Results 1 - 10
of
518
Chord: A Scalable Peer-to-Peer Lookup Service for Internet Applications
- SIGCOMM'01
, 2001
"... A fundamental problem that confronts peer-to-peer applications is to efficiently locate the node that stores a particular data item. This paper presents Chord, a distributed lookup protocol that addresses this problem. Chord provides support for just one operation: given a key, it maps the key onto ..."
Abstract
-
Cited by 4469 (69 self)
- Add to MetaCart
(Show Context)
A fundamental problem that confronts peer-to-peer applications is to efficiently locate the node that stores a particular data item. This paper presents Chord, a distributed lookup protocol that addresses this problem. Chord provides support for just one operation: given a key, it maps the key onto a node. Data location can be easily implemented on top of Chord by associating a key with each data item, and storing the key/data item pair at the node to which the key maps. Chord adapts efficiently as nodes join and leave the system, and can answer queries even if the system is continuously changing. Results from theoretical analysis, simulations, and experiments show that Chord is scalable, with communication cost and the state maintained by each node scaling logarithmically with the number of Chord nodes.
Directed diffusion: a scalable and robust communication paradigm for sensor networks.
- In Mobicom ’00: Proceedings of the 6th annual international conference on mobile computing and networking
, 2000
"... ..."
(Show Context)
Pastry: Scalable, distributed object location and routing for large-scale peer-to-peer systems
, 2001
"... This paper presents the design and evaluation of Pastry, a scalable, distributed object location and routing scheme for wide-area peer-to-peer applications. Pastry provides application-level routing and object location in a potentially very large overlay network of nodes connected via the Internet. ..."
Abstract
-
Cited by 2075 (49 self)
- Add to MetaCart
This paper presents the design and evaluation of Pastry, a scalable, distributed object location and routing scheme for wide-area peer-to-peer applications. Pastry provides application-level routing and object location in a potentially very large overlay network of nodes connected via the Internet. It can be used to support a wide range of peer-to-peer applications like global data storage, global data sharing, and naming. An insert operation in Pastry stores an object at a user-defined number of diverse nodes within the Pastry network. A lookup operation reliably retrieves a copy of the requested object if one exists. Moreover, a lookup is usually routed to the node nearest the client issuing the lookup (by some measure of proximity), among the nodes storing the requested object. Pastry is completely decentralized, scalable, and self-configuring; it automatically adapts to the arrival, departure and failure of nodes. Experimental results obtained with a prototype implementation on a simulated network of 100,000 nodes confirm Pastry's scalability, its ability to self-configure and adapt to node failures, and its good network locality properties.
Pastry: Scalable, decentralized object location and routing for large-scale peer-to-peer systems
- IN PROC. OF THE 18TH IFIP/ACM INTERNATIONAL CONFERENCE ON DISTRIBUTED SYSTEMS PLATFORMS,
, 2001
"... This paper presents the design and evaluation of Pastry, a scalable, distributed object location and routing substrate for wide-area peer-to-peer applications. Pastry performs application-level routing and object location in a potentially very large overlay network of nodes connected via the Intern ..."
Abstract
-
Cited by 1932 (1 self)
- Add to MetaCart
(Show Context)
This paper presents the design and evaluation of Pastry, a scalable, distributed object location and routing substrate for wide-area peer-to-peer applications. Pastry performs application-level routing and object location in a potentially very large overlay network of nodes connected via the Internet. It can be used to support a variety of peer-to-peer applications, including global data storage, data sharing, group communication and naming. Each node in the Pastry network has a unique identifier (nodeId). When presented with a message and a key, a Pastry node efficiently routes the message to the node with a nodeId that is numerically closest to the key, among all currently live Pastry nodes. Each Pastry node keeps track of its immediate neighbors in the nodeId space, and notifies applications of new node arrivals, node failures and recoveries. Pastry takes into account network locality; it seeks to minimize the distance messages travel, according to a to scalar proximity metric like the number of IP routing hops. Pastry is completely decentralized, scalable, and self-organizing; it automatically adapts to the arrival, departure and failure of nodes. Experimental results obtained with a prototype implementation on an emulated network of up to 100,000 nodes con£rm Pastry's scalability and efficiency, its ability to self-organize and adapt to node failures, and its good network locality properties.
TAG: a Tiny AGgregation service for ad-hoc sensor networks
- IN OSDI
, 2002
"... ..."
(Show Context)
Tapestry: An infrastructure for fault-tolerant wide-area location and routing
, 2001
"... In today’s chaotic network, data and services are mobile and replicated widely for availability, durability, and locality. Components within this infrastructure interact in rich and complex ways, greatly stressing traditional approaches to name service and routing. This paper explores an alternative ..."
