined fashi ..."
Abstract

Cited by 140 (12 self)
 Add to MetaCart
(Show Context)
Two new spatial join operations, distance join and distance semijoin, are introduced where the join output is ordered by the distance between the spatial attribute values of the joined tuples. Incremental algorithms are presented for computing these operations, which can be used in a pipelined fashion, thereby obviating the need to wait for their completion when only a few tuples are needed. The algorithms can be used with a large class of hierarchical spatial data structures and arbitrary spatial data types in any dimensions. In addition, any distance metric may be employed. A performance study using Rtrees shows that the incremental algorithms outperform nonincremental approaches by an order of magnitude if only a small part of the result is needed, while the penalty, if any, for the incremental processing is modest if the entire join result is required.
The Atree: An Index Structure for HighDimensional Spaces Using Relative Approximation
, 2000
"... We propose a novel index structure, Atree (Approximation tree), for similarity search of highdimensional data. The basic idea of the Atree is the introduction of Virtual Bounding Rectangles (VBRs), which contain and approximate MBRs and data objects. VBRs can be represented rather compactly, and ..."
Abstract

Cited by 107 (0 self)
 Add to MetaCart
We propose a novel index structure, Atree (Approximation tree), for similarity search of highdimensional data. The basic idea of the Atree is the introduction of Virtual Bounding Rectangles (VBRs), which contain and approximate MBRs and data objects. VBRs can be represented rather compactly, and thus affect the tree configuration both quantitatively and qualitatively. Firstly, since tree nodes can install large number of entries of VBRs, fanout of nodes becomes large, thus leads to fast search. More importantly, we have a free hand in arranging MBRs and VBRs in tree nodes. In the Atrees, nodes contain entries of an MBR and its children VBRs. Therefore, by fetching a node of an Atree, we can obtain the information of exact position of a parent MBR and approximate position of its children. We have performed experiments using both synthetic and real data sets. For the real data sets, the Atree outperforms the SRtree and the VAFile in all range of dimensionality up to 64 dimension, which is the highest dimension in our experiments. The Atree achieves 77.3 % (77.7%, resp.) savings in page accesses compared to the SRtree (the VAFile, resp.) for 64dimensional real data.