Results 1  10
of
189
Online learning for matrix factorization and sparse coding
, 2010
"... Sparse coding—that is, modelling data vectors as sparse linear combinations of basis elements—is widely used in machine learning, neuroscience, signal processing, and statistics. This paper focuses on the largescale matrix factorization problem that consists of learning the basis set in order to ad ..."
Abstract

Cited by 329 (31 self)
 Add to MetaCart
Sparse coding—that is, modelling data vectors as sparse linear combinations of basis elements—is widely used in machine learning, neuroscience, signal processing, and statistics. This paper focuses on the largescale matrix factorization problem that consists of learning the basis set in order to adapt it to specific data. Variations of this problem include dictionary learning in signal processing, nonnegative matrix factorization and sparse principal component analysis. In this paper, we propose to address these tasks with a new online optimization algorithm, based on stochastic approximations, which scales up gracefully to large data sets with millions of training samples, and extends naturally to various matrix factorization formulations, making it suitable for a wide range of learning problems. A proof of convergence is presented, along with experiments with natural images and genomic data demonstrating that it leads to stateoftheart performance in terms of speed and optimization for both small and large data sets.
Group Lasso with Overlap and Graph Lasso
"... We propose a new penalty function which, when used as regularization for empirical risk minimization procedures, leads to sparse estimators. The support of the sparse vector is typically a union of potentially overlapping groups of covariates defined a priori, or a set of covariates which tend to be ..."
Abstract

Cited by 232 (19 self)
 Add to MetaCart
(Show Context)
We propose a new penalty function which, when used as regularization for empirical risk minimization procedures, leads to sparse estimators. The support of the sparse vector is typically a union of potentially overlapping groups of covariates defined a priori, or a set of covariates which tend to be connected to each other when a graph of covariates is given. We study theoretical properties of the estimator, and illustrate its behavior on simulated and breast cancer gene expression data. 1.
Representation learning: A review and new perspectives.
 of IEEE Conf. Comp. Vision Pattern Recog. (CVPR),
, 2005
"... AbstractThe success of machine learning algorithms generally depends on data representation, and we hypothesize that this is because different representations can entangle and hide more or less the different explanatory factors of variation behind the data. Although specific domain knowledge can b ..."
Abstract

Cited by 171 (4 self)
 Add to MetaCart
(Show Context)
AbstractThe success of machine learning algorithms generally depends on data representation, and we hypothesize that this is because different representations can entangle and hide more or less the different explanatory factors of variation behind the data. Although specific domain knowledge can be used to help design representations, learning with generic priors can also be used, and the quest for AI is motivating the design of more powerful representationlearning algorithms implementing such priors. This paper reviews recent work in the area of unsupervised feature learning and deep learning, covering advances in probabilistic models, autoencoders, manifold learning, and deep networks. This motivates longer term unanswered questions about the appropriate objectives for learning good representations, for computing representations (i.e., inference), and the geometrical connections between representation learning, density estimation, and manifold learning.
TreeGuided Group Lasso for MultiTask Regression with Structured Sparsity
"... We consider the problem of learning a sparse multitask regression, where the structure in the outputs can be represented as a tree with leaf nodes as outputs and internal nodes as clusters of the outputs at multiple granularity. Our goal is to recover the common set of relevant inputs for each outp ..."
Abstract

Cited by 112 (12 self)
 Add to MetaCart
(Show Context)
We consider the problem of learning a sparse multitask regression, where the structure in the outputs can be represented as a tree with leaf nodes as outputs and internal nodes as clusters of the outputs at multiple granularity. Our goal is to recover the common set of relevant inputs for each output cluster. Assuming that the tree structure is available as prior knowledge, we formulate this problem as a new multitask regularized regression called treeguided group lasso. Our structured regularization is based on a grouplasso penalty, where groups are defined with respect to the tree structure. We describe a systematic weighting scheme for the groups in the penalty such that each output variable is penalized in a balanced manner even if the groups overlap. We present an efficient optimization method that can handle a largescale problem. Using simulated and yeast datasets, we demonstrate that our method shows a superior performance in terms of both prediction errors and recovery of true sparsity patterns compared to other methods for multitask learning. 1.
Structured compressed sensing: From theory to applications
 IEEE TRANS. SIGNAL PROCESS
, 2011
"... Compressed sensing (CS) is an emerging field that has attracted considerable research interest over the past few years. Previous review articles in CS limit their scope to standard discretetodiscrete measurement architectures using matrices of randomized nature and signal models based on standard ..."
Abstract

Cited by 104 (16 self)
 Add to MetaCart
(Show Context)
Compressed sensing (CS) is an emerging field that has attracted considerable research interest over the past few years. Previous review articles in CS limit their scope to standard discretetodiscrete measurement architectures using matrices of randomized nature and signal models based on standard sparsity. In recent years, CS has worked its way into several new application areas. This, in turn, necessitates a fresh look on many of the basics of CS. The random matrix measurement operator must be replaced by more structured sensing architectures that correspond to the characteristics of feasible acquisition hardware. The standard sparsity prior has to be extended to include a much richer class of signals and to encode broader data models, including continuoustime signals. In our overview, the theme is exploiting signal and measurement structure in compressive sensing. The prime focus is bridging theory and practice; that is, to pinpoint the potential of structured CS strategies to emerge from the math to the hardware. Our summary highlights new directions as well as relations to more traditional CS, with the hope of serving both as a review to practitioners wanting to join this emerging field, and as a reference for researchers that attempts to put some of the existing ideas in perspective of practical applications.
Revisiting frankwolfe: Projectionfree sparse convex optimization
 In ICML
, 2013
"... We provide stronger and more general primaldual convergence results for FrankWolfetype algorithms (a.k.a. conditional gradient) for constrained convex optimization, enabled by a simple framework of duality gap certificates. Our analysis also holds if the linear subproblems are only solved approxi ..."
Abstract

Cited by 86 (2 self)
 Add to MetaCart
(Show Context)
We provide stronger and more general primaldual convergence results for FrankWolfetype algorithms (a.k.a. conditional gradient) for constrained convex optimization, enabled by a simple framework of duality gap certificates. Our analysis also holds if the linear subproblems are only solved approximately (as well as if the gradients are inexact), and is proven to be worstcase optimal in the sparsity of the obtained solutions. On the application side, this allows us to unify a large variety of existing sparse greedy methods, in particular for optimization over convex hulls of an atomic set, even if those sets can only be approximated, including sparse (or structured sparse) vectors or matrices, lowrank matrices, permutation matrices, or maxnorm bounded matrices. We present a new general framework for convex optimization over matrix factorizations, where every FrankWolfe iteration will consist of a lowrank update, and discuss the broad application areas of this approach. 1.
Structured Sparse Principal Component Analysis
, 2009
"... We present an extension of sparse PCA, or sparse dictionary learning, where the sparsity patterns of all dictionary elements are structured and constrained to belong to a prespecified set of shapes. This structured sparse PCA is based on a structured regularization recently introduced by [1]. While ..."
Abstract

Cited by 70 (14 self)
 Add to MetaCart
(Show Context)
We present an extension of sparse PCA, or sparse dictionary learning, where the sparsity patterns of all dictionary elements are structured and constrained to belong to a prespecified set of shapes. This structured sparse PCA is based on a structured regularization recently introduced by [1]. While classical sparse priors only deal with cardinality, the regularization we use encodes higherorder information about the data. We propose an efficient and simple optimization procedure to solve this problem. Experiments with two practical tasks, face recognition and the study of the dynamics of a protein complex, demonstrate the benefits of the proposed structured approach over unstructured approaches. 1