Results 1 
1 of
1
Lipschitz unimodal and isotonic regression on paths and trees
, 2008
"... Let M = (V, A) be a planar graph, let γ ≥ 0 be a real parameter, and t: V → R a height function. A γLipschitz unimodal regression (γLUR) of t is a function s: V → R such that s has a unique local minimum, s(u) − s(v)  ≤ γ for each {u, v} ∈ A, and ‖s − t‖2 = ∑ v∈V (s(v) − t(v))2 is minimized. ..."
Abstract

Cited by 2 (1 self)
 Add to MetaCart
Let M = (V, A) be a planar graph, let γ ≥ 0 be a real parameter, and t: V → R a height function. A γLipschitz unimodal regression (γLUR) of t is a function s: V → R such that s has a unique local minimum, s(u) − s(v)  ≤ γ for each {u, v} ∈ A, and ‖s − t‖2 = ∑ v∈V (s(v) − t(v))2 is minimized. Here, a local minimum of s is a vertex v such that s(u)> s(v) for any neighbor u of v. For a directed planar graph, s: V → R is the γLipschitz isotonic regression (γLIR) of t if s(u) ≤ s(v) ≤ s(u)+γ for each directed edge (u, v) and ‖s − t‖2 is minimized. These problems arise, for example, in topological simplification of a height function. We present nearlineartime algorithms for LUR and LIR problems for two special cases where M is a path or a tree.