Abstract
-
Cited by 1250 (31 self)
- Add to MetaCart
In today’s chaotic network, data and services are mobile and replicated widely for availability, durability, and locality. Components within this infrastructure interact in rich and complex ways, greatly stressing traditional approaches to name service and routing. This paper explores an alternative to traditional approaches called Tapestry. Tapestry is an overlay location and routing infrastructure that provides location-independent routing of messages directly to the closest copy of an object or service using only point-to-point links and without centralized resources. The routing and directory information within this infrastructure is purely soft state and easily repaired. Tapestry is self-administering, fault-tolerant, and resilient under load. This paper presents the architecture and algorithms of Tapestry and explores their advantages through a number of experiments.
The Cricket Location-Support System
, 2000
"... This paper presents the design, implementation, and evaluation of Cricket, a location-support system for in-building, mobile, locationdependent applications. It allows applications running on mobile and static nodes to learn their physical location by using listeners that hear and analyze informatio ..."
Abstract
-
Cited by 1058 (11 self)
- Add to MetaCart
(Show Context)
This paper presents the design, implementation, and evaluation of Cricket, a location-support system for in-building, mobile, locationdependent applications. It allows applications running on mobile and static nodes to learn their physical location by using listeners that hear and analyze information from beacons spread throughout the building. Cricket is the result of several design goals, including user privacy, decentralized administration, network heterogeneity, and low cost. Rather than explicitly tracking user location, Cricket helps devices learn where they are and lets them decide whom to advertise this information to; it does not rely on any centralized management or control and there is no explicit coordination between beacons; it provides information to devices regardless of their type of network connectivity; and each Cricket device is made from off-the-shelf components and costs less than U.S. $10. We describe the randomized algorithm used by beacons to transmit information, the use of concurrent radio and ultrasonic signals to infer distance, the listener inference algorithms to overcome multipath and interference, and practical beacon configuration and positioning techniques that improve accuracy. Our experience with Cricket shows that several location-dependent applications such as in-building active maps and device control can be developed with little effort or manual configuration. 1
A Delay-Tolerant Network Architecture for Challenged Internets
, 2003
"... The highly successful architecture and protocols of today’s Internet may operate poorly in environments characterized by very long delay paths and frequent network partitions. These problems are exacerbated by end nodes with limited power or memory resources. Often deployed in mobile and extreme env ..."
Abstract
-
Cited by 953 (12 self)
- Add to MetaCart
The highly successful architecture and protocols of today’s Internet may operate poorly in environments characterized by very long delay paths and frequent network partitions. These problems are exacerbated by end nodes with limited power or memory resources. Often deployed in mobile and extreme environments lacking continuous connectivity, many such networks have their own specialized protocols, and do not utilize IP. To achieve interoperability between them, we propose a network architecture and application interface structured around optionally-reliable asynchronous message forwarding, with limited expectations of end-to-end connectivity and node resources. The architecture operates as an overlay above the transport layers of the networks it interconnects, and provides key services such as in-network data storage and retransmission, interoperable naming, authenticated forwarding and a coarse-grained class of service.
Storage management and caching in PAST, a large-scale, persistent peer-to-peer storage utility
, 2001
"... This paper presents and evaluates the storage management and caching in PAST, a large-scale peer-to-peer persistent storage utility. PAST is based on a self-organizing, Internetbased overlay network of storage nodes that cooperatively route file queries, store multiple replicas of files, and cache a ..."
Abstract
-
Cited by 803 (23 self)
- Add to MetaCart
This paper presents and evaluates the storage management and caching in PAST, a large-scale peer-to-peer persistent storage utility. PAST is based on a self-organizing, Internetbased overlay network of storage nodes that cooperatively route file queries, store multiple replicas of files, and cache additional copies of popular files. In the PAST system, storage nodes and files are each assigned uniformly distributed identifiers, and replicas of a file are stored at nodes whose identifier matches most closely the file’s identifier. This statistical assignment of files to storage nodes approximately balances the number of files stored on each node. However, non-uniform storage node capacities and file sizes require more explicit storage load balancing to permit graceful behavior under high global storage utilization; likewise, non-uniform popularity of files requires caching to minimize fetch distance and to balance the query load. We present and evaluate PAST, with an emphasis on its storage management and caching system. Extensive tracedriven experiments show that the system minimizes fetch distance, that it balances the query load for popular files, and that it displays graceful degradation of performance as the global storage utilization increases beyond 95%.